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Abstract

Immuno-oncology (I-O) has required a shift in the established paradigm of toxicity and response 

assessment in clinical research. The design and interpretation of cancer clinical trials has been 

primarily driven by conventional toxicity and efficacy patterns observed with chemotherapy and 

targeted agents, which are insufficient to fully inform clinical trial design and guide therapeutic 

decisions in I-O. Responses to immune-targeted agents follow nonlinear dose–response and dose–

toxicity kinetics mandating the development of novel response evaluation criteria. Biomarker-

driven surrogate endpoints may better capture the mechanism of action and biological response to 

I-O agents and could be incorporated prospectively in early-phase I-O clinical trials. While overall 

survival remains the gold standard for evaluation of clinical efficacy of I-O agents in late-phase 

clinical trials, exploration of potential novel surrogate endpoints such as objective response rate 

and milestone survival is to be encouraged. Patient-reported outcomes should also be assessed to 

help redefine endpoints for I-O clinical trials and drive more efficient drug development. This 

paper discusses endpoints used in I-O trials to date and potential optimal endpoints for future 

early- and late-phase clinical development of I-O therapies.

Introduction

In the last decade, rapid advances in our understanding of the human immune system have 

led to a new paradigm of treating cancer with agents that modulate the immune system 

described as immuno-oncology (I-O; ref. 1, 2). I-O, particularly the novel class of immune-
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checkpoint inhibitors (ICI), has transformed cancer therapeutics with notable clinical benefit 

observed in a diverse array of solid tumors, including melanoma (3, 4), non–small cell lung 

cancer (NSCLC; refs. 5–8), head and neck cancer (9), renal cancer (RCC; ref. 10), bladder 

cancer (11), Hodgkin lymphoma (12), and mismatch repair-deficient colon cancer (13). 

These ICI agents target immune regulatory pathways, thereby “releasing the brakes” and 

allowing the immune system to eliminate cancer cells (14). Several ICIs are now FDA 

approved for the treatment of a variety of cancers, including ipilimumab, an inhibitor of 

cytotoxic T-lymphocyte-associated protein 4 (CTLA4), and nivolumab, pembrolizumab, and 

atezolizumab, which inhibit programmed cell death protein 1 (PD-1) or its ligand, PD-L1. 

However, many additional I-O agents in clinical development target a number of different 

immune modulatory pathways (for review, see ref. 15).

Such agents demonstrate fundamentally different tumor response kinetics from cytotoxic 

cancer therapies and warrant a reconsideration of conventional efficacy endpoints. Response 

patterns with immunotherapy differ from those of cytotoxic agents. Traditional clinical trial 

endpoints, like overall response rate (ORR) and progression-free survival (PFS), may be 

limited in their ability to predict long-term survival of patients treated with I-O agents. 

Conventional response evaluation criteria in solid tumors version 1.1 (RECIST vs1.1) may 

underestimate the benefit from I-O agents (16, 17). Immune-related response criteria (irRC) 

have been proposed to characterize patterns of response (18) and novel clinical endpoints are 

used in an attempt to account for unconventional tumor kinetics; however, these are not 

universally validated. In this article, we discuss traditional efficacy endpoints that have been 

used in oncology clinical trials to date, assess endpoints currently used in I-O trials, provide 

an overview of the challenges with efficacy endpoints in early- and late-stage I-O trials, and 

offer recommendations for the future clinical investigation of these therapies.

Traditional Endpoints

Overall survival (OS), defined as the time from treatment initiation to death, remains the 

gold-standard clinical endpoint for oncology cytotoxic clinical trials. OS measures both the 

effect of treatment and the survival impact of treatment-related adverse events (irAE). The 

outcome is clear and measurable, and the benefit of longer survival is irrefutable. However, 

analyses of OS often require large sample sizes and long patient follow-up to demonstrate 

benefit, particularly for diseases in which the natural history of the disease unfolds slowly. 

Furthermore, OS comparisons may be confounded by cross-over within a trial and/or 

subsequent therapeutic interventions. Another common efficacy endpoint in phase II and 

some phase III registration clinical trials has been PFS, defined as the duration of time from 

start of therapy to time of first documented tumor progression or death due to any cause. 

However, unlike OS, the outcome is not easily measured, and bias can be introduced in PFS 

assessment, due to dependence on whether an adequate comparator is used (19). The ORR, 

usually defined as the proportion of patients achieving a complete response (CR) or partial 

response (PR) based on stringent imaging criteria, is also commonly used in oncology 

clinical trials. Unlike PFS and OS, which require an active comparator (e.g., existing 

standard therapy, placebo), ORR is frequently used in single-arm trials to demonstrate 

measurable tumor response without requiring direct comparison with a control group. Most 

novel drug approvals for oncology therapies have been based on demonstration of PFS or 
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OS benefit over existing therapies. More recently, the majority of accelerated approvals have 

been based on ORR (20); these approvals are conditional and require subsequent 

confirmation of benefit, such as PFS or OS, in larger and/or randomized studies.

Challenges associated with I-O clinical trial endpoints

As the mechanisms of action and response patterns for I-O agents can differ substantially 

from conventional therapeutics, I-O disrupts the relatively stable model of traditional cancer 

drug development (Table 1). Specific challenges exist for developing clinical trial endpoints 

for I-O agents and reflect the following uncertainties and difficulties in effective clinical trial 

designs for this class of drug. From the outset, immunocompetent animal models for 

preclinical development of I-O drugs have either not been available or have been of limited 

utility, as the model context does not closely resemble the intact human immune system 

which is present in the majority of cancer patients who enroll in immunotherapy trials, 

although newer immunocompetent xenograft models are under development. This is a 

significant limitation and requires the development of I-O models/model systems that can be 

used to accurately perform preclinical drug screening, toxicity, and efficacy prediction. 

Moreover, effective correlative pharmacodynamic (PD) biomarkers are still in development 

for many of these agents in various malignancies. Pharmacodynamics deals with the 

biochemical and physiological effect of an administered drug on a patient.

The traditional development of cytotoxic chemotherapy, and more recently molecularly 

targeted therapies, involves phase I escalating doses of an agent to achieve maximum 

tolerated dose (MTD), followed by expansion at the MTD to more comprehensively profile 

toxicity and evaluate preliminary efficacy. In contrast, most I-O agents in clinical 

development are monoclonal antibodies that exhibit a modest dose–response relationship 

once receptor saturation has been achieved and can have prolonged biological effects even 

after discontinuation of treatment.

Toxicities associated with I-O agents are due to autoimmune activation and may be 

unpredictable in terms of timing, severity, and chronicity. Standard phase I clinical trial 

toxicity evaluation does not fully capture potentially serious, delayed onset, and/or long-

lasting side effects and defining a phase II dose and schedule has been challenging given the 

lack of dose-limiting toxicity (DLT) in many early-phase trials. Due to rapid development of 

these agents in the race to FDA approval, the optimal dosing and scheduling of these agents 

have not been well-established prior to later phase studies and assessment in combination. 

For example, the recent regulatory approval of the anti–PD-1 antibody, nivolumab, was 

changed to a 240 mg flat dose despite weight-based dosing being used throughout the 

clinical development of the agent (21). For many of these agents, dose escalation and 

repeated dosing beyond a biologically effective point are likely to lead to minimal 

incremental clinical benefit and increased cost to patients and health systems financially and 

in terms of time spent in clinic and management of side effects.

Furthermore, I-O agents demonstrate response kinetics that differ significantly from 

traditional cytotoxic and molecularly targeted agents. Responses may occur within the first 

few cycles of therapy; however, some may be delayed and result in pseudoprogression, a 

phenomenon where a radiographic “tumor flare” precedes clinical response.
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Lastly, as with other cancer therapies, differential efficacy of I-O agents within a specific 

tumor subtype may occur, where a subgroup of patients appears to derive most of the clinical 

benefit. Defining which subgroups derive most benefit is one of the major challenges facing 

cancer drug development in oncology in general and specifically in I-O. As with other 

cancer therapies, patient selection remains a challenging area in defining appropriate 

efficacy endpoints for participants in IO trials as multifaceted clinical (e.g., smoking status 

in non–small cell lung cancer) and biomarker (e.g., PD-L1 status, mutation burden, gene 

expression) characteristics appear to affect the likelihood of response. This issue was 

illustrated in a recent phase III study in the first-line treatment of NSCLC, which randomly 

assigned patients with PD-L1–positive NSCLC to either platinum doublet chemotherapy or 

nivolumab (22). Despite stratifying patients by PD-L1 expression level and histology, 

retrospective analyses suggest that there may have been an imbalance in tumor mutation 

burden between the treatment arms which may have contributed to a lack of PFS or OS 

benefit for nivolumab over chemotherapy in this trial (22).

Efficacy endpoints in early-phase immune-oncology clinical trials

I-O agents pose a challenge to the well-established concept of identifying the maximum 

tolerated dose (MTD) in phase I clinical trials (23). As responses may be delayed, similarly 

irAEs may be delayed and, in some cases, may not be observed in the first few cycles of 

therapy (24, 25). In contrast to conventional cytotoxic or targeted agents, an increase in the 

administered dose above a biologically optimal dose with maximal receptor saturation, does 

not necessarily equate linearly to increased efficacy or toxicity. Increasing doses do not 

follow a standard defined clinical dose–response or dose–toxicity relationship; dosing and 

schedule have been determined more from feasibility rather than PK and PD effects. 

Determining the minimum effective dose instead of the conventionally used MTD might be 

more relevant for phase I I-O trials, given that there is not a direct proportional correlation 

between activity and toxicity according to dose (3, 4, 26, 27).

The Response Evaluation Criteria in Solid Tumors (RECIST) have been the gold standard 

for assessment of tumor burden dynamics in oncology clinical trials across multiple tumor 

types (28, 29). This framework was developed to standardize and interpret therapeutic 

responses seen with cytotoxic chemotherapeutic agents, where an increase in tumor burden, 

progression of non-target lesions, and/or development of new lesions signifies disease 

progression. The unique patterns and timing of response to immunotherapy have raised 

concerns about the validity of applying conventional response assessment platforms to the 

efficacy of immunotherapeutic agents. More specifically, pseudoprogression was originally 

described in advanced melanoma treated with ipilimumab and cannot be assessed by the 

conventional RECIST criteria (30, 31). Therefore, the irRC were devised to capture the 

unique response patterns observed with immunotherapy in solid tumors (18).

Immune-related response criteria

A set of irRC have been developed (18) upon which assessment of the antitumor response is 

based on total measurable tumor burden, including all index lesions at baseline and any 

index and/or new measurable lesions at each subsequent tumor reassessment (Table 2). IrRC 

implement bidimensional measurements in contrast to the unidimensional measurements of 
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irRECIST. Responses are thus classified as (1) irCR, where all lesions completely disappear 

in two observations at least 4 weeks apart (2) irPR, where a decrease of ≥50% in tumor 

burden is noted in two observations at least 4 weeks apart, (3) irSD, where criteria for irCR 

or irPR are not met in the absence of irPD, and (4) irPD, where an increase of ≥25% relative 

to nadir is noted in two observations at least 4 weeks apart. According to these criteria, 

patients were considered to have irPR or irSD despite emergence of new lesions, as long as 

the above mentioned thresholds of response were met. Evaluation of the immune-related 

best overall response (irBOR) is therefore based on changes in total tumor burden from 

baseline and attempts to account for pseudoprogression, both by allowing the appearance of 

new lesions, without automatic categorization of such cases as PD, and also confirming 

apparent initial RECIST progression at a subsequent evaluation. Figure 1 illustrates an 

unconventional pattern of response to immune checkpoint antibody therapy.

Applying these criteria in a cohort of ipilimumab-treated melanomas, at least 10% of 

patients with durable clinical benefit were characterized as having progressive disease by 

WHO response criteria (18). The irRC have been validated in ipilimumab-treated melanoma 

patients (32, 33); however, the generalizability of these endpoints in other tumor types is, as 

yet, uncertain. The incidence of pseudoprogression may differ in various tumor types and 

consequently the use of irRC may differ in the applicability. In addition, as the recent use of 

RECIST response criteria has largely replaced WHO response criteria, the modified 

irRECIST have been used in the majority of I-O clinical trials. However, the standardization 

and definitions have varied across different trials and study sponsors, and have not been 

validated. Development of a standardized modified irRECIST is a priority for stakeholders 

in clinical development of I-O therapy to permit meaningful comparison of I-O therapies and 

also effective use of irRECIST for regulatory purposes.

Response rates have been a good assessment of activity in early-phase studies and have led 

to accelerated FDA approval of these agents. For instance, the approval of pembrolizumab in 

PD-L1–positive (>50% positive tumor cells by immunohistochemistry) second-line 

previously treated NSCLC was predominantly based on responses observed in an expanded 

cohort of the Keynote 001 study (7). Pembrolizumab was also approved based on objective 

responses observed in expanded cohorts of the phase I Keynote 012 trial in head and neck 

squamous cell cancer trial (34).

However, whether response rates are adequate in I-O trials to reflect clinical benefit of these 

agents remains a major question. Scenarios to be considered when designing endpoints for I-

O clinical trials include the following in addition to the question of pseudoprogression 

(discussed below). Patients whose tumors initially respond to immune checkpoint 

antibiodies may require discontinuation of therapy due to toxicity and subsequently 

experience tumor progression. Patients with CR may have better outcomes and chances of 

remaining in remission than those with PR or SD. Furthermore, many patients with stable 

disease do not experience a radiographic tumor regression or may demonstrate slow and late 

tumor regression months to years later. In such cases endpoints such as PFS or OS would 

better describe the overall benefit to patients. In addition, long-term follow-up of I-O trials 

and possible incorporation of long-term survival (e.g., 5-year survival rate) in regulatory 

approval decisions should be considered. Recent data suggest that from a single-arm study 
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of 129 patients with NSCLC treated with anti–PD-1, up to 16% of patients may be alive, 

many still responding, at a median of 5-year follow-up (35).

Additionally, many I-O trials allow continued therapy despite radiologic progression if 

patients are deriving clinical benefit, and anecdotal reports of continued stability or response 

post focal radiation have been reported. Terms such as “unconventional pattern of response” 

have been used to describe such cases; however, this varies across trials and sponsors. 

Recent data suggest that conventional response after initial progression on anti–PD-1 

immunotherapy is uncommon. In a pooled retrospective analysis of three large multi-center 

studies of anti–PD-1 immunotherapy in the treatment of metastatic NSCLC, the authors 

identified 535 patients treated with single-agent anti–PD-1, of whom 121 received treatment 

past RECIST tumor progression (8). Among all 535 patients treated with anti–PD-1 therapy, 

the conventional RECIST partial response rate following treatment past progression was 

1.9% (10 of 535) or 8.3% (10 of 121) in the treatment past progression subgroup (36).

Any potential benefit of treatment past tumor progression should be weighed against the 

possibility of negative outcomes that include clinical deterioration on ineffective therapy that 

may preclude further treatment options, treatment-related toxicity and, if widely applied in 

clinical practice, the high financial cost of continued I-O therapies past progression with 

relatively low likelihood of benefit.

Based on experience with targeted agents it may be that patients with low volume 

progression, for example, isolated progression in one lesion with stability or response in all 

other lesions, are those most likely to derive benefit from treatment past RECIST 

progression; however, this has yet to be confirmed from trial data. Mechanisms of acquired 

resistance to I-O agents continue to be elucidated and may ultimately assist in defining those 

patients who may have benefit from treatment past progression (37, 38).

In general, we favor the continued use of conventional RECIST as the primary response 

evaluation system for I-O trials, with the addition of irRECIST where feasible as a 

secondary assessment, until there are data across tumor types and I-O agents correlating 

irRECIST with long-term efficacy outcomes including OS.

Efficacy endpoints in late-phase I-O clinical trials

OS remains the gold-standard clinical efficacy endpoint in cancer clinical trials, including 

those involving I-O agents; however, OS has some statistical challenges. Reporting hazard 

ratios or median survival may not adequately represent the treatment benefit due to 

nonproportional hazards of survival and long-term survival with I-O agents. These 

considerations are described in more detail in the statistical design section below. 

Competitive development of these agents has required efficiency; waiting for measures of 

OS improvements can take years, thus delaying access to a potentially effective treatment 

with observed efficacy and in an area of high unmet medical need. As immunological effects 

can linger for months or even years, the full effect on survival of these agents for the 

individual may not be fully captured as they receive subsequent therapy or crossover to other 

agents. Milestone survival has been proposed as an intermediate endpoint and represents the 
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survival probability at a given time point; such endpoints could provide long-term survival 

information, while the entire study continues with a primary endpoint of OS (39).

Biomarker and correlative endpoints as predictive or prognostic markers for endpoint 
analysis

Surrogate endpoints are a substitute for clinical efficacy endpoints used in clinical trials 

when definitive clinical endpoints might not be feasible. Unlike clinical endpoints, surrogate 

endpoints do not represent direct clinical benefit but may be prognostic of clinical outcome. 

There is an increased appreciation of the value of correlative immune endpoints. Inclusion of 

biomarkers in the design and interpretation of I-O trials is recommended. Integration of such 

endpoints may be important for understanding the underlying biological response to 

immunotherapy agents, may increase our ability to both interpret clinical trial outcome, and 

rationally design subsequent clinical trials when the initial approach succeeds or fails. 

Establishment of such endpoints requires harmonized specimen collection methods, assay 

standardization, and validation and development of a methodological framework for analysis 

(40).

Similar to the targeted therapy paradigm, the success of I-O approaches seems to depend on 

choosing patient populations most likely to benefit. The use of a systems-based approach to 

biomarker evaluation is critical as the immune system is plastic and use of single biomarkers 

has proven insufficient for selection of patients most likely to derive clinical benefit (41). 

PD-L1 assessed by immunohistochemistry has been used as a potential biomarker to select 

patients for immune checkpoint therapies given the higher response rates observed in this 

group of patients (5, 7, 8). However, PD-L1 expression has not been sufficient to fully 

explain therapeutic outcomes and durable clinical benefit observed in patients with PD-L1 

nonexpressing tumors (40, 42, 43). There are also differences in PD-L1 antibody assays, 

heterogeneous expression, lack of concordance regarding assessment on tumor, and/or 

infiltrating cells and cutoff levels that are not well established.

Somatic mutational density may confer long-term benefit from immune checkpoint blockade 

(13, 44–46) as somatic genomic alterations are foreign to the immune system and could 

represent tumor-specific antigens capable of inducing antitumor immune responses (47, 48). 

The predictive efficacy of T-cell tumor immune infiltrates has been shown in a variety of 

tumor types, and the immunoprofile of the tumor may represent a robust predictor of clinical 

outcome (49, 50). To this end, analysis of sequential tumor biopsies may more accurately 

reflect the evolving tumor microenvironment. These approaches require further large-scale 

validation incorporated in the design of I-O trials. For example, one proposed endpoint for 

early-phase I-O trials has been the use of tumor CD8+ T-cell infiltration on sequential tumor 

biopsies at a defined time point while on therapy (51). Such approaches have particular 

challenges due to tumor heterogeneity and possible lack of correlation with clinical 

outcomes that may limit utility and they require large-scale prospective validation. A large 

number of other predictive biomarkers, including PD-L2, T-cell receptor repertoire, serum 

lymphocyte, and inflammatory markers of response, and tissue immune gene signatures, are 

being evaluated.
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PD biomarkers should capture the mechanism of action of immunotherapeutic agents and 

guide the determination of the ideal dose and schedule of administration in early-phase 

clinical trials; however, these markers are still being explored and need technical and 

analytical validation. Analysis of T-cell responses is important for understanding the 

association between antitumor immune responses and clinical benefit. These approaches 

primarily study the functionality and phenotype of T cells by means of flow cytometry (52), 

fluctuations in levels of proinflammatory cytokines (53, 54), and cytokine-release associated 

toxicity (55), and may be considered for inclusion as correlative endpoints. Further study of 

effective PD biomarkers for response in early-phase I-O trials will be the key for future 

determination of I-O early efficacy endpoints and faster clinical development of this class of 

drug. Comprehensive discussion of biomarker approaches is beyond the scope of this paper; 

however, we recommend the companion article in this series for an in-depth review of the 

topic (56).

Quality of life, patient-reported outcomes

Health-related quality-of-life (HRQOL) endpoints and patient-reported outcomes (PRO) can 

enrich the assessment of antitumor treatments by augmenting traditional survival and 

efficacy measures, and should be included in every clinical trial. These patient-centered 

endpoints have been correlated with prognosis and have become incorporated into clinical 

trials more frequently over the last decade (57). Several reasons underpin this enthusiasm 

and change. Multiple treatments for a particular tumor type may yield similar efficacy 

results and thus HRQOL can be used to differentiate these therapies (58). Patient advocacy 

groups and quality-of-life research organizations such as the International Society for 

Quality of Life Research (ISOQOL) have made efforts in clinical trials to focus on the 

patient experience, their symptoms, and QOL (59). The FDA has recognized the importance 

of HRQOL, as evidenced by guidance documents for HRQOL endpoints and approved 

agents with labeled PRO endpoints (60). Finally, the National Cancer Institute (NCI) formed 

the Symptom Management and Quality of Life Steering Committee, which reorganized their 

clinical trials to integrate patient-centered endpoints by utilizing the PRO tool for standard 

reporting with Common Terminology Criteria for Adverse Events (PRO-CTCAE; ref. 61).

Beyond this rationale for anticancer therapy, other specific justifications exist to incorporate 

HRQOL and PRO endpoints into I-O trials. While single-agent immune treatments (e.g., 

PD-1 checkpoint inhibitors) may be tolerable, combination regimens may have more severe 

AEs (62). How these toxicities impact HRQOL is not known; designing trials with HRQOL 

endpoints will permit this evaluation. Traditional endpoints may not completely capture the 

entire benefit or harm from immunotherapy; HRQOL and PRO endpoints can help quantify 

symptom or functional improvement or decline. The protracted length of immune treatment 

and off-target immune effects for some patients, compared with relatively predictable and 

short-lived effects of chemotherapy or molecularly targeted agents, can lead to unexpected 

chronic toxicities with an impact on HRQOL. These long-term toxicities may be difficult to 

capture within the defined follow-up period of a clinical trial. While long-term follow-up for 

these AEs is a challenge, electronic PRO tools could facilitate this process, allowing patients 

to complete away from the treatment facility and send to the study team.
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Integrating these endpoints into clinical trials face several barriers. Currently no tool exists 

specifically for I-O and it is imperative to explore whether an IO-specific tool would be 

useful. Typically, instruments such as the Functional Assessment of Cancer Therapy-General 

(FACT-G) or European Organization for Research and Treatment of Cancer–Quality of Life 

Questionnaire-30 (EORTC QLQC30) are often utilized to measure HRQOL, but may not be 

sufficiently sensitive for I-O and have never been validated in patients treated with these 

agents (63, 64). There may also be possible biased PRO responses in open-label studies, 

poor compliance, and difficulty differentiating tumor-related from irAEs. Addressing these 

challenges will help ensure HRQOL endpoint success when implemented into I-O trials.

Statistical design and analysis considerations for I-O clinical trials

While cancer immunotherapy trials use PFS and OS as endpoints to evaluate antitumor 

response and efficacy, the unique characteristics of the antitumor response induced by 

immunotherapy and pattern of survival curves require tailored and novel statistical design 

considerations and analysis of late-stage trials (Fig. 2). Delayed separation or crossing of 

survival curves is observed in many randomized clinical trials of I-O agents (5, 6, 8, 30, 65–

70), and stable plateaus at the tail represent long-term survival in trials or cohorts with long-

term follow-up (30, 71–76). This indicates deviations from the most commonly used 

standard model, with proportional hazards assumption that the hazard ratio of the 

investigational arm versus the control arm is constant over time. The delay in benefit may 

lead to substantial loss of statistical power, thus reducing the ability to detect the effect if the 

trial uses conventional calculation of required events based on proportional hazards 

assumption (77–79).

Alternative statistical models to account for the delayed separation of survival curve or long-

term survival can improve the planning and analysis of immunotherapy trials. For instance, 

piecewise exponential models describe different hazard ratios before and after a specified 

timing of delayed onset of survival benefit (80). Cure rate models are useful to explicitly 

model a cured fraction of patients when scientific rationale for the presence of long-term 

survivors is strong (78, 81). It is recommended that the required number of events calculated 

under these models reflects the unique survival kinetics for the design to yield adequate 

statistical power. The presence and timing of the delayed response also have an impact on 

the timing of the interim analysis and trial duration (82), highlighting the importance of 

tailoring study design to cancer immunotherapy characteristics.

Milestone survival is the proportion of subjects who are alive at a prespecified time point 

based on Kaplan–Meier survival estimate. It may be considered as an endpoint for interim 

analysis to allow accelerated drug approval, while OS remains the primary endpoint 

representing long-term benefit and will be analyzed using log-rank test or other statistical 

methods to account for nonproportional hazard. The primary endpoint of OS is characterized 

by the survival cure over the entire follow-up time, but not just the median of the curve.

Various statistical methodologies for analyzing survival data featuring nonproportional 

hazards can be applied to I-O trials. Weighted log-rank test potentially yields greater power 

than the traditional log-rank test by putting more weight on the difference after separation of 

the survival curves (83). One could also consider modeling time-varying hazard ratios (84). 
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In order to overcome the difficulty in interpreting the hazard ratio when proportional hazards 

assumption is violated, alternative measures such as restricted mean survival time and 

milestone survival have been proposed to quantify the treatment benefit (85, 86). The choice 

of the primary measure should fit the objective of the trial.

Conclusions

Early-phase clinical trials

Phase I trials of novel I-O agents should aim to select a dose and schedule that makes 

pharmacodynamic sense, avoiding additive dosing, at the minimum dose and schedule that is 

biologically active. To meet this goal, correlative genomic and immunologic endpoints 

should be explored in early-phase studies and correlated with both toxicity and efficacy 

outcomes.

The optimal go/no-go decision point to choose for I-O phase IB/II trials is yet to be fully 

defined; however, it is likely this will depend on the patient population. For example, even a 

single objective response to a novel I-O agent in a population that has a very low expected 

response rate merits intensive correlative investigation of tumor and other biospecimens 

obtained from the responding patient. Such correlative studies may lead to further clinical 

studies in defined populations of patients. Tumors that are already resistant or refractory to 

anti–PD-(L)1 therapy represent such a population.

Late-phase clinical trials

As with other anticancer therapies, an improvement in OS in a well-controlled randomized 

study represents the gold-standard demonstration of efficacy for a novel I-O compound. 

Given the extended duration of responses seen with I-O, it is possible that ORR may 

represent a surrogate for OS in I-O trials; however, this is yet to be shown conclusively. 

Other surrogates such as PFS have been accepted for regulatory purposes and continue to be 

evaluated in I-O studies. The role of immune-related response continues to be elucidated, 

and the ongoing development of irRECIST is very welcome. Similarly, assessment of 

HRQOL and PRO in I-O trials is recommended in all phases of development.

Clinical development of I-O agents presents both challenges and opportunities for drug 

development. The absence of a clear dose–efficacy relationship may allow minimization of 

dose escalation cohorts in phase I and early assessments of efficacy in expanded phase Ib 

trials across tumor types. Defining the optimal dose and schedule may be more challenging 

than with traditional cytotoxics, and use of endpoints such as target receptor occupancy or 

changes in immune characteristics of serial on-treatment tumor biopsies should be 

considered. Later phase trials should focus on efficacy assessments with real-life 

applicability. While novel endpoints, such as immune-related response, and biomarker-based 

correlative endpoints have been proposed, further refinement is needed and may come about 

through consensus guidelines.
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Figure 1. 
Radiographic pseudoprogression on anti–PD-1. 74-year-old woman with metastatic 

carcinoid of the right lung status post middle lobectomy, right hilar radiation therapy with 

progression on chemotherapy at baseline (A), first follow-up (B), second follow-up (C), and 

57-week follow-up (D) after immunotherapy. IV contrast-enhanced CT examination of the 

chest, abdomen, and pelvis was performed with selected slices of the chest (top images) and 

abdomen (bottom images). Right supraclavicular adenopathy is shown (A, upper image, red 

arrow) measuring 16 mm short axis. Node decreases to 7 mm short axis (B–D top images, 

red arrows) which denotes a normal node by RECIST 1.1 criteria. Patient has additional 

metastatic disease to include paratracheal adenopathy, numerous right pleural implants, and 

scattered hepatic metastases. Baseline sum of longest diameters of selected target lesions 

calculated to 68 mm. First follow-up demonstrated stable disease with 15% increase from 

baseline. Second follow-up demonstrated partial response with 56% decrease from baseline. 

Patient continued to sustain partial response until progressive disease with 20 mm short axis 

porta hepatis adenopathy appearing (D, bottom image, large red circle). A normal 7-mm 

short axis node is present in this location on prior exams (A–C, bottom images, smaller red 

circles).
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Figure 2. 
Replicates of Kaplan–Meier survival curves of nivolumab vs. docetaxel in advanced 

nonsquamous non–small cell lung cancer (5). A, OS. B, PFS. The horizontal dashed line 

represents 50% survival, and its corresponding time is median OS and PFS, respectively. 

Hazard ratio was estimated based on a stratified Cox proportional-hazards model. Restricted 

mean survival time of OS up to 24 months represents life expectancy with treatment of 

nivolumab for the disease over the next 24 months. It can be estimated as the area under the 

survival curve up to 24 months. Hasegawa et al. calculated that for OS, the increase of the 

restricted mean survival time by nivolumab would be 1.7 months compared with docetaxel 
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[95% confidence interval (CI), 0.4–3.1]. For PFS, the estimated increase of restricted mean 

survival time is 1.3 months (95% CI, 0.2–2.3; ref. 78). Milestone survival is the proportion 

of subjects who are alive at a prespecified time point based on Kaplan–Meier survival 

estimate. Milestone analysis is performed at interim analysis in the first set of patients when 

each of their length of follow-up reaches the milestone time. Milestone survival rate is not 

shown on the figure that summarizes the final analysis results.
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Table 1

Endpoint assessment in I-O clinical trials

Endpoint Definition Advantages Limitations

Early-phase clinical trials

 MTD The highest dose 
of a treatment 
that does not 
cause 
unacceptable 
side effects

• Accurately captures 
tumor response 
patterns in 
conventional 
cytotoxic therapies

• Difficult to evaluate nonlinear 
dose–response relationship of 
I-O agents,

• Does not evaluate prolonged 
treatment effect,

• Does not capture delayed 
onset/long lasting side effects

 Minimum effective dose The minimum 
dose of a 
treatment that 
can produce a 
therapeutic 
response

• Allows for evaluation 
of unique dose–
response and dose–
toxicity correlations 
seen with I-O agents

• Has not been extensively 
validated in I-O clinical trials

 ORR Fraction of 
patients 
achieving 
response

• Can be used in single-
arm studies

• May represent a 
surrogate for OS 
given the delayed 
response pattern seen 
with I-O agents

• Does not capture patients with 
durable stable disease,

• Does not differentiate 
outcome based on depth of 
response (CR vs. PR)

Late-phase clinical trials

 PFS Time from 
treatment to 
tumor 
progression or 
death, whichever 
occurs first

• Most practical • Dependence on comparator 
arm,

• Is not influenced by 
subsequent therapy

• Subject to measurement error, 
observer bias, assessment 
schedule, and missing data,

• Might not accurately predict 
outcome as several IO trials 
showed OS benefit but no 
difference in PFS,

• Does not capture 
pseudoprogression,

• Remains a secondary 
alterative to OS given the 
response patterns of I-O 
agents

 OS Time from 
treatment 
initiation to death

• Remains the golden 
standard of efficacy 
for I-O agents

• Measures both 
treatment and toxicity 
effects on survival

• Requires large sample size 
and long follow-up, which can 
delay approval of a potentially 
effective treatment,

• Delay in benefit seen with I-O 
agents may lead to loss in 
statistical power

• Conventional proportional 
hazards model does not 
appropriately capture survival 
kinetics

 Milestone survival Survival 
probability at a 
given time point

• Takes into account the 
possibility of delayed 
treatment effect

• Requires extensive validation
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Endpoint Definition Advantages Limitations

• Potential surrogate for 
OS

• Does not take into account the 
totality of the OS data

Surrogate endpoints

 Biomarker/correlative endpoints Endpoints that do 
not represent 
direct clinical 
benefit but may 
predict outcome

• May better capture 
the mechanism of 
action and biological 
response to I-O 
agents

• Require extensive validation, 
standardization and 
development of analytical 
framework

QoL endpoints

 HRQOL endpoints • Represent patient-
centered endpoints 
that have been shown 
to impact survival

• Allow for evaluation 
of effect of immune-
related toxicities

• Quantify symptom or 
functional changes

• Absence of extensively 
validated HRQOL tools

• Applicability may be limited 
by poor compliance

Abbreviations: CR, complete response; HRQOL, health-related quality of life; PR, partial response; QoL, quality of life.
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Table 2

Comparison of response evaluation criteria by RECIST 1.1, irRS, and irRECIST

RECIST 1.1 irRS irRECIST

Baseline tumor assessment Tumor burden calculated as the 
sum of diameters of all target 
lesions— unidimensional 
measurements

Tumor burden calculated as the 
sum of the products of the longest 
perpendicular diameters (SPD) of 
all index lesions—bidimensional 
measurements

Calculated as the sum of diameters of 
all target lesions—unidimensional 
measurements

Subsequent tumor assessment Tumor burden calculated as the 
sum of diameters of all target 
lesions (unidimensional 
measurements)

Total tumor burden at follow-up 
includes SPD of the index lesions 
and any new measurable lesions

Total measured tumor burden at 
follow-up is calculated as the sum of 
diameters of all target lesions and new 
measurable lesions

Target lesions All measurable lesions up to a 
maximum of 5 total (max 2 per 
organ)

All measurable lesions (up to 5 
per organ, up to 10 visceral and 5 
cutaneous index lesions)

All measurable lesions up to a 
maximum of 5 total (max 2 per organ)

Evaluation of response

 CR Disappearance of all target 
lesions

irCR: Complete disappearance of 
all lesions, whether measurable or 
not and no new lesions

irCR: Complete disappearance of all 
measurable and nonmeasurable lesions

 PR >30% decrease in the sum of 
diameters of target lesions 
compared to baseline sum 
diameters

irPR: >50% decrease in tumor 
burden relative to baseline

irPR: >30% decrease in tumor burden 
relative to baseline and no unequivocal 
progression of new nonmeasurable 
lesions

 PD >20% increase in the sum of 
diameters of target lesions 
compared to nadir, or 
appearance of new lesions

irPD: >25% increase in tumor 
burden relative to nadir

irPD: >20% increase in tumor burden 
and minimum 5 mm absolute increase 
in tumor burden compared with nadir 
or irPD for nontarget or new 
nonmeasurable lesions

 SD Not meeting criteria for PR or 
PD

irSD: not meeting criteria for 
irCR or irPR in the absence of 
irPD

irSD: not meeting criteria for irCR or 
irPR in the absence of irPD

New lesions
Confirmation of response

Represent PD
Confirmation of response is not 
mandatory

Do not necessarily represent PD
Any response other than SD has 
to be confirmed at least 4 weeks 
apart after the first assessment

Do not necessarily represent PD
Confirmation of response is not 
mandatory; however, confirmation of 
irPD is recommended for patients with 
minimal total measured tumor burden 
increase especially during the first 12 
weeks of treatment

Abbreviations: CR, complete response; irRS, immune-related response criteria; PD, progressive disease; PR, partial response; RECIST, response 
evaluation in solid tumors; SD, stable disease.
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