Skip to main content
. 2017 Dec 19;17:174. doi: 10.1186/s12911-017-0566-6

Table 12.

Comparison of the performance K-Nearest Neighbor classifier (KNN) using different values of k {1, 3, 5, 10} neighbors and using different distance functions; Euclidean distance, Manhattan distance and Minkowski distance using sampling

Euclidean distance Manhattan Distance Minkowski Distance
K = 1 K = 3 K = 5 K = 10 K = 1 K = 3 K = 5 K = 10 K = 1 K = 3 K = 5 K = 10
Sensitivity 78.43% 65.61% 64.17% 50.00% 78.29% 65.66% 65.68% 61.23% 78.43% 65.61% 64.17% 59.23%
Specificity 96.98% 91.74% 90.53% 89.84% 97.05% 91.80% 90.60% 89.91% 96.98% 91.74% 90.53% 89.84%
Precision 77.18% 33.64% 22.32% 11.50% 77.73% 34.16% 22.94% 16.44% 77.18% 33.64% 22.32% 15.89%
F-score 77.80% 44.47% 33.12% 18.70% 78.01% 44.94% 34.01% 25.91% 77.80% 44.47% 33.12% 25.05%
RMSE 0.23 0.27 0.28 0.29 0.23 0.27 0.28 0.29 0.23 0.27 0.28 0.29
AUC 0.88 0.86 0.85 0.84 0.87 0.86 0.85 0.84 0.87 0.86 0.85 0.84

The results show that the value 1 for the K parameter achieves the highest AUC (0.88) using Euclidean distance