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Abstract

Using electroencephalography (EEG) to elucidate the spontaneous activation of brain resting-state networks (RSNs)
is nontrivial as the signal of interest is of low amplitude and it is difficult to distinguish the underlying neural sources.
Using the principles of electric field topographical analysis, it is possible to estimate the meta-stable states of the
brain (i.e., the resting-state topographies, so-called microstates). We estimated seven resting-state topographies
explaining the EEG data set with k-means clustering (N = 164, 256 electrodes). Using a method specifically designed
to localize the sources of broadband EEG scalp topographies by matching sensor and source space temporal patterns,
we demonstrated that we can estimate the EEG RSNs reliably by measuring the reproducibility of our findings. After
subtracting their mean from the seven EEG RSNs, we identified seven state-specific networks. The mean map
includes regions known to be densely anatomically and functionally connected (superior frontal, superior parietal,
insula, and anterior cingulate cortices). While the mean map can be interpreted as a ‘‘router,’’ crosslinking multiple
functional networks, the seven state-specific RSNs partly resemble and extend previous functional magnetic reso-
nance imaging-based networks estimated as the hemodynamic correlates of four canonical EEG microstates.
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Introduction

Studying the spontaneous activity of the brain

Functional magnetic resonance imaging (fMRI)
studies have revealed that the brain at rest exhibits spon-

taneous blood oxygen-level-dependent (BOLD) fluctuations
over time that correlate with functionally connected brain
areas (Biswal et al., 1995). This discovery and the use of ad-
vanced neuroimaging techniques led to a fundamental para-
digm shift in the understanding of how the brain works.
The current prevailing hypothesis is that the brain is inher-
ently active in an organized way so as to be better prepared
for stimulus processing rather than the brain being considered
as in an idle state activated by external stimuli.

Studies of resting-state networks (RSNs) with fMRI sum-
marize several minutes of recording based on the assumption
that the functional connections between the different areas of
a network remain stationary. This assumption is challenged
by recent time-resolved fMRI studies that showed that

RSNs vary over time (Hutchison et al., 2013; Zalesky et al.,
2014) and they strongly overlap in space and time (Karahanoğlu
and Van De Ville, 2015; Smith et al., 2012), suggesting dy-
namic interactions between RSNs.

Using temporal rather than spatial independent component
analysis (ICA) of accelerated fMRI data, Smith et al. (2012)
described temporally distinct but spatially overlapping corre-
lated and anticorrelated networks with several brain regions
being part of multiple networks, supporting the notion that
‘‘functional integration among brain areas means that large-
scale neuronal dynamics can share a substantial anatomical in-
frastructure’’ (Friston, 1998). Also using accelerated fMRI,
Zalesky and colleagues (2014) showed that these temporally
alternating patterns of correlation and anticorrelation of spa-
tially distributed regions are not continuous, but partitioned
into different epochs. The authors compared these brief inter-
vals of increased activity in spatially distributed brain regions
with electrophysiological findings of epochs of synchronous
activity (Deco et al., 2008) that may allow the individual
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segregated networks to have access to a global cognitive
workspace necessary for conscious processing. This idea is
the basis of the global workspace model of consciousness
that suggests that a resting state represents a microstate of cog-
nition and that cognitive processing evolves through a succes-
sion of such microstates (Dehaene and Changeux, 2011).
During each of these states, several brain areas communi-
cate in a coordinated manner to prepare for incoming stimuli
(Bressler and Kelso, 2001; Bressler and Tognoli, 2006). Based
on electroencephalography (EEG) measurements, Bressler
(1995) estimated that the duration of such conscious brain
states is in the range of a few hundred milliseconds.

The concept of ‘‘microstate of cognition’’ is supported by
Lehmann and colleagues’ (1987) electrophysiological obser-
vation that a given configuration of the global scalp electric
field (a.k.a. a topography) measured with multichannel EEG
remains stable for periods of *100 msec and then switches
to a new configuration. Lehmann’s team hypothesized that
these broadband EEG ‘‘microstates’’ represent the building
blocks of human cognition, the ‘‘atoms of thought’’ (Leh-
mann, 1990). In this sense, these microstates could be the
electrophysiological correlates of the periods of stable spa-
tial patterns proposed in the global workspace theory
(Baars, 2002; Baars, 1988; Changeux and Michel, 2004;
Dehaene and Changeux, 2011): these ‘‘thoughts’’ (or states),
by coming in and out of focus, could reach various levels of
consciousness as described by Dehaene and Changeux (2011)
and the information broadcast between states can encode the
smooth transition from thought to thought.

Several studies conducted during the last 20 years have
shown that the presence and temporal dynamics of EEG mi-
crostates are modulated by different levels of consciousness
(Brodbeck et al., 2012; Katayama et al., 2007; Singh and
Telles, 2015), and diseases [e.g., in schizophrenia (Kindler
et al., 2011; Lehmann et al., 2005; Strelets et al., 2003)].
What is largely missing is a reliable identification of the neu-
ronal sources generating these different EEG states, that is,
the brain areas that are synchronized with each other during
each of these microstates.

Two main approaches have been explored for filling the
gap: (1) the analysis of simultaneously recorded EEG-fMRI
data to identify the brain areas of hemodynamic changes
matching the temporal fluctuations of the resting-state topog-
raphies, and (2) EEG source imaging to estimate the neuronal
networks generating each resting-state topography.

EEG-fMRI resting-state networks

Two independent studies on combined EEG-fMRI appeared
in the same issue of NeuroImage (Britz et al., 2010; Musso
et al., 2010) and were accompanied by two editorial comments
(Lehmann, 2010; Laufs, 2010). Musso and colleagues focused
on resting-state EEG-BOLD analysis at the individual level,
that is, resting-state topographies (and corresponding BOLD
correlates) were estimated independently for each subject.
They showed that, on average, half of the individuals’ resting-
state topographies elicited BOLD activation with spatial
patterns that resembled those usually described in fMRI resting-
state studies. On the group level, seven aggregation factors were
identified, but only one of the factors was able to elicit signifi-
cant BOLD activation in brain areas within the visual as well as
the default mode network.

Britz and colleagues estimated topographies (and BOLD
correlates) at a group level. Using k-means cluster analysis,
they determined four dominant resting-state topographies
across all subjects. They then determined the time course of
these template maps in each subject and convolved them with
a hemodynamic response function. Group-level general linear
modeling identified distinct BOLD networks for each of the
four EEG topographies, corresponding to known fMRI-based
RSNs: auditory, visual, salience, and attention networks.

Yuan and colleagues (2012) identified EEG resting-state
topographies by a temporal ICA and then compared 13 se-
lected EEG components with those estimated from the
fMRI ICA. Out of the 13 components, six were associated
with one or two fMRI RSNs, while the remaining seven cor-
related with more than two fMRI networks. Despite method-
ologically different approaches, all three studies showed that
the dominant EEG topographies are fairly well related to the
fMRI-defined RSNs, but with considerable spatial overlap.

EEG resting-state networks

Instead of estimating the resting-state topography BOLD
correlates (indirectly correlated to the topography fluctuations),
in the present work, we estimate directly the (electrophysiolog-
ical) neural networks generating the resting-state scalp topog-
raphies. To the best of our knowledge, only one team used
this direct approach to estimate the sources of EEG resting-
state topographies [Pascual-Marqui et al. (2014); and related
work from Milz et al. (2016)]. They analyzed a publicly avail-
able data set of 109 subjects recorded with 61-channel EEG, in
which the data were filtered between 2 and 20 Hz.

They used first-level group k-means clustering to estimate
four resting-state maps and then estimated individual versions
of each of the four maps by spatial fitting. They then computed
the source distributions of the group maps (1) and the individual
maps (2) by projecting each topography into source space using
eLORETA. The individual solutions were tested for nonzero
mean at each solution point across subjects. Both approaches
(1) and (2) resulted in greatly overlapping source distributions,
primarily involving the posterior cingulate and occipital/parietal
cortices (except for the third map that also involved the anterior
cingulate). Pascual-Marqui’s approach does not distinguish
resting states based on their temporal signature but it focuses
on the distinctive spatial characteristics of the potential fields.

We recently proposed the method topographic electro-
physiological state source-imaging (TESS) (Custo et al.,
2014) for spontaneous or evoked EEG source localization in-
spired by classic fMRI analysis of BOLD evoked responses.
TESS is based on general linear model (GLM) regression
and it estimates the spatial source distribution of a given
scalp topography (e.g., an average epileptic spike map) by
selecting the spatial locations (solution points) with time
courses matching that of the topography of interest.

In this article, we use TESS to estimate the sources of EEG
resting-states topographies, that is, to estimate the EEG-
based RSNs (eRSNs). We analyze a set of 164 healthy sub-
jects recorded with 256-channel EEG during 3–7 min of rest
with eyes closed; we estimate the optimal set of resting-state
topographies representing this data set, compute the time
course of each of these maps, and determine the distribution
of the underlying time-correlated sources. We quantify the
reproducibility of the observed source distributions using
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bootstrapping and we interpret and classify our results based
on their spatial patterns.

Materials and Methods

EEG data set

We recorded 164 healthy subjects (age 6 to 87 years, mean/
standard deviation 38.11 – 24.15, 89 females) for 3–7 min dur-
ing rest in an electrically shielded room. The subjects were sit-
ting upright with their eyes closed and were instructed to relax
and let their minds wander. A high-density sensor cap (256-
channel HydroCel Geodesic Sensor Net; Electrical Geode-
sics, Inc., Eugene, OR) was used to record EEGs at a sampling
rate of 1000 Hz and with a vertex reference. Following acquisi-
tion, the data were filtered between 1 and 40 Hz, and infomax-
based ICA was applied to remove oculomotor and cardiac
artifacts (Jung et al., 2000). The data were downsampled to
125 Hz, bad electrodes were interpolated using a three-
dimensional spherical spline (Perrin et al., 1989), and the refer-
ence was recomputed as the average of all the channels. Only
204 electrodes were processed in this manner, the sensors on
the cheeks and neck were omitted. The data were spatially
smoothed to account for small groups of sporadically bad elec-
trode signals with an approach similar to an interquartile mean
(IQM), in which the cumulative density function is split into six
intervals instead of four. All the preprocessing steps were done
using Cartool toolbox (https://sites.google.com/site/cartool
community/home) and MATLAB.

Resting-state topography estimation

We use Cartool’s adapted k-means clustering method to
estimate the optimal set of topographies explaining the
input EEG signal (Brunet et al., 2011; Murray et al., 2009;
Pascual-Marqui et al., 1995). To determine the optimal num-
ber of clusters, we calculate 11 independent optimization cri-

teria and combine them as follows: MetaCriterion =: IQM2

IQR
,

where IQM is the IQM of the criteria and IQR is the interquar-
tile range of the criteria (see Supplementary Data, Supple-
mentary Fig. S1, and Supplementary Table S1 for details;
Supplementary Data are available online at www.liebertpub
.com/brain). The criteria are Cross-Validation (its second de-
rivative), Cubic Clustering Criterion (its first derivative),
Davies and Bouldin, Dunn, Frey and Van Groenewoud,
Hartigan (its first derivative), Krzanowski-Lai Index, Marriott,
Point-Biserial, Tau, and Trace (W) (its second derivative)
(Charrad et al., 2014; Krzanowski and Lai, 1988; Milligan and
Cooper, 1985; Murray et al., 2008; Pascual-Marqui et al.,
1995). In Supplementary Data, we report more details on these
11 methods and the type of cost function they implement.

We cluster the EEG data at the global field power (GFP)
peaks to maximize the signal to noise ratio and focus on mo-
ments of high global neuronal synchronization (Britz et al.,
2010; Koenig et al., 2002; Pascual-Marqui et al., 1995;
Tomescu et al., 2014), for a discussion on the advantages
and limits of this approach (Gärtner et al., 2015; Koenig and
Brandeis, 2016). Typically, the topography around a GFP
peak remains stable and is at its highest SNR at the GFP peak.

The k-means clustering is performed in two iterations:
first, we cluster each individual EEG (at the GFP peaks)
into its optimal number of clusters (see Supplementary Data
for more details on the optimal criterion), assigning an EEG

time frame to a cluster only if its correlation with the cluster
map is above 0.5; we use temporal smoothing of strength 10
on half window size 1 (Besag factor k = 10 and b = 1 in Equa-
tion 13 (Pascual-Marqui et al., 1995). For a given k, we ran-
domly select a starting set of k topographies 100 times
(where k is the number of clusters) to find the set of cluster
maps that maximize the global explained variance. Then,
the mean cluster map, or template topography, will represent
the optimal individual’s cluster centroid (i.e., explaining most
of the variances) for a specific k. This procedure is repeated
for k ranging from 1 to 15 and the optimal criterion described
in Supplementary Data is applied to the individual clustering
results to find each subject’s optimal k. We then group cluster
these individual template topographies (500 trials) again not
assigning maps to a cluster if their correlation is below 0.5.

Resting-state topography source analysis (TESS)

Figure 1 depicts the source analysis steps for the seven es-
timated broadband EEG resting-state topographies using
TESS (Custo et al., 2014). The seven resting-state maps
form the design matrix that is fitted to each subject’s contin-
uous EEG using a GLM. The GLM estimates the coefficients
Tm, t for the linear combination of the seven input maps m
minimizing their distance from each EEG time point t (i.e.,
minimizing the squared sum of the difference between the
EEG values measured at time t and their linear approxima-
tion, that is, the linear combination of the input maps). The
fitting result is a time course of coefficients for each resting-
state map for each subject. Using a winner-takes-all ap-
proach, we compute an index function attributing each time
point to the topography with the highest GLM coefficient:

indxm, t = 1 if argmaxm Tm, t = m

0 otherwise

�
,

where Tm, t is the coefficient assigned by the GLM fitting to a
subject’s EEG time frame t for the resting-state topography m.

In parallel, a distributed linear inverse solution is applied
to each time point of the individual EEG [LAURA from Car-
tool’s toolbox; (Grave de Peralta Menendez et al., 2004)],
and the time course of the current density of 5000 solution
points equally distributed in the gray matter of a template
brain is estimated: Qp, t for each solution point p and time
point t (Michel et al., 2004). A second temporal GLM is
then used to fit the two time courses (Qp, t and indxm, t), result-
ing in an estimate of the coefficient for each solution point p
(or ‘‘voxel’’) and each of the seven resting-state topographies
m [see Custo et al. (2014) for more details].

The topography time courses used as regressors in the final
GLM are fit together with the GFP and the global map dissim-
ilarity (GMD). The GMD for each pair of consecutive maps,
u and v, in a subject’s EEG time series is defined as follows:

GMD =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N
+N

i = 1

ui� �uffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
+N

i = 1

ui � �uð Þ2
N

r � vi� �vffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
+N

i = 1

vi � �vð Þ2
N

r
2
664

3
775

2
vuuuuut ,

where N is the number of electrodes, ui and vi are the voltages
at electrode i of maps u and v, respectively, and �u and �v are
the average voltages of all electrodes of these maps.
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The GFP regressor helps eliminate the bias induced by the
signal power fluctuations; the GMD regressor can diminish
the contributions of the moments of transitions between
states, when the SNR is very low and the signal association
to a particular state is weak (Lehmann and Skrandies, 1980).
Similarly to an fMRI GLM-based analysis, the result of this
process is a beta variable distribution associating ‘‘activity’’
to voxels matching a certain temporal pattern.

Reproducibility analysis

We perform bootstrapping to assess the accuracy of our
measures (Hastie et al., 2009). This analysis is performed in
two steps: in the first step we compute the z scores of ran-
domly selected samples of the estimated activity maps (ran-
dom sampling with replacement of the output of TESS,
bj, m, p, the pth solution point of the mth resting-state source

map for the jth subject); in the second step we compute
second-level z scores of the samples’ z scores from step
one. In more details: in the first step, for each random sample
(200 repetitions, sample size 80), we compute the sample
mean divided by its standard deviation, z200 =: l80=r80,

where l80 = 1
80

+
80

j = 1

bj, m, p, r80 =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
80

+
80

j = 1

bj, m, p�l80

�� ��2s
, and

bj, m, p are the pth solution point of the mth estimated source

map for the jth subject. In the second step, we compute the boot-
strap ratio (Hastie et al., 2009): zm, p =: l200=r200, where l200

and r200 are the mean and standard deviation of the 200 z scores
computed on each sample (z200).

The result is a z score representing the generators of each
resting-state topography that we call the eRSN: a sizeable
value of zm, p indicates robust estimation of brain activity in
the population. To control for multiple comparison, we ap-
plied Bonferroni correction to the t-values of the contrast
bj, m, p, that is, the 164 beta variables estimated with TESS
(not shown, p < 0.05) that were similarly spatially distributed
and had maximum values of 16–18 for any of the seven maps.

To test whether the resting-state topographies are spatially
and/or temporally correlated, which might indicate a redundancy
in the set of state topographies, we compute their pairwise spatial
and temporal correlations. In the temporal domain, we compute
the Pearson correlation coefficients of the absolute value of the
time courses estimated by GLM fitting the seven resting-state
topographies to a subject’s EEG. Then, we compute the mean
and standard deviation across subjects of these correlation coef-
ficients. The spatial correlation is calculated by computing the
absolute value of the Pearson correlation between the seven esti-
mated normalized resting-state topographies, measuring the co-
variance between the spatial distributions of the topography
scalp potentials. Taking the absolute value of the correlation co-
efficients makes them invariant to the topography’s polarity.

Results

Resting-state topography estimation

The two-step k-means clustering (individual level and
group level, see Materials and Methods for details), at the in-
dividual level, revealed between 3 and 11 topographies
(mean k = 5.8 – 1.6) as the optimal number of clusters

FIG. 1. We use TESS
(Custo et al., 2014) to estimate
the sources associated with the
seven resting-state topogra-
phies A–G. The method is
based on the idea that we can
separate noise and the sources
generating a topography based
on their time course. Using a
GLM, we estimate the time
course of each resting-state to-
pography (‘‘fitting’’ box of the
diagram) and through a second
GLM, we estimate the set of
sources matching the temporal
profile of each topography
(‘‘regression’’ box of the dia-
gram). The seven resting-state
topographies are estimated
separately using a two-level k-
means clustering approach.
GFP indicates the global field
power, GMD stands for global
map dissimilarity, and the final
output eRSN corresponds to
the EEG-based RSN associ-
ated with a resting-state
topography. EEG, electro-
encephalography; RSN,
resting-state network; TESS,
topographic electrophysiologi-
cal state source-imaging. Color
images available online at
www.liebertpub.com/brain
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(totaling 952 maps), and, at the group level, seven clusters
provided optimal explanation of the data. These seven
maps explained 84.8% of the global variance. The first col-
umn of Table 1 shows the topographies of these maps,
which are the centroid of the respective clusters of maps;
the second column shows the number of individual template
maps assigned to each cluster; the third column displays the

number of subjects contributing with at least one map to the
cluster; finally, the fourth column shows the mean global
variance of the individual data explained by each cluster
map, that is, by each resting-state topography (indicated
by GEV, global explained variance).

The result shows that maps A, B, C, and D, the four of the
seven maps most conventionally described in the literature
(Khanna et al., 2015), together explain *60% of the variance
when using seven clusters. The other three maps, E–G, explain
an additional 25% of the variance. Figure 2 shows the tempo-
ral and spatial correlations among the seven maps. The highest
temporal correlations are found between map E and the canon-
ical maps A and B (0.63 and 0.62, respectively), and between
map G and map B (0.57). The variability of the microstate
temporal correlations across subjects is low (standard devia-
tion range is 0.105–0.181). The spatial correlation matrix
(Fig. 2B) reveals a lower correlation between the four canon-
ical maps and the three additional ones (<0.68) than the corre-
lation between canonical maps themselves (as high as 0.76).

EEG-based RSNs

The seven resting-state topography sources were esti-
mated with TESS and tested for reproducibility. The result-
ing z-scores are shown in Figure 3: in the left-most column
we display the seven resting-state topographies (A–G). In
the second, third, and fourth columns we show the network
generating each resting-state map over the MNI brain
(Fonov et al., 2011) in the sagittal, transverse, and coronal
slices of local maximal activity (z score >4.8).

In Figure 3 (columns 2–4), we can notice several brain
structures with high z-scores common to most microstates.
To determine which brain regions are common to the major-
ity of the EEG topographies, we average the z-scores of the
seven eRSNs. This mean map is shown in Figure 4 (z score
>4). The most dominant areas of overlap are in the anterior/
posterior medial axes, including the superior frontal cortex
extending ventrally to the anterior cingulate and caudally to

Table 1. Resting-State Topography Parameters

Maps Maps · cluster No. of subjects GEV

160 145 14

168 148 15

205 161 19

115 100 10

127 120 11

105 93 9

71 70 6

GEV, global explained variance. Color images available online at
www.liebertpub.com/brain

FIG. 2. Mean temporal (A) and spatial (B) correlation coefficients of the seven resting-state topographies. Color images
available online at www.liebertpub.com/brain
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FIG. 4. The mean of the seven
eRSNs (z > 4). Color images
available online at www.liebertpub
.com/brain

FIG. 3. The estimated seven RSNs (and corresponding scalp topographies, A–G, in the first column) displayed over the
MNI brain. The z scores resulting from bootstrapping ( p < 0.005) are thresholded at z > 4.8 (second to fourth column).
The de-meaned EEG-based RSNs are shown in the last three columns (z at least greater than 3). Color images available online
at www.liebertpub.com/brain
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the postcentral gyrus. Also, the insula and the superior parie-
tal cortex belong to this set of common regions. We subtract
this mean map from each individual eRSN to highlight the
state-specific portion of the RSNs. These de-meaned maps
are shown in Figure 3 (last three columns) together with
their corresponding microstate topographies. In Table 2, we
summarize the active regions for each topography. We define
an area ‘‘active’’ when it is statistically significantly present
after de-meaning ( p < 0.005, z scores at least larger than 3).

The following are the main cortical regions distinctly as-
sociated with each microstate topography:

� Map A: left middle and superior temporal lobe, includ-
ing Brodmann areas 41 (BA41, primary auditory cor-
tex) and 22 (BA22, Wernicke), and the left insular
cortex. There is also a circumscribed but lower activa-
tion of the left lingual gyrus (BA19).

� Map B: very strong activity in the left and right occipital
cortices (cuneus), including Brodmann areas 17 and 18
(primary visual cortex). Second smaller areas of activity
are located in the right insular cortex extending to the
right claustrum and the right frontal eye field (BA8).

� Map C: major activity is found in the precuneus and the
posterior cingulate cortex (PCC). A second weaker ac-
tivated area is the left angular gyrus.

� Map D: strong activation is found in the right inferior pa-
rietal lobe (BA40) and the right middle and superior
frontal gyri. The right insula (BA13) is activated as well.

� Map E: the left middle frontal gyrus, including the fron-
tal eye field (Brodmann area 8), and the dorsal part of the
anterior cingulate are strongly activated together with
the cuneus, extending to the PCC. The thalamus is acti-
vated as well, even though the ability of EEG to localize
these deep structures is debated.

� Map F: very strong activation is seen in the dorsal ante-
rior cingulate cortex (ACC; BA32) extending to the su-
perior frontal gyrus. The list of main activated areas is
completed by the bilateral middle frontal gyrus and bi-
lateral insula.

� Map G: strongest activations are found in the right infe-
rior parietal lobe extending to the superior temporal
gyrus. The cerebellum is also activated.

Discussion

EEG microstates reflect the synchronous activity of large-
scale neuronal networks that persist phase-locked for some
tens of milliseconds and are suggested to represent the basic
building blocks of free-floating mental processes. Determining
the dominant active brain areas during each of these states and
linking them to brain functions associated with these areas
can help understanding the functional significance of these
states. The present work estimated the EEG microstate networks
from a large sample of subjects recorded with high-density EEG
using spatial and temporal linear modeling. We found that:

(1) Seven distinct EEG spatial patterns (topographies)
best describe our large data set of spontaneous electro-
physiological activity, among which we can identify
the four canonical microstate maps frequently de-
scribed in literature.

(2) In line with time-resolved fMRI resting-state studies
and combined EEG-fMRI resting-state studies, we
identified brain regions shared by most eRSNs (Fig. 4).

(3) Each resting-state topography is reliably associated with
a distributed network of estimated sources ( p < 0.005),
in which we distinguished common (Fig. 4) and more
network-specific regions (Fig. 3, last three columns).

Seven EEG resting-state topographies

The combination of 11 different optimization criteria
identified 7 EEG scalp potential maps as the optimal num-
ber of clusters best explaining the variance of our large data
set of subjects aged between 6 and 87. Many previous stud-
ies described only four microstate maps (our maps A–D).
When using seven clusters, the four maps A–D explain
*60% of our data’s variance, and the additional three
maps contribute to another 25% of the variance (in total
84.8%, see Supplementary Data for more details on our
k-means clustering optimal criteria). Very few of the stud-
ies finding four maps estimated the optimal number of
states independently; most selected the four dominant clus-
ter maps based on the existing microstate literature: see re-
views by Khanna et al. (2015) and Rieger et al. (2016).

Although the topographies of these four maps are fairly sta-
ble across studies, examples are found of atypical maps in
which the classification into canonical A–D classes and the sub-
sequent functional interpretations may be too restrictive. Our
analysis of 164 subjects led to the estimation of EEG resting-
state topographies that include the four canonical maps, A–D,

Table 2. Electroencephalographic

Resting-State Network Summary

Resting-state map List of maxima ROIs

A Left Heschl’s gyrus
Left Wernicke area
Left insula
Left lingual gyrus

B Cuneus
Right insula
Right claustrum
Right frontal eye field

C Precuneus
PCC
Left angular gyrus

D Right inf. par. lobe
Right mid fr. gyrus
Right sup. fr. gyrus
Right insula

E Left mid frontal gyrus
ACC
PCC
Cuneus

F Dorsal ACC
Sup. fr. gyrus
Mid fr. gyrus
Insula

G Right inf. par. lobe
Sup. tmp. gyrus
Cerebellum

ACC, anterior cingulate cortex; PCC, posterior cingulate cortex;
ROIs, regions of interest.
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and an additional three maps, E–G, spatially distinct from the
four canonical maps. Using a data-driven approach, we esti-
mated two distinct networks generating microstates C and F
(Fig. 3). However, in the literature, we find nuances of incon-
sistent labeling of C-like and F-like resting-state maps as repre-
sentations of the same state and network. If researchers
determine differences in the temporal characteristics of EEG
maps (e.g., occurrences and durations) based only on the four
most dominant spatial patterns, care should be taken with the
interpretation of their associated RSNs [for a discussion see
Seitzman et al. (2017)]. We test the hypothesis that, when
only four microstates are used, C becomes a combination of
map C and map F, by repeating our GLM analysis using
only map A–D (the ‘‘canonical’’ four topographies). We ob-
serve that indeed (Fig. 5) when our GLM-based method for
source localization has fewer maps to fit the data with, it
ends up merging into a single network, the sources belonging
to map C and those generating map F, including the anterior
and posterior cingulate cortices.

The seven maps described in the present study and their
corresponding RSNs could serve as a starting point for future
research aimed at a more exhaustive and accurate classifica-
tion of resting-state topographies and their corresponding
networks.

Spatially overlapping networks

We estimated the neuronal generators of seven resting-state
topographies using spatial and temporal general linear model-
ing and obtained highly reproducible results. This analysis
revealed a few brain areas consistently activated in nearly
all seven networks. The fact that most of the EEG RSNs
share these brain areas might explain the partial spatial over-

laps of the scalp potential maps (i.e., the resting-state topogra-
phies). We argue that although the low spatial resolution of
EEG source imaging contributes to the smoothness and spatial
overlap of any EEG-based network analysis, our reproducibil-
ity analysis conducted on a large data set of rest EEG leads to
the unequivocal definition of brain areas shared by distinct
resting states ( p < 0.005, z > 4, see Fig. 4). These common re-
gions include areas along the anterior/posterior medial axes as
well as the insula and superior parietal cortex.

Network analyses based on fMRI, DTI, and graph theory
have consistently identified these regions to be densely ana-
tomically and functionally connected (Collin et al., 2014;
Hagmann et al., 2008; van den Heuvel et al., 2012), taking a
central role as major hubs in large-scale brain networks [for
a review see van den Heuvel and Sporns (2013)]. Their con-
sistent contribution to the time course of all seven EEG micro-
states might reflect their involvement in a broad range of
cognitive processes that crosslink multiple functional domains
(Karahanoğlu and Van De Ville, 2015; Mesulam, 1998; Yeo
et al., 2014). The existence of and need for common commu-
nication channels well fit into the global workspace model
(Dehaene and Changeux, 2004); any brain state, evoked or
spontaneous, when consciously accessed, generates a high ac-
tivity in its state-specific network, but it also broadcasts infor-
mation to shared cortical areas for integration of information
in an efficient and flexible way.

Microstate-specific networks

When subtracting from each eRSN their mean, unique areas
of activity characterize each microstate. The four networks
generating microstate A, B, F, and D have patterns similar to
the four described in Britz et al. (2010), where the RSNs

FIG. 5. Resting-state to-
pography M3 (corresponding
to map C from the seven
maps A–G) and resting-state
topography M6 (correspond-
ing to map F from the seven
maps A–G) and their corre-
sponding networks (from
Fig. 3, z > 4.8) are shown next
to resting-state topography
‘‘C’’ and its corresponding
network, in the bottom red
box (z > 5). Resting-state map
‘‘C’’ is obtained by analyzing
the same data set of 164 sub-
jects but using only maps A,
B, C, and D (from the set of
seven resting-state maps) for
the GLM fitting, instead of
using the full set A–G. Color
images available online at
www.liebertpub.com/brain
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were estimated based on temporal correlation between EEG
topographies and fMRI BOLD activity. This is an interesting
finding because these two methodological approaches are
based on very different time scales: slow-fluctuating fMRI-
based networks are captured by Britz’s BOLD signal analysis,
whereas fast-fluctuating electrophysiological states are local-
ized by our source analysis approach. We have previously
shown that the scale-free dynamics of EEG microstates ex-
plains the link between these two time scales (Van De Ville
et al., 2010). Nevertheless, in our study, the EEG networks in-
clude additional areas in comparison to the four fMRI-based
networks described in Britz et al. (2010). This difference can
be explained by the fact that by convolving the time course
of the four microstates with the hemodynamic response func-
tion, only very slow fluctuating dynamics is kept. Such ap-
proaches do not capture fast and nonstationary properties of
brain activity (Hutchison et al., 2013).

Electrophysiological studies have repeatedly shown that
neural signals at rest fluctuate at much faster time scales to
be effectively prepared for any possible external or internal
stimulus (Bressler and Kelso, 2001; Malsburg et al., 2010).
Such fast and dynamically changing systems of networks
cannot be estimated with methods hypothesizing slowly fluc-
tuating functional networks, as done in conventional fMRI
analysis. New fMRI studies looking at spontaneous dynamic
BOLD functional connectivity [see Preti et al. (2016) for a
recent review] promote a redefinition of metabolic RSNs
closer to the EEG (Hutchison et al., 2013; Zalesky et al.,
2014). Similar to the results reported here, such time-
resolved fMRI studies show spontaneous brain activity fluc-
tuations that are quite different from the conventional fMRI
RSNs (Smith et al., 2012).

We provide a tentative interpretation of our findings by
comparing the electrophysiological networks we estimated
for microstate A–D with the hemodynamic networks esti-
mated by Britz and colleagues (2010). In our study, the left
temporal lobe and the left insula are identified as major gen-
erators of microstate A. In Britz et al. (2010), the microstate
A time course is correlated with fMRI BOLD activity pri-
marily in bilateral superior and middle temporal gyri as
well as the left middle frontal gyrus, areas partly correspond-
ing to the sources we estimated in our study. Microstate B’s
generators are mainly localized in the occipital cortex, simi-
larly to Britz’ results. Microstate D is highly concordant with
the study by Britz et al., which identifies its BOLD correlates
in the right superior and middle frontal gyri and the right su-
perior and inferior parietal lobules.

A clear difference concerns microstate C; that is, while in
the study by Britz et al., BOLD correlates include the anterior
cingulate, inferior frontal gyrus and insula, our results estimate
microstate C being generated in parietal brain regions (the
PCC and the precuneus). The network C described in the
study by Britz et al. rather corresponds to our new microstate
F. As described above, microstate C and F are spatially corre-
lated (correlation coefficient of 0.7), causing previous studies
to easily collapse these two states into one (especially when
limiting the number of clusters to 4), with a resulting topogra-
phy resembling more often microstate C, or causing mislabel-
ing of microstate F as if it were C. As described above, when
only four microstate maps are used in our analysis, C becomes
a combination of map C and map F, including the anterior and
posterior cingulate cortices.

Microstates E and G are two newly identified states not de-
scribed in previous studies, with the exception of an E-like
microstate appearing in a study by Grieder et al. (2016).
Microstate E involves areas typically attributed to the default
mode network: ACC, PCC, and precuneus. Microstate G, fi-
nally, might be related to the sensorimotor network mainly
because of its strong activation of the cerebellum.

The extension to seven microstates instead of the canonical
four not only separates previously collapsed microstates but
it also identifies new microstate topographies and correspond-
ing networks. In particular, we estimate the generators of
one of these new states (microstate E) to belong to the default
mode network, namely, the anterior and posterior cingulate
cortices. Other microstates also include areas that belong to
the default mode network, particularly microstate C, with
sources in the PCC and precuneus, and microstate F, with
sources in the medial prefrontal cortex. Moreover, we identify
the medial prefrontal cortex as one of the sources generating
most of the other microstates and, as discussed above, we in-
terpret this region as a major hub in large-scale networks.

The functional role of the different areas of the default mode
network and its common attribution to a task-negative network
is discussed in depth in recent fMRI literature (Spreng, 2012;
Salomon et al., 2014). In this regard, an interesting contribu-
tion comes from Andrews-Hanna and collaborators who
show that the default mode network is task active in tasks
that implicate self-referential cognitive processes, but also
that this network can be divided into several subsystems com-
municating with each other through common hubs. In this pro-
posed system, the medial prefrontal cortex and the PCC play
the role of hubs, while the subsystems with distinct functional
roles comprise a dorsal medial cortex subsystem (responsible
for internally guided cognition) and a medial temporal subsys-
tem (responsible for memory-guided imagery) (Andrews-
Hanna et al., 2010; Andrews-Hanna, 2012; Christoff et al.,
2016). A recent meta-analysis by the same group shows that
besides the default mode network, other distinct networks
are implicated in spontaneous thoughts (Fox et al., 2015).

Such a differential view on the default mode network and
its role in the emergence of spontaneous thoughts fits well
with our findings: a set of common microstate hubs and of
subsystems that include, but are not limited to, areas of
the default mode network, generating distinct spatiotempo-
ral activity patterns recorded with scalp EEG.

A final point worth discussing is whether our estimated mi-
crostate networks identify areas of functional activation or de-
activation. Alpha activity dominates the EEG when subjects
close their eyes and is commonly associated to functional de-
activation or ‘‘cortical idling’’ (Pfurtscheller et al., 1996). One
could therefore argue that the occurrence of a microstate (and
the activity in the corresponding brain areas) indicates cortical
deactivation rather than activation (Milz et al., 2016).

However, while such interpretation probably holds for sup-
pression of activity in areas not involved in stimulus process-
ing, there is ample evidence that alpha power is increased
during different cognitive task demands, questioning the idea
that alpha synchronization merely reflects reduced mental ac-
tivity (for a detailed discussion see Fink and Benedek
(2014). For example, in a combined EEG-fMRI study, Fink
et al. (2009) show that creative cognition tasks are associated
with frontal alpha synchronization as well as increase of the
BOLD response in frontal brain regions. Other studies also
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show alpha power increase during mental imagery and imagi-
nation tasks (Cooper et al., 2006; Stein and Sarnthein, 2000),
suggesting that the increase of alpha activity during resting
state actually reflects free-floating associations and mental im-
agery, a conscious cognitive activity that could be mainly re-
sponsible for generating the microstates that we observe in
our study.

Conclusions

Our study combines EEG resting-state topographical
analysis with a recently published EEG source localization
method for estimating neural networks based on temporal
pattern matching (Custo et al., 2014). We analyze a large
data set of high-density EEG and estimate a set of seven mi-
crostates that explain 84.8% of the data’s variance and con-
sistently present across subjects, diverging from the
conventional assumption that there are only four relevant
microstates. Comparing our topographic source analysis
using seven or four maps leads to the conclusion that the
best policy is to estimate each data set’s optimal number
of clusters, rather than using a fixed number. This is partic-
ularly critical when comparing different conditions or
groups, for example, patients versus controls, to avoid
matching or merging ‘‘similar’’ maps as if they represented
the same state.

The estimated sources generating the seven resting-state
topographies can be separated into two components: one
comprises several state-specific neural activation patterns
that are unique to each state (e.g., resting state map A is gen-
erated by brain regions mainly associated with the auditory-
language network, and resting state map B is associated with
visually related regions), whereas the other component com-
prises a single map of brain regions shared among micro-
state networks. These two components might reflect what
is proposed in the global workspace model of consciousness
(Dehaene and Changeux, 2011) that hypothesizes that the
brain fluctuates in two different levels of consciousness,
both when elicited by a stimulus and spontaneously during
rest: higher levels of consciousness (i.e., conscious access)
are achieved by information made globally available to mul-
tiple networks via brain regions with dense long-range axons,
while another level corresponds to state-specific neural acti-
vation patterns processed at a subliminal level.

Thanks to such new insights into rapidly fluctuating brain
resting states, further studies focusing on their temporal dy-
namics in the millisecond time range, their transition rules,
and their variability under different experimental and patho-
logical conditions are now within reach.
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