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Abstract

Vaccination in populations can have several kinds of effects. Establishing that vaccination 

produces population-level effects beyond the direct effects in the vaccinated individuals can have 

important consequences for public health policy. Formal methods have been developed for study 

designs and analysis that can estimate the different effects of vaccination. However, implementing 

field studies to evaluate the different effects of vaccination can be expensive, of limited 

generalizability, or unethical. It would be advantageous to use routinely collected data to estimate 

the different effects of vaccination. We consider how different types of data are needed to estimate 

different effects of vaccination. The examples include rotavirus vaccination of young children, 

influenza vaccination of elderly adults, and a targeted influenza vaccination campaign in schools. 

Directions for future research are discussed.
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1 Introduction

Vaccination against an infectious disease in populations can have several kinds of effects. 

Vaccination in a population can increase the herd immunity, that is the collective 

immunological status of a population, providing indirect protection for the unvaccinated 

individuals and also enhancing the protection provided to the vaccinated individuals. In 

causal inference, interference is present when the treatment status of one individual can 

affect the potential outcomes of another individual [1], as with many vaccines.

Establishing that vaccination provides population-level effects that go beyond the direct 

effects in the vaccinated can have important consequences for public health policy. Formal 

methods have been developed for study designs and analysis that can estimate the different 

effects of vaccination. However, implementing formal studies in the field to evaluate the 

different effects of vaccination can be expensive, unethical, and/or of limited 
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generalizability. It would be advantageous to use routinely available surveillance data and 

other sources of routinely collected data to estimate the different effects of vaccination.

In this paper we examine estimating different effects of vaccination from routinely collected 

data. The structure of the paper is the following. In the next section different effects of 

vaccination are defined, and some key results for estimating such effects in the causal 

inference framework are presented. We discuss the data requirements that allow estimating 

(i.e., identifiability of) the different kinds of effects. In Section 3, we present examples of 

evaluating different effects of vaccination from large administrative and surveillance data 

sets. The examples include rotavirus vaccination of young children, influenza vaccination of 

elderly adults, and a targeted influenza vaccination campaign in the schools. Finally, we 

discuss some directions for future research.

2 Vaccine Effects of Interest

2.1 Direct, indirect, total and overall effects

Halloran and Struchiner [2, 3] defined direct, indirect, total and overall effects of vaccination 

in the presence of interference [1]. Consider a cluster or group of individuals under two 

scenarios. Under the first scenario, a certain portion of individuals in the cluster is 

vaccinated and the rest remains unvaccinated. Under the second scenario, no one in the 

cluster is vaccinated. The direct effect of vaccination is defined by comparing in the first 

scenario (i) the average potential outcome when an individual receives vaccine with (ii) the 

average potential outcome when an individual does not receive vaccine. The indirect effect is 

defined as a contrast between (i) the average potential outcome when an individual does not 

receive vaccine in the first scenario and (ii) the average potential outcome when an 

individual does not receive vaccine in the second scenario. The total effect is defined as a 

contrast between (i) the average potential outcome when an individual receives vaccine in 

the first scenario and (ii) the average potential outcome when an individual does not receive 

vaccine in the second scenario. The overall effect is defined by a contrast between (i) the 

average potential outcome in the entire cluster under the first scenario and (ii) the average 

potential outcome of the entire cluster under the second scenario. Analogous indirect, total 

and overall effects can also be defined as contrasts across subsets within clusters, such as 

particular age groups. The contrasts can be on the relative risk, risk difference, or odds ratio 

scale. Vaccine efficacy and effectiveness are often defined on the one minus the relative risk 

scale [4].

2.2 Causal Estimands

A principled approach to assessing the effect of a treatment (such as a vaccine) or an 

exposure entails using causal inference methods. The potential outcome approach to causal 

inference generally assumes no interference between individuals [1]. Then if there is one 

treatment and a control, an individual has two potential outcomes before receiving treatment 

or control. The individual causal effect is the difference between two potential outcomes 

under treatment and control. The population average causal effect is the average of the 

difference between the outcomes if everyone received treatment and if everyone received 

control. Under an independent assignment mechanism, such as randomization, one can 
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construct an unbiased estimator of the population average causal effect from the observed 

average outcomes in the two treatment groups.

Assuming interference cannot occur between individuals in different groups but allowing for 

the possibility there is interference within groups, i.e., there is partial inteference [5], 

Hudgens and Halloran [6] defined causal estimands for direct, indirect, total, and overall 

effects in the potential outcomes framework. Under partial interference, the potential 

outcomes for any individual may depend on the treatment assignments to other individuals 

in the group [3, 7, 8]. The four vaccine effects are then defined according to contrasts in 

average potential outcomes associated with a particular group allocation strategy and 

individual treatment assignment. In particular, let the allocation strategies be different levels 

of vaccine coverage, denoted by α and α′. For example, α may indicate that 60% of the 

individuals are vaccinated. The individual average potential outcome for individual vaccine 

assignment a, where a = 0, 1 denotes unvaccinated and vaccinated, and group-level 

vaccination coverage α is defined as the average potential outcome over all possible 

randomization assignments within the group. A marginal individual potential outcome at a 

given coverage level α is defined similarly, whereby the marginal average potential outcome 

does not include the assignment to vaccine or not. Group average potential outcomes are 

obtained by averaging over the individual average potential outcomes within a group. 

Population average potential outcomes of individuals with individual vaccine assignment a 
and group-level vaccination coverage α are defined as the average over groups. Let ȳ(a, α) 

be the population average potential outcome if individuals receive individual assignment a at 

coverage level α. Analogous group-level and population-level marginal potential outcomes 

are defined, with ȳ(α) denoting the marginal population average potential outcome.

The direct effect of vaccination corresponds to a contrast at a particular coverage level 

between the population average potential outcomes when individuals receive vaccine and 

when individuals do not receive vaccine. On the difference scale, the population average 

direct effect when vaccine coverage is α is defined as .

Indirect, total, and overall effect estimands are defined as contrasts under two different 

coverage levels. Indirect effects are defined as the difference in population average potential 

outcome when an individual is not vaccinated at two different levels of vaccine coverage. 

The population average indirect effect under coverages α and α′ are defined as 

. The population average total effect are defined as 

. The overall effect of vaccination is defined as the marginal 

population average potential outcome under one group allocation strategy compared to 

another allocation strategy, defined by . These causal estimands can 

also be defined on the relative risk, odds ratio, or one minus relative risk, i.e., the VE scale.

2.3 Estimators

To draw inference about the causal estimands described above, a two-stage randomized 

experiment can be employed [6, 9, 10, 11]. At the first stage, groups would be randomized to 

receive certain allocation strategies. For example, one might want to compare effects at 60% 

and 30% coverage with a vaccine. Some groups would be randomized to 60% coverage, the 
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others to 30% coverage. At the second stage, individuals within groups would be 

randomized to receive vaccine or control. The coverage level assigned to each group would 

determine the probability that an individual would be randomized to vaccine or control. 

Inferential methods for the direct, indirect, total and overall effects for a two-stage 

randomized experiment have been developed, e.g., see [6, 9, 12, 13, 14].

Most studies are not randomized at two stages, but only at the individual level, the cluster 

level, or neither in which case the estimators described above would in general be biased or 

inconsistent. In the absence of randomization at the group and/or individual level, Tchetgen 

Tchetgen and VanderWeele [12] proposed estimators based on a generalized group-level 

propensity score [15], that is, the probability a group of individuals receives a particular 

vaccination vector. They used inverse proportional weighting (IPW) of the observed 

individual responses to obtain estimators. When the group-level propensity score is known, 

they proved the IPW estimators are unbiased under the assumptions of conditional 

independence and positivity. Perez-Heydrich et al. [16] used these IPW estimators to 

estimate the different effects of cholera vaccination in an individually-randomized study in 

Matlab, Bangladesh. The geographic location of each household was known, so they formed 

geographic groups using a clustering algorithm.

3 Using routinely collected data to estimate vaccine effects

In the previous section we described methods to estimate direct, indirect, total and overall 

effects from studies of vaccination. Vaccination with numerous vaccines occurs world-wide, 

and drawing inference about indirect effects of vaccination can have important public health 

policy implications. It would be desirable to use routinely collected data to estimate the 

different effects of vaccination.

Different types of routinely collected data are available for evaluating the effectiveness of 

vaccination. For example, insurance claims data or electronic medical records from health 

care service providers typically include data on services received (such as vaccination) and 

diagnoses (such as infection or disease). These services and diagnoses are often coded 

according to the International Classification of Diseases, Ninth or Tenth Revision, Clinical 
Modification (ICD-9-CM or ICD-10-CM).

Establishing vaccination status of individuals and vaccine coverage in the population can be 

difficult. In some cases insurance claims provide information about vaccination status of 

individuals and coverage levels. Some states and countries have vaccine registries where 

individual vaccination status can be linked to outcome data. In some settings, the number of 

doses bought or used or the number of people vaccinated is recorded, but not which 

individuals are vaccinated. In this case, vaccine coverage can be estimated but the 

vaccination status of any particular individual is unknown. In the United States, vaccination 

is funded by a number of different sources that can vary by state, county, employer, and 

insurance company. Thus vaccination records vary from place to place, and vaccination 

status of individuals may be difficult to determine.
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Because of the observational nature of routinely collected data, covariate information is 

crucial to adjust for possible confounding or selection bias. Such covariates might include 

socio-economic status, urban versus rural environment, age, gender, and general level of 

health. Analyses to estimate the different effects of routine immunization often use 

information from more than one database. These databases may have different individuals, 

aggregate by different geographic or temporal units, or differ in completeness of reporting 

over time.

3.1 Direct, indirect, total, and overall effectiveness of rotavirus vaccination

Panozzo et al. [17] estimated the direct, indirect, total, and overall effectiveness of rotavirus 

vaccines in preventing gastroenteritis hospitalization in privately insured children in the US. 

The data were from the MarketScan Research Databases (Truven Health Analytics, Inc., 

Ann Arbor Michigan). In 2010, the database included about 920,000 infants, representing 

about 25% of the US birth cohort and 50% of the US birth cohort with commercial 

insurance. Panozzo et al. [17] utilized the MarketScan database to extract individual level 

information on rotavirus vaccination status, whether an individual was hospitalized for 

rotavirus infection or acute gastroenteritis, and covariates. On the basis of these data, 

Panozzo et al. [17] then estimated the direct, indirect, total, and overall effects of rotavirus 

vaccination.

Two rotavirus vaccines for infants are licensed in the US, one since February 2006, and one 

since April 2008. Data on infants with a live birth recorded between May 1, 2000, and April 

30, 2005, (pre-vaccine era) or May 1, 2006 and April 30, 2010, (post-vaccine introduction) 

were extracted from the database to form an analytical cohort. Information on rotavirus 

gastroenteritis was extracted for infants aged 8 months up to a maximum age of 20 months. 

Outcomes for rotavirus gastroenteritis and acute gastroenteritis were identified using the 

appropriate ICD-9-CM codes. Vaccination status was determined using appropriate Current 

Procedural Terminology codes. Infants vaccinated after 8 months of age were excluded from 

the analysis. To increase the sensitivity of the vaccination status determination, infants living 

in any of the 13 states with state-funded rotavirus immunization programs were excluded. 

Infants funded by such a program would not have vaccination recorded in the private 

insurance database, so there would be many infants classified as unvaccinated who were in 

fact vaccinated. Only infants who had also received at least one dose of diphtheria, tetanus, 

and acellular pertussis vaccine were included, because children who failed to receive 

vaccines that are usually administered may differ from those who had received them.

The analysis accounted for household-level variation in rotavirus vaccine coverage, disease, 

and mixing behaviors by examining the number of other dependent children less than 10 

years of age covered by the same insurance holder as the infant. Geographical variation was 

accounted for by including the region and rurality of the child’s residence as defined by the 

US Department of Agriculture, Economic Research Service, available on the web. The 

percentage of infants who had overnight hospital stays unrelated to acute gastroenteritis 

prior to two months of age was compared in the vaccinated and unvaccinated infants, also in 

the pre-vaccine era to characterize general infant health and potential differences in 

susceptibility to rotavirus disease.
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Estimates of the vaccine effects were based on Cox proportional hazards models of the rate 

of rotavirus gastroenteritis or acute gastroenteritis hospitalizations. Panozzo et al. [17] 

estimated the hazard ratios in infants entering the cohort in 2007, 2008, 2009, and 2010, to 

obtain VE estimates by calendar year. The direct effects for each calendar year were 

estimated by comparing outcomes in the vaccinated and unvaccinated infants in each year 

from 2007 to 2010. This is analogous to estimating the direct effects at four levels of 

coverage. To estimate indirect, total, and overall effectiveness during each calendar year, 

comparisons were made to the unvaccinated infants in the pre-vaccine baseline period 2001–

2005. For example, indirect VE in 2007 was estimated by comparing unvaccinated infants in 

the analytical cohort in 2007 with the unvaccinated infants in the baseline period 2001–2005.

After exclusions, the final analytical cohort had 905,718 children. Of those, 277,900 

children were born during the prevaccine baseline period, and 627,818 were born during the 

rotavirus vaccine period, 476,576 of whom received rotavirus vaccine and 151,242 did not. 

Vaccination coverage ranged from 51% in 2007 to 86% in 2010.

Despite over 900,000 children in the analytical cohort, the annual number of events of 

rotavirus gastroenteritis hospitalizations during the vaccine era per vaccinated or 

unvaccinated cohort was relatively small, ranging from 3 to 114 per year, with 722 events in 

the 277,900 unvaccinated children in the pre-vaccine era 2001–2005. Direct effectiveness 

estimates were 87% to 92% in the four years, with 95% confidence interval lower limits in 

2008 and later above 75%. Indirect effectiveness estimates ranged from 14 % (95% CI – 14, 

36) in 2007 shortly after introducing rotavirus vaccination to 82% (95% CI 70, 90%) in 

2010. Total effectiveness estimates ranged from 91% (95% CI 73, 97%) in 2007 to 98% 

(95% CI 96, 99%) in 2010. The overall effectiveness estimates ranged from 40% in 2007 to 

96% in 2010. It was possible to estimate all four effects because individual level data on 

outcomes and vaccination status and a baseline pre-vaccine comparison group were 

available.

3.2 Direct effectiveness of influenza vaccination

Of particular interest and controversy has been the effectiveness of influenza vaccination in 

the elderly population. Kwong et al. [18] estimated the direct effectiveness of influenza 

vaccination against laboratory-confirmed influenza hospitalizations among community-

dwelling elderly adults aged >65 years during the 2010–2011 influenza season using a test-

negative design. The study was done in Ontario, Canada, where different databases can be 

linked through personal identifiers to provide the necessary individual-level data.

The test-negative design is a popular observational study design for estimating direct 

effectiveness of influenza vaccination [19]. In this approach, individuals presenting at a 

clinic or hospital with influenza-like illness are tested for influenza viruses. Those testing 

positive are defined as cases, and those testing negative are defined as non-cases. The 

vaccination status and potential confounders are ascertained for each individual. An 

advantage of the approach is that it uses laboratory-confirmed influenza rather than non-

specific influenza-like illness as the outcome. The approach is also used widely to estimate 

the direct effectiveness of rotavirus vaccine [20].
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However, issues regarding the test-negative design have been raised. Although the approach 

is assumed to control for bias due to health seeking behavior compared to using usual 

population-based controls, the potential for selection bias still remains [19, 21]. Direct 

vaccine effectiveness is typically estimated in the test-negative design using a logistic 

regression model to adjust for potential confounders. Thus, VE is calculated by 1 minus the 

estimated adjusted odds ratio. However, the odds ratio is not collapsible. That is the 

conditional causal odds ratio will not in general equal the marginal causal odds ratio. Thus 

interpretation of the VE estimates across such test-negative design studies will generally 

depend on which confounders are included in the regression model [21, 22].

Despite such reservations, the test-negative design has the advantage of using data that is 

collected routinely, so it is inexpensive and easy to conduct. It does require that individual-

level data on outcome, vaccination status and covariates be available.

In [18], results of respiratory specimens tested for influenza by the Public Health Ontario 

(PHO) Laboratories were linked to population-based provincial health administrative data, 

with a nearly 98% linkage success rate. Respiratory samples were submitted to the PHO 

laboratories for testing for respiratory viruses from the Ontario healthcare system as part of 

routine clinical care and by public health departments as part of outbreak investigations. The 

hospitalization data were obtained from the Canadian Institute of Health Information’s 

Discharge Abstract Database (CIHI-DAD).

Information on receipt of influenza vaccine during the 2010–2011 season was obtained from 

the Ontario Health Insurance Plan (OHIP) database using physician billing claims for 

influenza vaccine. About 75% of elderly adults in Ontario received influenza vaccine 

through physicians that submitted claims to OHIP.

Information on demographic covariates was obtained from the Ontario Registered Persons 

Database (RPDB), which contains data on everyone with a valid Ontario health card. 

Covariates obtained were age, sex, rural residence indicator (communities with <10,000 

residents), and neighborhood income quintile. The number of hospitalizations in the past 

three years, outpatient visits in the past year, and prescription medications in the past year 

were obtained from the CIHI-DAD, the OHIP, and the Ontario Drug Benefit (ODB) 

databases. Co-morbidities that might increase the risk of influenza, such as heart disease, 

diabetes, cancers, among others in the past three years were also obtained from the CIHI-

DAD and OHIP databases.

The analysis included 569 individuals who tested positive for influenza, of whom 238 were 

vaccinated against influenza, and 1661 individuals who tested negative for influenza, of 

whom 934 were vaccinated. The crude estimate of direct vaccine effectiveness was 44% 

(95% CI 32, 54%). After multivariable adjustment it was essentially unchanged at 42% 

(95% CI 29, 53%). Numerous subgroup analyses revealed effectiveness varied by influenza 

type/subtype, but was similar across age groups and sex. Individual-level data were 

available, as in the rotavirus vaccination study [17] in the previous section, so the direct 

effect of vaccination could be estimated. Kwong et al. [18] did not estimate the indirect, 

total, and overall effects of vaccination, as there was no obvious unvaccinated comparator 
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group as in [17]. However, they could have estimated the indirect, total, and overall effects at 

different levels of coverage based on spatially-defined groups as in [16] if the individual 

information was geocoded.

3.3 Overall effectiveness of an influenza vaccination campaign

Tran et al. [23] estimated the community-level effectiveness of a school-based influenza 

immunization campaign in Alachua County, Florida, compared to routine influenza 

immunization in surrounding counties using a combination of surveillance data sets. In these 

databases, individual-level influenza vaccination status cannot be linked to the individual 

outcomes, limiting the types of effects that can be estimated. The overall effect of the 

immunization campaign can be estimated because individual vaccination status is not 

needed. The overall effect in the whole population and the overall effect within age-groups 

can be estimated. The indirect effects of the campaign in the age groups not included in the 

school-based immunization campaign can also be estimated. A drawback of this study is that 

it relied on influenza-like illness that is not laboratory confirmed as well as cases that were 

confirmed. Under certain assumptions, such measurement error in the outcome can result in 

biased or inconsistent effect estimates.

In Alachua County, Florida, a major initiative was undertaken to vaccinate schoolchildren in 

kindergarten through 8th grade with live attenuated influenza vaccine (LAIV) [24]. A pilot 

program began in 2006, and a comprehensive program was launched at the beginning of the 

2009–2010 school year. Local pediatricians and many other community partners supported 

the program. In the 2010/2011 school year, the program was expanded to include high 

school students. The program was carried out in the schools and called a school-located 

influenza vaccination (SLIV) program. Children ineligible to receive LAIV due to 

contraindications were referred elsewhere to be vaccinated with inactivated influenza 

vaccine. Weekly influenza and influenza-like illness associated outpatient visits to 

emergency departments and urgent care centers were reported through Florida’s Electronic 

Surveillance System for the Early Notification of Community-based Epidemics (FL-

ESSENCE). County and age-group specific resident counts were obtained from the 2010 US 

Census. Influenza vaccination coverage for Alachua County was obtained from the Florida 

Department of Health’s Florida State Health Online Tracking System (SHOTS) Vaccine 

Registry. Due to local collaborations, nearly all influenza vaccinations in Alachua County 

were entered into the Florida SHOTS Vaccine Registry. Comparable vaccination coverage 

data were not available for other counties, where reporting was not required. Information on 

individual vaccine status was not available to be linked to the FL-ESSENCE database. Thus, 

the analysis estimated only the overall effectiveness of the vaccination campaign in Alachua 

county compared with routine vaccination in the other counties of Florida both by age 

groups and for all ages combines, and the indirect effectiveness of the campaign compared 

with routine vaccination in the age groups not eligible for the SLIV campaign. The overall 

effect estimates were based on contrasts of the estimated attack rates per 100,000 population 

in each county.

Because health-seeking behavior in Alachua County may differ from the health-seeking 

behavior in other counties in Florida, an approach using negative controls to adjust for 
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potential bias was employed. Negative controls have been used as a way to detect and adjust 

for biases due to unmeasured confounding in observational studies [25]. The general idea is 

that a negative control outcome is subject to the same kinds of unmeasured confounding as 

the outcome of interest, but is not in the causal pathway of interest and not affected by the 

exposure of interest or the treatment. In Tran et al. [23], a negative control was 

gastrointestinal illness (GI) rates reported through FL-ESSENCE in Alachua County and the 

other counties of Florida. The assumption was that individuals with GI might have similar 

health care seeking behavior as individuals with influenza like illness, but it would not be 

influenced by the SLIV campaign, so it might be a good negative control. However, the 

untestable assumption in using negative controls is that the nature of the unmeasured 

confounding is similar in the treatment and control areas [26].

In this analysis, in the 2012/2013 influenza season, comparing Alachua County to the other 

12 counties in the same administratively defined Health Region, the unadjusted estimate of 

the overall effect was 49% (95% CI 44, 43%). Adjusting for unmeasured confounding using 

GI illness as a negative control, the overall effect estimate was 32% (95% CI 26, 38%). 

Comparing Alachua County to all other counties in Florida, the unadjusted estimate of the 

overall effect was 46% (95% CI 42, 50%). Adjusting for unmeasured confounding using GI 

illness as a negative control, the overall effect estimate was 42% (95% CI 35, 46%).

Other estimates of the overall effectiveness of the SLIV program were obtained using a 

different publicly-accessible, aggregated de-identified database [26]. The Florida Agency for 

Healthcare Administration (AHCA) includes most, if not all, hospital inpatient, emergency 

department, and ambulatory surgical facilities visits in Florida. The data include information 

on the facility type, age, sex, and zip code of patient, the ICD-9-CM codes and dollars billed 

by service type. The individual-level immunization status was still not available. This 

analysis was based on a log linear model using the county-specific case counts and 

population data, assuming a Poisson data generating model. In the 2012/2013 influenza 

season, comparing Alachua County to the surrounding 23 counties based on drawing a 

symmetric spatially defined region around Alachua County, the unadjusted estimate of the 

overall effect was 40% (95% CI 39, 41%). Adjusting for unmeasured confounding using GI 

illness as a negative control, the overall effect estimate was only 18% (95% CI 5, 29%). 

Comparing Alachua County to the rest of Florida, the unadjusted estimate of the overall 

effect was 27% (95% CI 25, 29%). Adjusting for unmeasured confounding using GI illness 

as a negative control, the overall effect estimate was only 5% with a 95% confidence interval 

covering 0. Thus, the use of negative controls in the two different analyses both resulted in 

lower overall effectiveness estimates, but it was considerably lower in the second analysis.

4 Discussion

Using routinely collected data to estimate direct, indirect, total, and overall effects of 

vaccination has great advantages. Such data are relatively inexpensive and available in large 

quantities on numerous infectious diseases and vaccines. Randomized controlled trials or 

prospective observational cohort studies can be expensive to conduct, and results may not be 

generalizable to routine vaccination campaigns. Randomized controlled trials, whether 

individually randomized or cluster randomized, may be unethical if a vaccine is 
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recommended for routine use in a population. Thus making use of readily available 

observational data sets is attractive.

To estimate direct effects, total effects, and indirect effects in the vaccine-eligible groups, 

individual data on clinical outcomes, vaccination status, and potentially relevant covariates 

of the individuals are needed. The private insurance claims database used by Panozzo et al. 
[17] advantageously included clinical outcomes, vaccination status, and covariates such as 

age, number of dependent children in same household, and information to characterize 

general infant health in one database. Environmental variables were drawn from other data 

sources. The analysis by Kwong et al. [18] combined data from different sources, but 

because of the health system in Ontario, individual information was successfully linked 

across the data sets. In the evaluation of the SLIV program in Alachua County, individual 

level information could not be linked across the publicly accessible databases, so the 

analyses that could be performed were limited to the overall effects in the whole population 

or by age group, and indirect effects in the age groups not included in the school-based 

immunization program.

Temporal trends present challenges. In Panozzo et al. [17], estimates of the indirect, total, 

and overall effects were based on a comparison of the pre-vaccine years 2001–2005 with 

each of the vaccine years 2007, 2008, 2009, 2010. Studies that naively compare disease rates 

before and after introduction of a vaccination program can have difficulty demonstrating that 

an observed decrease is due to the intervention. The decrease could have been due to other 

temporal trends. An interrupted time series analysis could be utilized in such settings to 

account for temporal trends [27].

Guidelines for REporting studies Conducted using Observational Routinely-Collected health 

Data (RECORD) have been developed [28]. These guidelines are also applicable to 

reporting studies estimating direct, indirect, total or overall effects of vaccination from 

routinely-collected data. However, other issues still remain. In general, extensions of causal 

inference methods for observational data are need for the setting where there is interference. 

Some progress has been made in this direction, as in [12, 16], among others, but there have 

been no methods developed to date on test negative designs with interference, negative 

controls with interference, or interrupted time series with interference. These methods are 

needed to provide a theoretically justified analytical framework for drawing inferences about 

population-level vaccine effects from various data sources. In other fields, researchers have 

considered combining designed studies with fewer subjects with larger surveillance studies. 

For example, Chatterjee et al. [29] develop inferential methods which incorporate individual 

level data from an internal study and summary level information from external big data 

sources. Future research could examine the utility of these methods for combining routinely 

collected data with data from studies implemented with the intention of estimating direct, 

indirect, total and overall effects of vaccination.

The different effects of vaccination programs can depend heavily on who gets vaccinated as 

well as the underlying contact and network structure of a population. Thus, the results of 

such studies, whether intentionally designed to estimate such effects or using available 

databases, may not be generalizable or transportable [30] from one population to another. 
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Study designs and inferential methods are need which are robust to ascertainment bias, 

underreporting, and other biases inherent in these types of data sources [31]. Having access 

to disparate data sources may afford opportunities to develop methods which are multiply 

robust.

Determining that vaccination programs have population effects which can benefit both the 

unvaccinated and vaccinated individuals can have important policy implications. The large 

and rich data sources available can be beneficially used to estimate such effects. New 

methods for analyzing such data sets are needed.
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