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Abstract

The process of converting raw RNA sequencing data to interpretable results can be circuitous and 

time consuming, requiring multiple steps. We present an RNA-seq mapping algorithm that 

streamlines this process. Our algorithm utilizes a hash table approach to leverage the availability 

and power of high memory machines. SNAPR, which can be run on a single library or thousands 

of libraries, can take compressed or uncompressed FASTQ and BAM files as inputs, and can 

output a sorted BAM file, individual read counts, gene fusions and identify exogenous RNA 

species in a single step. SNAPR also does native Phred score filtering of reads. SNAPR is also 

well suited for future sequencing platforms that generate longer reads. Using SNAPR, we show 

how we can analyze data from hundreds of TCGA samples in a matter of hours, while identifying 

gene fusions and viral events at the same time. With the references genome and transcriptome 

undergoing periodic updates, and the need for uniform parameters when integrating multiple data 

sets, there is great need for a streamlined process for RNA-seq analysis. We demonstrate how 

SNAPR does this efficiently and accurately, with the high-throughput capacity needed to do high-

volume analyses.

I. Introduction

RNA sequencing (RNA-seq) is the primary technology used to measure genome-wide gene 

expression and transcriptome variation in biological samples. As of 2015, the NCBI 

Sequence Read Archive contained over 3.5 petabases of sequencing data, with a projected 

doubling time of 22.3 months. The explosive growth of next-generation sequence data now 

exceeds the growth rate of storage capacity [1]. The complexity of the transcriptome 

presents particular challenges for RNA-seq alignment algorithms. Pseudogenes, paralogs 

with high sequence similarity, and low complexity/repetitive regions can contribute to 

misaligned reads. The GENCODE project estimates over 14,000 pseudogenes exist in the 

human genome [2]. Compounding the alignment challenge is the fact that new species of 

RNA continue to be discovered, including novel fusion genes and trans-splicing events. 

While DNA sequencing is more commonly used to identify genomic rearrangements, RNA-

seq used for this purpose can more easily identify functionally aberrant species with a role in 

pathology [3]. Researchers’ ability to process and analyze RNA-seq data depends upon 
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bioinformatics tools that are fast, accurate, and easy to use—especially when applied to 

large data sets or when additional analyses beyond standard mapping are required. Here we 

present a new RNA-seq alignment algorithm based on the DNA-focused Scalable 

Nucleotide Alignment Program (SNAP) [4]. We call this new alignment algorithm SNAPR 

(SNAP for RNA, pronounced “snapper”).

II. Methods

SNAPR categorizes each putative paired-end alignment based on the transcriptome 

annotation that is provided as an input. All valid alignments for each paired-end read are 

compared to the list of annotated transcripts. If both mates align within the boundaries of an 

annotated gene, that alignment is categorized as intra-gene. Putative alignments that are not 

intra-gene but occur on the same chromosome are intra-chromosomal. Finally, putative 

alignments that cross chromosome boundaries are categorized as inter-chromosomal. Each 

paired-end read can have valid alignments that occur in one or more of these categories. 

SNAPR prioritizes alignments in the following order: intra-gene, intra-chromosomal, inter-

chromosomal. For example, if a read generates an alignment that is categorized as intra-

gene, no alignments in any of the other categories are considered valid, even if those 

alignments contain fewer mismatches with the reference genome. This categorization is 

designed to leverage the likelihood of alignments occurring within annotated genes while 

biasing the algorithm against inter-chromosomal alignments. As a result, any intra- or inter-

chromosomal alignments that do pass through these filters are subsequently more likely to 

result from real biological events. A detailed description of the methods can be found at 

https://price.systemsbiology.net/SNAPR.

SNAPR is freely available via the Apache 2.0 license. System requirements for SNAPR 

include >40 GB of RAM memory for both the creation of indices and alignment. SNAPR 

was run on Amazon EC2 cr1.8xlarge instances. An Amazon AMI containing SNAPR is 

publically available and can also be found at the Price Lab website (above). It is 

recommended that SNAPR be run on a multi-core machine, preferably containing a solid-

state hard drive for faster index loading. Simulated RNA sequencing data was generated 

using Mason (https://www.seqan.de/projects/mason/) using the Venter genome [5]. SNAPR 

indices were generated using the GRCh37 genome assembly and the Ensembl v68 human 

genome annotation. All sequenced viral genomes (1376 genomes), all sequenced fungal 

genomes (35 genomes), and all sequenced bacterial genomes (2646 genomes) were 

downloaded from the NCBI FTP site (ftp.ncbi.nih.gov/genomes). A custom Python script 

was used to select one bacterial genome from each genus to be part of the contamination 

database, for a total of 1145 genomes. 312 RNA-seq samples of stomach adenocarcinoma, 

159 glioblastoma multiforme and 117 acute myeloid leukemia and 808 ovarian serous 

cystadenocarcinoma were identified and downloaded from the UCSC Cancer Genomics Hub 

(https://cghub.ucsc.edu).
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III. Results

A. Performance of SNAPR

In order to test performance and accuracy on the identification of genes from pseudogenes 

where ground truth is known, we simulated 2.5×106 paired-end reads of varying lengths 

derived from the published Venter genome [5] using Mason [6]. Each data set contained 

standard Illumina™ sequencing error rates as well as homozygous and heterozygous 

variants and indels present in the Venter genome. In the first dataset, 80% of the reads were 

generated from the Ensembl v68 transcriptome (e.g. crossing splice junctions) and 20% 

were generated directly from the genome. For the second dataset, 80% of the reads were 

generated from the transcriptome as before, but the remaining 20% were generated only 

from annotated pseudogenes. This dataset was used to estimate mapping and variant-calling 

accuracies in an exaggerated mapping challenge. We chose three of the most recently 

published and most used aligners with which to compare: Tophat2/Bowtie2 [7], STAR [8], 

and Subjunc [9]. The Genome Analysis Toolkit v2.5 [10] was used for variant calling in 

order to estimate read mapping accuracies; incorrectly mapped reads should generate 

spurious variants while missing real variants. The Receiver Operating Characteristic (ROC) 

curves for variant calling are shown in Figure 1A. SNAPR was the most accurate aligner on 

both datasets, most notably in the presence of excessive pseudogene reads (Figure 1B). 

SNAPR was also the fastest aligner when BAM conversion was taken into account: nearly 

twice as fast as STAR and 25× faster than Tophat2/Bowtie2 (Figure 1C).

We generated a third RNA-seq dataset with Mason that contained 2×106 paired-end reads 

with standard Illumina™ sequencing error rates, again using the Venter genome. This 

dataset was processed using all four aligners and gene read counts were generated. SNAPR 

and Subjunc are able to generate gene read counts internally, while read counts for STAR 

and Tophat2/Bowtie2 were generated using htseq-count. Computed gene read counts were 

compared to the exact gene read counts generated by Mason. The scatterplot comparisons 

are presented in Figure 2. Among the aligners tested, SNAPR had the best R2 value (0.985) 

and appeared to have the most even distribution of read count variation. STAR had the 

fewest instances where it under-estimated read counts, with an apparent bias in read count 

estimation towards higher read counts. Both Subjunc and TopHat/BowTie appeared to have 

a similar, though less pronounced bias. While gene length is not explicitly part of the metric, 

there appears to be some differences in the distribution of error related to gene counts for the 

different algorithms.

B. Features of SNAPR

SNAPR incorporates the annotation directly into the alignment process to improve 

alignment accuracy. Each mate (one for single-end, two for paired-end) is aligned to both the 

genome and the transcriptome independently, creating a set of unique putative alignment 

positions for mate(s) to both indices. The final alignment position and subsequent mapping 

score is determined based on several criteria (see methods). Aligning to both the 

transcriptome and the genome simultaneously serves a dual purpose: it ensures that all 

possible alignment positions for a mate are considered, and it allows paired end reads to 

cross transcriptome/genome boundaries. While an annotation provides critical prior 
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knowledge about the likelihood of alignment positions, gene boundaries are often truncated 

at the 5’ and 3’ ends. SNAPR can also align paired end reads for which one mate occurs in 

an intron and the other in an exon, a situation resulting from unannotated exons or 

sequenced pre-mRNA. The current version of SNAPR is designed for genomes with curated 

annotations, and does not attempt to find novel splice junctions. To maximize efficiency of 

disk usage, which is a critical issue in the analysis of growing amounts of RNA-seq data, 

SNAPR is capable of natively reading from and writing to BAM format without requiring 

any external software packages, as well as standard FASTQ and SAM formats. This can be 

of benefit for instances where the raw FASTQ files aren’t made available and for instances 

when one wishes to combine multiple data sets. SNAPR enables the mapping to be done 

under the same parameters under a single implementation. Sample quality is of paramount 

importance in RNA-seq analysis, including filtering of low-quality reads generated by the 

sequencer and identification of sample contaminants. SNAPR performs quality filtering of 

input reads automatically, with the default setting requiring >80% of the read to have a 

Phred score of 20 or better.

Sequenced samples may contain products of viral infections and/or bacterial or fungal 

species, either expected or not. SNAPR allows users the option of providing a secondary 

alignment database of their choosing to which unaligned reads are tested, automatically 

writing a list of all alternative alignments and corresponding read sequences. All analyses 

for this paper were performed using our‘contaminant database’ containing all sequenced 

viral genomes (1376), fungal genomes (35), and one genome from each sequenced bacterial 

genus (1145). This database, along with another database containing all sequenced human 

pathogens derived from PATRIC [11], is available from our download page. To demonstrate 

the utility of such a contaminant database we analyzed 312 RNA-seq samples of stomach 

adenocarcinoma, where the presence of Epstein-Barr Virus (EBV) has been previously 

reported [12]. We identified 70 samples with detectable (>10) and 24 samples with 

appreciable (>1000) numbers of reads mapping to the EBV type 1 genome. Of these, 17 

samples contained EBV type 1 as the strongest identifiable externally mapping target in the 

report. All of these 17 samples also contained detectable levels of EBV type 2. Additionally, 

41 samples contained detectable levels of cytomegalovirus (CMV), with one sample 

containing CMV as the strongest identifiable externally mapping target. The distribution of 

read counts for EBV is shown in Figure 1D. We note that among the 1295 glioblastoma 

multiforme (GBM), stomach adenocarcinoma (STAD), acute myeloid leukemia (LAML), 

and ovarian serous cystadenocarcinoma (OV) samples processed for this paper, only 

stomach adenocarcinoma exhibited any appreciable amounts of EBV, as expected. Also, 

SNAPR identified ten LAML samples with very high read counts mapping to genus 

Acinetobacter (~6×106 reads), species of which are commonly associated with hospital-

acquired infections in immunocompromised patients.

RNA-seq is commonly used for the analysis of differentially expressed genes. The most 

widely accepted method for estimating statistically significant variation in read counts is 

based on the negative binomial distribution. This method has been adopted by the R 

packages DESeq [13]and edgeR [14], among others. The process of generating read counts 

can add substantial processing time per sample. SNAPR automatically reports all read 

counts for immediate statistical analysis, with no running time penalty and no additional 
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software required. SNAPR also reports spliced read counts normalized by gene expression 

for all annotated splice junctions to enable alternative splicing detection.

For the identification of fusion genes or trans-splicing events, SNAPR makes use of both 

mate pair information and spliced reads to filter out false positives (Figure 3A). SNAPR 

automatically reports all putative fusion events in a sorted report as well as GTF format for 

easy visualization. All read sequences participating in putative fusions are also output 

automatically. A novel gene fusion was recently identified between the genes FGFR3 and 

TACC3 in approximately 3% of the studied glioblastoma multiforme (GBM) samples [15]. 

We applied SNAPR to the fusion samples (TCGA-27-1835,TCGA-76-4925) identified in 

Singh et al., and it reported the TACC3-FGFR3 fusion as the top intra-chromosomal fusion 

candidate for both samples, with over 20,000 evidentiary reads in sample TCGA-27-1835 

and nearly 600 evidentiary reads in sample TCGA-76-4925. We next applied SNAPR to a 

chronic myelogenous leukemia (CML) sample from dbGaP (SRR607562), identifying the 

canonical BCR-ABL1 fusion gene product as the top inter-chromosomal fusion event with 

nearly 100 evidentiary reads (Figure 3B). Recently Frattini et al. reported the landscape of 

gene fusions in 58 glioblastoma RNA-seq samples from TCGA [16]. We ran SNAPR on the 

same 58 samples, partially or completely identifying 93% of the fusions reported in Frattini 

et al. (Figure 3C).

In total, we have processed 312 stomach adenocarcinoma (STAD), 58 glioblastoma 

multiforme (GBM), 117 acute myeloid leukemia (LAML), and 808 ovarian serous 

cystadenocarcinoma (OV) samples, reading directly from BAM format, quality filtering all 

input reads, generating read counts for immediate statistical analysis, identifying putative 

fusion events and contaminants, and finally writing the new alignments directly back to 

BAM format. No step of this analysis required any external software package and was 

completed using a single command for each sample. As discussed in Frattini et al., we find 

evidence for fusions in GBM involving EGFR, LANCL2, and SEPT14. In addition to the 

viral and bacterial infections identified in STAD, SNAPR finds evidence for fusions with 

ERBB2 [17] and IGF2 [18], which are commonly amplified and overexpressed in gastric 

cancers. Few cancer types are more associated with translocations than leukemia, and 

SNAPR identifies the canonical fusions in the LAML samples: BCR-ABL1, CBFB-
MYH11, RUNX1-RUNX1T1, and PML-RARA. Finally, in OV samples SNAPR finds 

evidence for fusions involving IGF2 [19], H19 [19], GPX3 [20], MUC16 [21], and WNT7A 
[22].

IV. Conclusion

The promise of discovery through RNA sequencing is bottlenecked by our ability to analyze 

the data, and the rate of data generation continues to accelerate. Databases such as The 

Cancer Genome Atlas and the NCBI Sequence Read Archive are accumulating petabytes of 

data. SNAPR provides a fast, accurate, and integrated package that streamlines basic 

RNAseq alignment and analysis for large scale processing. SNAPR enables researchers to 

leverage hundreds to thousands of samples easily to accurately identify statistically rare 

patterns of gene expression or other transcriptomic perturbations, while also providing 
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automatic additional detection of contaminants and fusion events. The code and additional 

detailed documentation can be found at http://price.systemsbiology.net.
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Figure 1. 
(A) ROC curve for variant calling with GATK using 2.5×107 100bp paired-end reads 

generated by Mason with Illumina™ sequencing errors using the Venter genome. 80% of 

reads were generated from the Ensembl v68 annotation, while 20% were generated directly 

from the genome. (B) ROC curve for variant calling with GATK using 2.5×107 100bp 

paired-end reads generated by Mason with Illumina™ sequencing errors using the Venter 

genome. 80% of reads were generated from the Ensembl v68 annotation, while 20% were 

generated from annotated pseudogenes. (C) Running times for all four aligners on 2.5×107 

paired-reads of varying lengths (50, 75, 100, 125bp). All processing was performed on 16 

cores using an Amazon EC2 cr1.8xlarge instance. (D) Distribution of reads aligning to 

Epstein-Barr virus Type 1, Epstein-Barr virus Type 2, and cytomegalovirus genomes from 

312 processed TCGA stomach adenocarcinoma samples by SNAPR. Read counts were 

automatically generated using the contamination database functionality implemented in 

SNAPR. Samples with zero counts are not shown. Note the x-axis is on a logarithmic scale.
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Figure 2. 
Aligned gene read counts for 2×107 paired-end reads generated by Mason with Illumina™ 

sequencing errors using the Venter genome.100% of reads were generated from the Ensembl 

v68 annotation, and aligned using each of the four tested aligners. ‘Correct’ read counts (x-

axis)for each gene were generated from the Mason SAM file. (A) SNAPR automatically 

generates gene read counts. (B) Read counts for STAR alignments were generated using 

htseq-count. (C) Read counts for Subjunc alignments were generated using the 

featureCounts functionality. (D) Read counts for Tophat2/Bowtie2 alignments were 

generated using htseq-count.
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Figure 3. 
(A) SNAPR only considers fusion events that are supported by spanning reads as well as 

spliced reads. (B) SNAPR finds the FGFR3-TACC3 fusion event in GBM sample 

TCGA-27-1835 with thousands of evidentiary reads, and the BCR-ABL1 fusion in the CML 

sample SRR607562 with nearly 100 evidentiary reads.
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