Skip to main content
. 2017 Dec 19;8:65. doi: 10.1186/s13229-017-0180-6

Table 5.

Summary of accuracies for modules 2 and 3 with best classifier, best parameters, and different feature sets

Module 3 3 3 2 2 2
Number of features 10 10 5 5 5 5
Best classifier L2 LR L1 Lin SVM L2 LR LDA L1 Lin SVM L2 LR
Optimal parameters C = 1 C = 0.5 C = 10 S = 0.8 C = 0.5 C = 0.05
Area under ROC 0.95 0.95 0.93 0.93 0.93 0.92
Precision 0.99 0.99 0.99 0.98 0.98 0.98
Recall/sensitivity 0.90 0.95 0.88 0.97 0.98 0.93
Specificity 0.89 0.87 0.89 0.50 0.58 0.67
Balanced accuracy 0.90 0.90 0.88 0.74 0.78 0.80
F1 score 0.94 0.97 0.93 0.97 0.98 0.95

LR denotes logistic regression, L1 Lin SVM denotes L 1 penalized linear SVM, and S denotes the LDA shrinkage parameter