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Abstract

GabR from Bacillus subtilis is a transcriptional regulator belonging to the MocR subfamily of

the GntR regulators. The structure of the MocR regulators is characterized by the presence

of two domains: i) a N-terminal domain, about 60 residue long, possessing the winged-Helix-

Turn-Helix (wHTH) architecture with DNA recognition and binding capability; ii) a C-terminal

domain (about 350 residue) folded as the pyridoxal 5’-phosphate (PLP) dependent aspartate

aminotransferase (AAT) with dimerization and effector binding functions. The two domains

are linked to each other by a peptide bridge. Although structural and functional characteriza-

tion of MocRs is proceeding at a fast pace, virtually nothing is know about the molecular

changes induced by the effector binding and on how these modifications influence the prop-

erties of the regulator. An extensive molecular dynamics simulation on the crystallographic

structure of the homodimeric B. subtilis GabR has been undertaken with the aim to envisage

the role and the importance of conformational flexibility in the action of GabR. Molecular

dynamics has been calculated for the apo (without PLP) and holo (with PLP bound) forms of

the GabR. A comparison between the molecular dynamics trajectories calculated for the two

GabR forms suggested that one of the wHTH domain detaches from the AAT-like domain in

the GabR PLP-bound form. The most evident conformational change in the holo PLP-bound

form is represented by the rotation and the subsequent detachment from the subunit surface

of one of the wHTH domains. The movement is mediated by a rearrangement of the linker

connecting the AAT domain possibly triggered by the presence of the negative charge of the

PLP cofactor. This is the second most significant conformational modification. The C-termi-

nal section of the linker docks into the “active site” pocket and establish stabilizing contacts

consisting of hydrogen-bonds, salt-bridges and hydrophobic interactions.
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Introduction

The proteins of the transcription factor family named GntR, are characterized by the presence

of two domains [1, 2]: the N-terminal domain, 60 residue long on average, possesses the

winged-Helix-Turn-Helix architecture (wHTH) to which DNA recognition and binding [3, 4]

functions are associated; the larger, C-terminal domain can belong to at least four different

structural families and has oligomerization and effector binding functions. A GntR subfamily,

named MocR [5, 6] after designation of the regulator of expression of rhizopine catabolism

genes [7], is characterized by possessing a large C-terminal domain (350 residue on average)

folded as type-I pyridoxal 5’-phosphate (PLP)-dependent enzymes [8]. Aspartate aminotrans-

ferase (AAT) [9] is the archetypal enzyme representing this fold. The two wHTH and AAT

domains are linked to each other by a peptide bridge which can be of various lengths in differ-

ent MocRs [10, 11].

Since their discovery, several MocR regulators have been studied and characterized. For

example: TauR which activates the expression of taurine utilization genes in Rhodobacter cap-
sulatus [12]; Bacillus subtilis GabR [13] which with PLP and γ-amino butyric acid (GABA)

bound as external aldimine, activates transcription of genes coding for GABA aminotransfer-

ase and succinic semi-aldehyde dehydrogenase; PtsJ regulates the production of pyridoxal

kinase in Salmonella typhimurium [14] while PdxR is involved in the regulation of the PLP syn-

thesis in several bacteria such as Corynebacterium glutamicum [15], Streptococcus pneumoniae
[16], Listeria monocytogenes [17], Streptococcus mutans [18], Bacillus clausii [19]. Recently, a

new Brevibacillus brevis MocR has been demonstrated to regulate the expression of the gene

coding for D-alanyl-D-alanine ligase [20].

The MocR subfamily contains other subgroups of regulators [21] that are predicted to regu-

late genes coding for different types of proteins, including membrane transporters [22, 23].

In general, the MocR-like regulators are involved as activators or repressors in the control

of many, important metabolic networks yet mostly uncharacterized [23]. Despite their signifi-

cance, very little is known about the molecular mechanism underlying their function and their

response to effector binding. Moreover, relatively scarce structural information has been pro-

duced up to date: only the crystallographic structure of GabR is available as a starting point to

envisage the mechanism with which the regulator reacts to effector binding [24, 25]. The struc-

ture revealed a swapped homodimer in which each subunit consists of a wHTH domain con-

nected to the AAT-like fold C-terminal domain by a 29-residue linker delimited by sequence

positions 81–109. Very recently, the structures of the dimeric GabR AAT domains in complex

with the external aldimine formed by the PLP and the GABA have been deposited in the PDB

by two competing groups [26, 27].

However, the crystallographic structures represent in general a static snapshot of the possi-

ble conformations among which the proteins may fluctuate in proximity of their free energy

minimum. Moreover, crystal forces and contacts may alter the conformation of portions of the

crystallized proteins [28, 29]. According to the crystallographic structure, the GabR regulator

has a head-to-tail swapped homo dimeric architecture where the wHTH domain of a subunit

is interacting with the other subunit. It cannot be easy to imagine on the sole basis of this static

asset how the GabR regulator could respond to effector binding while changing its DNA rec-

ognition properties. Data from literature strongly support the notion that binding of PLP and

GABA alters GabR conformation. For example, Belitsky reported that GabR is able to activate

transcription only in the presence of PLP and GABA [13] in vitro. Allosteric transition is gen-

erally believed to be one of the most important mechanism through which bacterial regulators

can act as molecular switches upon binding to low molecular weight effectors [30, 31]. More

recently, spectroscopic, crystallographic and calorimetry experiments suggested that binding
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of GABA causes a conformational change altering the interaction of GabR with DNA [32, 33].

The recent availability of the crystallographic structure of the GabR AAT domains solved as a

complex with the PLP-GABA external aldimine [26, 27] suggested that the presence of an

external aldimine induces the transition from the open to closed conformation, typical of most

of the PLP dependent enzymes of fold type-I [34]. According to the same authors, the confor-

mational transition would trigger the activation of transcription. Moreover, several consider-

ations [24] suggested that the linker is important for the mutual interaction of the two

domains and that it should undergo a significant conformational transition upon ligand bind-

ing. Accordingly, atomic force microscopy indicated that GABA binding promotes a GabR

conformational change along with a decrease in DNA binding affinity [35].

To envisage the role and the importance of conformational flexibility in the action of this

bacterial transcriptional regulator, an extensive molecular dynamics (MD) study on the apo

(without PLP) and holo (with PLP) forms of the GabR from Bacillus subtilis was undertaken.

Molecular dynamics is a computational technique able to simulate the atom motions of a

molecular system using a force field describing the different atom interactions and the relative

forces [36]. This approach is now routinely and widely used to simulate and study the confor-

mational changes of proteins and protein complexes as, for example, lobe and domain motions

or allosteric transitions [37–39]. Molecular dynamics has already been applied to the charac-

terization of several transcriptional regulators of different types: to cite only a few examples,

MD was utilized to study the conformational flexibility of the DNA binding domain of the

papillomavirus E2 transcriptional regulator [40]; the MD-guided site mutational analysis iden-

tified the ligand-binding site in HucR, the hypothetical uricase regulator of Deinococcus radio-
durans [41]; MD simulations predicted the mode of DNA-protein interaction in the Fis

regulator from Pasteurella multocida [42]; lastly, MD was used to test two models of allosteric

mechanism of the Tet repressor [43].

A comparison between the molecular dynamics trajectories calculated for the apo and the

holo, PLP bound, form of the GabR suggested that the presence of PLP may destabilize the inter-

action between the wHTH domain of one subunit and the AAT domain of the other. Moreover,

the linker seems to play a significant role in the wHTH conformational changes in the holo

GabR form. A possible linker-centered mechanism explaining the release of wHTH domain

from the regulator surface is proposed and the role of a few relevant residues is hypothesized.

Materials and methods

Multiple sequence alignment and editing was carried out with Clustal omega [44] and the soft-

ware Jalview [45], respectively.

Atomic coordinates were taken from the Protein Data Bank (PDB) [46]: the apo (without

PLP) and holo (with PLP) forms of the GabR from Bacillus subtilis are deposited and denoted

by the codes 4MGR and 4N0B, respectively. The 4MGR structure is complexed with a mole-

cule of imidazole bound at the active site of each subunit. Missing or incomplete residues in

holo GabR were modeled using Modeller version 9.11 [47]. In particular, residues of the loops

of the AAT domains corresponding to the sequence positions 436 to 439 and 437 to 440 in

chains A and B respectively, were missing in the structure 4N0B. These loops were rebuilt

using as a template the structure of the apo form (4MGR) for which the corresponding coordi-

nates are available. Ten models were generated by Modeller and the model with the best value

of the Modeller scoring function, indicating the degree of satisfaction of spatial restraints, was

selected for molecular dynamics experiments. The linkers connecting the wHTH and the AAT

domains were instead fully defined in both crystallographic structures chosen and therefore no

rebuilding was needed.
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The two models representative of the apo and holo forms, prepared as above described

starting from the X-ray structures retrieved from the PDB (code 4MGR and 4N0B), have been

subjected to MD simulations in water solution using the Gromacs software package [48]. The

4MGR apo form was simulated both with and without imidazole at the active sites. The simu-

lation of the 4MGR complex with imidazole was meant to serve as a reference for validating

the simulation of the imidazole-free form and detecting possible artifacts. The protein residues

have been described using the AMBER99SB-ILDN force field [49]. In the case of the holo

form, the PLP residue was described by the generalized Amber force field (GAFF) [50]. Partial

charges of the atoms composing PLP have been calculated with the restrained electrostatic

potential method [51]. Optimization and electrostatic potential analysis were performed by

using Gaussian 03 [52] at the Hartree-Fock level with the 6-31G� basis set. Protonation states

of titratable residues were chosen using the PROPKA web server [53, 54].

Particle Mesh Ewald (PME) method [55] was employed for the calculation of long range

electrostatic interactions with a grid spacing of 0.12 nm and a short range cutoff of 1.0 nm.

Bond lengths involving hydrogen atoms have been constrained to a constant value using the

LINCS algorithm [56]. About 50,000 TIP3p water molecules [57] have been used to solvate the

systems, imposing a minimum distance between the solute and the box of 1.4 nm. Na+ and Cl−

ions were added at physiological concentration (150 mM) with an excess of Na+ in order to

compensate the net negative charge of the systems. The simulated systems consist of about

165,000 atoms.

Equilibrium MD simulations have been preceded by 500 steps of energy minimization

using a steepest descent algorithm followed by 3 ns of MD simulation with harmonic position

restraints in NVT ensemble and 3 ns of MD simulation with harmonic position restraints in

NPT ensemble. Position restraints were applied on the heavy atoms of the proteins with a

force constant of 1000 kJ mol−1 nm−2.

The temperature was kept constant by coupling the system to the v-rescale thermostat [58]

at 298 K. Equilibrium simulations have been carried out in NPT ensemble using the Berendsen

pressure bath [59] with P = 1 bar. A time step of 2 fs was used for numerical integration of the

equations of motion. Summarizing, two MD simulations of the GabR protein in its Apo and

Holo states have been carried out with a simulation time length of respectively 200 ns and 350

ns.

Visual and numerical trajectory analyses have been carried out with the software VMD

1.9.3 [60] and the tools of the Gromacs package [61]. Structures have been displayed and ana-

lyzed with the graphic programs Open Source PyMol v. 1.8 [62] or Chimera v. 1.11 [63]. Anal-

ysis of contacts and interactions between PLP and GabR residues and backbone was carried

out with the software LigPlus [64]. Ad-hoc Perl and Python scripts were written whenever

necessary.

Results

Structure flexibility: Linker and wHTH domain movements

This work was conceived to investigate the conformational flexibility of GabR and the influ-

ence of the pyridoxal 5’-phosphate on its dynamics properties. To ease the detection of changes

induced by the presence of PLP, a comparative approach has been undertaken. Molecular

dynamics trajectories have been calculated for GabR apo forms, namely GabR without any

ligand (corresponding to the PDB file 4MGR after removal of imidazole), and for GabR holo

form, i.e. GabR with PLP bound through a Schiff base to each subunit of the homo dimer

(PDB code 4N0B).
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Fig 1 displays the structure of holo GabR based on the PDB structure 4N0B and indicates

the position of the wHTH domains and linker regions on the homo dimer and on the

sequence. The loop delimited by the sequence positions 110–121 that connects the linker to

the first helix of the AAT domain (Fig 1) and forms part of the PLP binding site, is also indi-

cated along with the two reconstructed short loops missing in the original crystallographic

structure.

To assure that the removal of imidazole from 4MGR active site had not caused alterations

of the apo GabR properties, 100 ns of molecular dynamics of 4MGR with and without imidaz-

ole have been compared. The RMSD (Root Mean Square Deviation) variations during simula-

tion time of the imidazole and imidazole-free apo GabR forms suggests that the two structures

have a very similar dynamics behavior (S1 Fig). Therefore it can be assumed that the imidaz-

ole-free apo form is not affected by any significant artifacts and it is as stable as the original

structure. For this reason, it can be used as the reference apo form throughout the work.

Simulations for the apo and holo forms have been initially carried out for 200 ns. Variations

of several structural and dynamics properties in the two GabR forms have been compared.

As a first assessment, visual inspection of the trajectories calculated for the two GabR forms

has shown that the most evident difference found between the two structures during the

Fig 1. Scheme of the structure of GabR dimer with the corresponding amino acid sequence. Ribbon

colors indicate the different domains in the two subunits: yellow and light green indicate the wHTH domains; cyan

and grey the two linkers; dark green and dark pink the AAT domains. Green and cyan underlines map the

positions of the wHTH and linker domains onto the sequence, respectively. Dark blue underlines and arrows

mark the loop connected to the linker. Cyan and green curly brackets indicate respectively the location of the

linkers and HTH domains on the structure. Red arrows mark the position of the two rebuilt loops. Labels ease the

visual identification of the domains. Sequence numbering corresponds to that used in the manuscript text.

https://doi.org/10.1371/journal.pone.0189270.g001
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simulation is represented by the movement of the wHTH domains of the holo chain B. The

domain indeed tends to move farther from the other subunit (chain A) surface after about 175

ns from simulation start. On the contrary, in apo GabR, each wHTH domain remains attached

to the AAT domain of the other subunit. To explore more extensively the wHTH movement,

the MD simulation for the holo form was extended for further 150 ns up to a total duration of

350 ns. Fig 2A reports the plot of RMSD variations versus simulation time of each subunit of

the two GabR forms with respect to the initial reference structure. The plot suggests that the

GabR structures are stable under dynamics conditions while the dramatic increase of RMSD

in the subunit B of holo GabR at about 175 ns is a consequence of the movement of the wHTH

domain.

Analysis of the RMSF (Root Mean Square Fluctuation) reported in Fig 2B and 2C pinpoints

that the increase of the RMSD in the subunit B is caused mainly by the movement of the corre-

sponding N-terminal wHTH domain. In addition to that, the same graph indicates that the

linker region is the most flexible portion in both subunits of either GabR forms. Indeed the

mainchain regions approximately encompassed by sequence positions 60–100 display a few

peaks in the RMSF graph which suggest wide movements around the average conformation.

Moreover, analysis of the conformation variations of the linker region versus simulation

time (Fig 3A) highlights differences in the secondary structure especially at the positions

encompassed by Pro96-Leu99 where a one-turn α-helix, missing in the apo form linker, occurs

(Fig 3A). All these results suggest that the role of the linker in the GabR conformational

changes cannot be overlooked.

The wHTH domain of the holo chain B, after detaching from the AAT domain surface,

becomes more flexible as suggested by the increase of the RMSD and of the RMSF (S2 Fig). On

the contrary, the HTH domain of the holo chain A and the HTH domains of the apo GabR

remain more rigid (S2 Fig).

Dominant domain motions

The dominant motions of the holo and apo GabR were captured using the essential dynamics

technique [65] as implemented in the Gromacs tools. Comparison between the movements

projected on the first eigenvector of holo and apo GabR forms shows that the major differences

are in correspondence of the linker and the wHTH domain of the chain B.

Fig 2. Structural variations in the subunits of holo and apo GabR forms. (A) RMSD variations. X-axis

reports the time frame in ns units. Color code for attribution of lines is reported in the figure inset. All frames

were superimposed to the initial reference structure. RMSF variations for (B) subunit A and (C) subunit B of

both forms. All frames were superimposed to the initial structure. Black and red lines refer to holo and apo

GabR, respectively. Green and cyan horizontal curly brackets indicate the sequence positions of the wHTH

and linker domains, respectively. All the calculations have been carried out taking into account only the main

chain atoms.

https://doi.org/10.1371/journal.pone.0189270.g002
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As far as it concerns the linker, the region encompassed by the positions from Ile102 to

Asp108 (Fig 3B and 3C) tends to become closer to the active site pocket of the other subunit

while in the apo form it fluctuates on the protein surface. The C-terminal side of the linker

(residues 81–100) is more constrained in holo form compared to the apo form where it oscil-

lates on the protein surface. At the same time, the holo wHTH domain detaches from the sur-

face of the subunit and fluctuates around the bond connecting to the linker in correspondence

of the residue Leu82. Within the time span used in this work, no significant motion have been

detected for the wHTH of the other subunit and, likewise, for the wHTH domains of apo form

as well.

Relevant residue interactions

The GabR structure areas most subject to dynamics movements have been delimited, as

described above, by visually comparing the apo and the holo forms at the beginning and at the

end of the MD simulations. The most changing regions turned out to be the linker and the

interface between the wHTH and AAT domain. Molecular details of the changes taking place

at these locations at the level of the composing residues have been analyzed in more details. In

particular, the residue interactions have been monitored through analysis of the variations of

their structural parameters versus simulation time. Several interactions form or break during

the simulation of the GabR dynamics (Table 1) in the holo or apo forms and a few conforma-

tional changes occur which may be relevant for the protein function.

Fig 3. Secondary structure variations in the linker region and essential dynamics. (A) Comparison of the

secondary structure variations in the linker regions of apo and holo GabR are displayed in the upper and lower

subfigure, respectively. Only results for linkers of subunits B are reported. X axis reports simulation time in ns

units while the Y axes indicates the sequence positions according to the numbering of Fig 1. Superposed frames

of the trajectories projected onto the first essential dynamics eigenvector for (B) holo and (C) apo GabR. Frames

were sampled every 17.5 and 10.0 ns, respectively. Rainbow colors ranges from blue (0 ns) to red (last frame of

the simulation). Red and green arrows point to the linker loop docking into the active site cavity and the linker

hinge region, respectively. Cyan circle encloses the moving wHTH domain. Reference XYZ axis are displayed in

the lower right corner of each figure. The structures are oriented approximately as in Fig 1.

https://doi.org/10.1371/journal.pone.0189270.g003

Conformational flexibility of the bacterial transcriptional regulator GabR

PLOS ONE | https://doi.org/10.1371/journal.pone.0189270 December 18, 2017 7 / 21

https://doi.org/10.1371/journal.pone.0189270.g003
https://doi.org/10.1371/journal.pone.0189270


Formation and persistence (or occupancy) of salt bridges has been monitored by the VMD

Salt Bridges plugin 1.1 [60] using the value 4.0 Å as the nitrogen-oxygen distance cut-off [66].

At the level of the linker region delimited by the sequence positions 102–108 of the subunit

B, several H-bonds, salt-bridges and hydrophobic interactions form in holo GabR with partner

residues from the AAT domain. A few of these interactions are absent in the apo form

(Table 1). In particular, three charge-charge interactions form in chain B between residues

from the AAT domain and the linker respectively: Arg207B-Asp105B, Arg451B-Asp108B, and

Lys453B-Asp108B. According to the VMD Salt Bridges plugin the interactions exist only in

the holo GabR form and are absent in the apo form (Fig 4).

These salt bridges are rather persistent during dynamics (Fig 4) with the exception of the

ion pair Asp105B-Arg207B that tends to form only at longer simulation times (Fig 4A). Inter-

estingly, Arg207 is conserved among GabR homologs and is structurally equivalent to the

Arg192 which in GABA aminotransferase interacts with the substrate (or substrate analog)

carboxylic group [25, 32, 67]. A hydrophobic interaction takes place between the linker

Ile104B and Pro148A, Leu340A of the AAT domain forming a hydrophobic cluster. All these

interactions are not observed in the apo form (Fig 5A).

All these interactions tend to form during MD simulation in the holo form (Fig 6A) while

are missing in the apo form throughout all the simulation time (Fig 6B).

In the linker region encompassed by sequence positions 84–101, the interactions between

Arg155A and Glu101B (in the linker) and Arg331A and within linker Asp98B, occurring in

the holo form, weaken in the apo form only at the end of the simulation time with increasing

average distances between side chains (Fig 7).

According to these observations, the linker tract containing the residues Asp98 and Glu101

may be considered a sort of hinge around which the linker movement takes place. The hinge is

reinforced by the formation of a hydrophobic cluster involving the linker residues Leu99B,

Phe93B and Pro326A from AAT domain of subunit A (Figs 5B and 8).

Table 1. Relevant side chain interactions.

Holo Apo

Interacting residues Interaction typea) Occurrenceb) Occurrenceb)

Arg207B-Asp105B Charge-charge -+ -

Arg451B-Asp108B Charge-charge + -

Lys453B-Asp108B Charge-charge + -

Ile104B-Leu340A-Pro148A Hydrophobic interaction + -

Glu101B-Arg155A Charge-charge + H-bond + +-

Arg331A-Asp98B Charge-charge + H-bond + +-

Leu99B-Phe93B-Pro326A Hydrophobic interaction + -

Arg140A-Asp120B Charge-charge + H-bond +- +

Asp144A-Arg451B Charge-charge +- -+

Arg319B-Asp144A Charge-charge -+ +-

Arg140A –Glu455B Charge-charge + -

Glu89B-Lys25B Charge-charge - +

Glu88B-Arg300A-Asp83B Charge-charge - -+

a) A H-bond is considered as existing if it is observed for at least 50% of the simulation time by VMD analysis [60]
b) Qualitative description of the occurrence of the interaction: + or − mean that the interaction is or is not observed during the simulation time, respectively.

-+ or +- means that the interaction tends to form or to break at the end of simulation time, respectively. Quantitative description is reported in the figures of

article text. Residues are indicated with the three-letter code followed by the sequence number and the chain identifier.

https://doi.org/10.1371/journal.pone.0189270.t001
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Other interesting interactions not involving directly the linker region but potentially rele-

vant to the conformational transitions of GabR could be observed. In the apo form, the salt

bridges Arg140A-Asp120B and Asp144A-Arg451B cooperate to the stabilization of the one-

helix turn stretch delimited by the residues 140A-144A (Figs 6 and 9). Asp120B is located in

the loop that connects the linker to the first N-terminal helix of the AAT domain. This short

helix hinders entrance of the linker in the cavity near the active site.

In the holo form, these residues rearrange their interactions: Asp144A interacts with

Arg319B which, in the apo form, points to a direction opposite to the PLP phosphate binding

site at 7.0 Å from the carboxylic oxygen of Asp144A (Fig 6); Arg140A interacts with Glu455B.

The conformational modifications of Arg140A and Asp144A are reflected by the increase in

the distances to their partners in the late frames of the holo form dynamics (Figs 9 and 10).

These two new interactions in the holo GabR form promote the local unfolding of the one-

turn helix at positions 140A-144A and the removal of the obstacle to the access to the cavity

which facilitates the docking of the linker toward the active site.

It can be speculated that the presence of the negatively charged phosphate group at the

active site induces a local conformational reconfiguration of GabR main and side chains which

triggers the unfolding of the one–helix loop. The change of local conformation opens access to

Fig 4. Salt bridge formation and persistence. Right and left columns of each panel report the graph of the

variations of the distance between the center of mass of the oxygen atoms in the acidic side chain and the

center of mass of the nitrogen atoms in the basic side chain as simulation time and the plot of existence of the

corresponding salt bridge at a given time, respectively. In the latter plot, a vertical bar indicates salt bridge

existence at the corresponding simulation time. The salt bridges here analyzed exist only in the GabR holo

form over the simulation time. (A), (B) and (C) refer to the pairs Asp105B-Arg207B, Asp108B-Arg451B, and

Asp108B-Lys453B, respectively.

https://doi.org/10.1371/journal.pone.0189270.g004
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the active site pocket and allows docking of the linker with consequent induction of the move-

ment of the corresponding wHTH domain. The mediators of such an effect appear to be

Arg319B and Arg207B that, in presence of the PLP bound, undergo a conformational change

of their side chains that stabilizes charge-charge interaction with Asp144A and Asp105B,

respectively. Plots reporting the RMSD variations over the initial conformations of the side

chains of Arg319B and Arg207B versus simulation time suggest that, in holo GabR, these resi-

dues undergo a rearrangement of their side chains (S3 Fig). Interestingly, as Arg207B, also

Arg319 is conserved among GabR homologs.

Other notable interactions involving the linker are Glu89B-Lys25B, that connect the linker

to the wHTH domain, and Glu88B-Arg300A-Asp83B, which bridges the linker and the AAT

domain of the other subunit. These interactions are taking place in the apo form of GabR

where they contribute to anchoring the wHTH domain to the surface of the AAT subunit; they

are missing in the holo form (Fig 7) where distances between charged groups tend to increase

with time (Fig 11).

Fig 5. Minimum distance plot. Plot of the minimum distance between the hydrophobic residues Ile140B and

Leu340A (A) and Leu99B and Pro326A (B) versus simulation time. Black and red line traces refer to holo and

apo GabR, respectively.

https://doi.org/10.1371/journal.pone.0189270.g005
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Fig 6. Linker-AAT domain interactions. Interactions between the linker and the AAT domain of the (A) holo

and (B) apo GabR dimer in the last MD frame are displayed. Dark and light orange distinguish the two

subunits represented as cartoon models. Green and grey ribbon corresponds to the linker region at the end

and at 0 ns of molecular dynamics respectively. The yellow ribbon segment in the last frame structures

indicate the loop connecting the linker to the first N-terminal helix of the AAT domain. Relevant side chains are

displayed with stick models. Residues are labeled with the one-letter code followed by sequence positions

and chain id. Arrows connect positions of equivalent residues at the start and end of MD simulation. Decimal

figures associated to the arrows indicate the approximate distance between the Cα carbons of the connected

residues. Red arrow in (B) points to the one-turn helix.

https://doi.org/10.1371/journal.pone.0189270.g006

Fig 7. Salt bridge formation and persistence. Right and left plots of each panel are as in Fig 4. Black and red

lines refer to the holo and apo GabR forms, respectively. The salt bridges here analyzed are (A)

Glu101B-Arg155A and (B) Asp98B-Arg331A.

https://doi.org/10.1371/journal.pone.0189270.g007
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During the movement of the wHTH domain in the holo GabR, a H-bond connecting the

carbonyl oxygen of the peptide bond at Glu66B to the peptide bond nitrogen of Val258A of

the other chain, breaks. The two residues belong to two α-helices (Val53-Glu66 of the wHTH

and Val258-Ala268 of the AAT domains, respectively) which, in the initial structure, are

aligned through their axes (Fig 12A) forming a virtual, single long α-helix. The same H-bond

does not break in the GabR apo form (Fig 12B) and contributes to keep the two helices close to

each other and aligned.

Discussion

This work was conceived to contribute to the delineation of the potential conformational

changes in the transcriptional regulator GabR from B. subtilis using a molecular dynamics

approach.

Fig 8. Interactions in proximity of the wHTH domain. Colors, model representations and residue labels

are as described in Fig 6 caption except for the linker at 0 ns, not reported here.

https://doi.org/10.1371/journal.pone.0189270.g008

Fig 9. Salt bridge formation and persistence. Plots are interpreted as in Fig 4. Salt bridges analyzed are (A)

Asp120B-Arg144A and (B) Asp144A-Arg451B. Black and red lines refer to holo and apo GabR forms,

respectively.

https://doi.org/10.1371/journal.pone.0189270.g009
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Only the structures of GabR without any ligand, complexed with imidazole or pyridoxal 5’-

phosphate bound as internal aldimine were available at the beginning of this work. Ideally, the

complex with PLP and the effector GABA (or one of its analogs) bound as external aldimine

would be necessary for a complete description of the system in its active form and to under-

stand the basis for repressor activity. Moreover, the availability of the structure of a complex

with the target DNA would provide an exhaustive picture of the system at work. Therefore,

Fig 10. Salt bridge formation and persistence. Plots are interpreted as in Fig 4. Salt bridges analyzed are (A)

Asp144A-Arg319B and (B) Glu455B-Arg140A, present only in holo GabR. Black and red lines refer to holo and apo

GabR forms, respectively.

https://doi.org/10.1371/journal.pone.0189270.g010

Fig 11. Salt bridge formation and persistence. Plots are interpreted as in Fig 4. Salt bridges analyzed are

(A) Glu89B-Lys25B, only in apo GabR and (B) Glu88B-Arg300A. Black and red lines refer to holo and apo

GabR forms, respectively.

https://doi.org/10.1371/journal.pone.0189270.g011
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only the experimentally determined apo and holo (PLP bound) forms were used to simulate

their motion and the results were compared to highlight differences possibly related to the pres-

ence of PLP. Apo GabR had in the context of this work the role of the reference structure

against which to compare the holo form dynamics and highlight conformational changes

related to the presence of PLP at the active site. Although the apo and PLP-binding forms have

been proved to be able to bind DNA but not to trigger gene transcription, the differences in the

dynamics behavior of the two states may be indicative of the intramolecular movements taking

place in the fully functional GabR bound to PLP and GABA [13, 25]. Recently, the crystallo-

graphic structures of two forms of the AAT-like domains of GabR in complex with PLP and

GABA have been deposited in the Protein Data Bank [26, 27]. The availability of these struc-

tures paves the way to the analysis of the interactions taking place at the active site in the pres-

ence of the effector GABA. The transition from the open to closed form upon effector binding,

typical of the fold type-I PLP dependent enzymes, has been observed in the AAT domain dimer

deposited as PDB code 5X03. This transition is very likely one of the keys to understand the

action of the effector. Unfortunately, all these complexes have been crystallized without the

wHTH domains and their linkers: therefore an important component of the system is still lack-

ing. Nonetheless, these structures represent a valuable starting point for further investigations.

Comparison of the molecular dynamics behavior of the holo and apo GabR forms showed

that the most evident difference is the conformational change in the holo PLP-bound form

represented by the rotation and the subsequent detachment from the subunit surface of one of

the wHTH domains. Apparently, the movement is mediated, and maybe caused, by a rear-

rangement of the linker connecting the AAT domain. This is the second most “macroscopic”

conformational modification. The C-terminal section of the linker docks into the “active site”

pocket and establish stabilizing contacts consisting of hydrogen-bonds, salt-bridges and

hydrophobic interactions (Table 1 and Fig 6). The N-terminal moiety of the linker, the part

immediately connected to the moving wHTH domain, tends to move farther from the subunit

surface and, during this movement, at least three salt-bridges are broken. None of these

changes can be seen in the apo form during the simulation time span. Rebuilding of the two

short loops in the holo form, not needed in the apo form, is very unlikely to have introduced

any artifact in the dynamics because the two loops are located in a solvent exposed position of

the AAT domains not interacting with linker or wHTH domain surfaces (Fig 1). All these con-

siderations emphasize the importance of the linker as an essential component of the molecular

mechanism of the transcriptional regulator response to effector binding.

Fig 12. Comparison between the initial and final MD frames of holo and apo GabR. The initial (orange)

and final frames (transparent grey) of holo (A) and (B) apo GabR are displayed in correspondence of the

interaction between the wHTH and the AAT domain of the other subunit. The H-bond connecting the wHTH

helix Val53-Glu66 to the AAT helix Val258-Ala268 is shown as a red dashed line. Arrows indicate the position

of the wHTH residue and helix in the last MD frame. Residues are labeled as in Fig 6.

https://doi.org/10.1371/journal.pone.0189270.g012
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How could the conformational transitions taking place in the holo form be explained?

Analysis of the trajectories points to a rearrangement of charged side chains present at or in

proximity of the active site, probably triggered by the presence of the negatively charged PLP

phosphate group. Arg207B and Arg319B may function as “sensors” of presence of negative

charges at the active site. In particular, Arg207 is equivalent to the Arg192 that in GABA ami-

notransferase is supposed to interact with the substrate carboxylic group of γ-amino butyrate

and it is conceivable that Arg207 plays a similar function in GabR. Indeed, the crystallographic

structure of the GABA bound AAT domain of GabR corroborates this conclusion. In presence

of PLP, Arg207B side chain looses flexibility at variance with what happens in apo GabR and

the resulting stiffness contributes to open the active site cavity. Consequently, the linker can

dock to the active site and the linker residue Asp105B can interact with nearby positively

charged side chains to stabilize the contact. Similar considerations can be drawn for Arg319B

whose side chain is attracted by the active site negative charge and is oriented in such a way to

interact with Asp144A. This interaction contributes to open the access to the active site cavity.

According to this model, the effect of the phosphate group of PLP is reminiscent of the alloste-

ric transitions induced by residue phosphorylation [68].

However, the MD simulation of holo GabR has been carried out without the physiological

effector γ-amino butyrate, which is able to activate the GabR mediated transcriptional activa-

tion. It can be speculated that the presence of the negatively charged carboxylic group of the

GABA at the active site of the holo GabR, in addition to that of the phosphate group, would

enhance the attraction of the linker and the movement of the attached wHTH domain. In an

attempt to support this hypothesis, the structural superposition between the AAT domain

complexed with the PLP-GABA external aldimine from the PDB structure 5T4J and the last

frame of the MD simulation of holo GabR form has been examined (Fig 13). The crystallo-

graphic structure shows that at the active site, the carboxylic group of GABA interacts with

Arg207 and Arg430, both conserved among homologous GabRs. The presence of the GABA

carboxylic group attracts toward the active site these two positively charged side chains, in par-

ticular Arg430 which otherwise would be involved in a salt bridge with Glu424 (Fig 13). This

rearrangement creates a cluster of positive charges and delineates a cavity in which the Asp105

of the linker could be pulled by electrostatic forces.

In addition to that, the binding of the physiological ligand induces, as demonstrated by the

crystallographic experiments, the transition from the open to closed conformation of GabR

which may significantly contribute to boost the rearrangement of the linker and the wHTH

movement and detachment. Therefore, it can be envisaged that the herein reported molecular

dynamics studies were able to observe the detachment of only one of the two domain because

of one, or a combination of, the following possible reasons: the simulation time period is not

long enough for the detachment of the other wHTH domain to occur; all the required interac-

tions do not form at the active sites cause of the absence of the full complex with the physiolog-

ical effector GABA; the possible existence of allosteric interferences between the two sites as

suggested by the authors of the structure 5x03 [27].

In conclusion, this work has proposed an hypothetical model describing the potential struc-

tural rearrangements of GabR upon PLP binding. The observed modifications can suggest the

possible changes taking place in the regulator upon GABA binding and external aldimine for-

mation. The model proposes a view implying that formation of the PLP-GABA adduct at

GabR active site triggers a rearrangement of the linker that is attracted toward the active site of

the other subunit by means of electrostatic forces. Residues mainly involved in this transition

are linker Asp105, which is the negative charge attracted by Arg207 and Arg430, and Glu101

that forms the linker hinge through interaction with Arg155. Conformational rearrangement

of the linker, in synergy with the open to close transition, causes detachment of the wHTH
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domains. The detachment of the wHTH domains would modify interaction of GabR with

DNA and possibly recruit DNA polymerase and other factors for transcription. This picture is

compatible with the models already published in the literature whose shared conclusion is that

GabR undergoes a conformational transition upon GABA binding [25–27, 33, 35]

Even if the model proposed has the limitation of having been derived without the effector

GABA bound at GabR active, it can provide a general and testable framework for the interpre-

tation of the action of the regulators of the MocR subfamily. Indeed, the model indicates a set

of residues potentially involved in the response to ligand binding the role of which can be

tested by site-directed mutagenesis.

Supporting information

S1 Fig. RMSD and RMSF variations of GabR with and without imidazole. RMSD and

RMSF are reported in (A) and (B), respectively. Color code is indicated in the inset of the plot.

Calculations have been carried out taking into account only the main chain atoms.

(PDF)

Fig 13. Structural superposition between the AAT-like domain subunit B of 5T4J (cyan ribbon) and the last

frame of MD simulation of holo GabR (orange). Relevant side chain are displayed as stick models and labeled with

one letter code. Blue arrows indicate the correspondence between the discussed Arg residues in the two structures.

https://doi.org/10.1371/journal.pone.0189270.g013
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S2 Fig. RMSD and RMSF variations of the wHTH domains of holo and apo GabR. RMSD

and RMSF are reported in (A) and (B), respectively. Color code is indicated in the insets of the

plots. Calculations have been carried out taking into account only the main chain atoms.

(PDF)

S3 Fig. RMSD variations. Plot of the RMSD over the initial conformation of the residues

Arg319B (A) and Arg207B (B).versus simulation time. Black and red line traces refer to holo

and apo GabR, respectively.

(PDF)

S1 File. PDB coordinates of the holo GabR form with hydrogen added, used for molecular

dynamics simulation.

(PDB)

S2 File. PDB coordinates of the apo GabR form with hydrogen added and rebuilt loops,

used for molecular dynamics simulation.

(PDB)

S1 Movie. Movie of the 350 ns simulation of the holo GabR form. PLP is represented by

space filling models. Movie file is encoded with H.264 in an MP4 container.

(MP4)

S2 Movie. Movie of the 200 ns simulation of apo GabR. File format is as in S6 Movie.

(MP4)
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