Table 5.
Module | 3 | 3 | 3 | 2 | 2 | 2 |
---|---|---|---|---|---|---|
Number of features | 10 | 10 | 5 | 5 | 5 | 5 |
Best classifier | L2 LR | L1 Lin SVM | L2 LR | LDA | L1 Lin SVM | L2 LR |
Optimal parameters | C = 1 | C = 0.5 | C = 10 | S = 0.8 | C = 0.5 | C = 0.05 |
Area under ROC | 0.95 | 0.95 | 0.93 | 0.93 | 0.93 | 0.92 |
Precision | 0.99 | 0.99 | 0.99 | 0.98 | 0.98 | 0.98 |
Recall/sensitivity | 0.90 | 0.95 | 0.88 | 0.97 | 0.98 | 0.93 |
Specificity | 0.89 | 0.87 | 0.89 | 0.50 | 0.58 | 0.67 |
Balanced accuracy | 0.90 | 0.90 | 0.88 | 0.74 | 0.78 | 0.80 |
F1 score | 0.94 | 0.97 | 0.93 | 0.97 | 0.98 | 0.95 |
LR denotes logistic regression, L1 Lin SVM denotes L 1 penalized linear SVM, and S denotes the LDA shrinkage parameter