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Abstract

Sepsis, a dysregulated immune-mediated host response to infection, is the leading cause of 

morbidity and mortality in critically ill patients. Indices of heart rate variability and complexity 

(such as entropy) have been proposed as surrogate markers of neuro-immune system dysregulation 

with diseases such as sepsis. However, these indices only provide an average, one dimensional 

description of complex neuro-physiological interactions. We propose a novel multiscale network 

construction and analysis method for multivariate physiological time series, and demonstrate its 

utility for early prediction of sepsis. We show that features derived from a multiscale heart rate and 

blood pressure time series network provide approximately 20% improvement in the area under the 

receiver operating characteristic (AUROC) for four hours ahead prediction of sepsis over 

traditional indices of heart rate entropy (0.78 versus 0.66). Our results indicate that this 

improvement is attributable to both the improved network construction method proposed here, as 

well as the information embedded in the higher order interaction of heart rate and blood pressure 

time series dynamics. Our final model, which included the most commonly available clinical 

measurements in patients’ Electronic Medical Records, multiscale entropy features as well as the 

proposed network-based features, achieved an AUROC of 0.80. Prediction of the onset of sepsis 

prior to clinical recognition will allow for meaningful earlier interventions (e.g., antibiotic and 

fluid administration), which have the potential to decrease sepsis-related morbidity, mortality and 

healthcare costs.

1. Introduction

Sepsis is a significant healthcare burden with high morbidity and mortality among Intensive 

Care Unit (ICU) patients. Prompt recognition and treatment are central to optimizing 

outcomes, yet antecedent signs and symptoms of sepsis can be subtle and unrecognized by 

clinicians despite continuous patient monitoring.

In recent years, Machine learning-based predictive algorithms for early prediction of septic 

shock have been proposed (Henry et al. 2015; Ghosh et al. 2017) with AUROC values in the 
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range of 0.80–0.85. However, hemodynamic management through fluid and pressors 

administration are the only available intervention in septic patients at risk for shock, with a 

recent study suggesting that such interventions may not be associated with lower in-hospital 

mortality (Seymour et al. 2017).

Using a machine learning-based algorithm to predict sepsis with enough lead-time could 

prevent its occurrence in those deemed high risk if antibiotics are initiated before sepsis 

onset. Desautels and colleagues used a proprietary machine learning algorithm with 

commonly available clinical measurements in an Electronic Medical Record (EMR) to 

predict sepsis four hours before it occurred (Desautels et al. 2016), however, prediction of 

sepsis has proved to be difficult (AUROC 0.74). This may be partially due to the fact that 

early prediction of sepsis requires up-to-date clinical measurements, which are more likely 

to be available if there is already a clinical suspicion of infection (as in the case of septic 

shock prediction). Even when up-to-date clinical measurements are available, such data 

tends to have a low temporal resolution (once every 30 minutes or lower) and is subjected to 

recall and information bias. For instance, blood pressure documentation by bedside 

clinicians can be biased towards normal when compared to corresponding blood pressure 

waveforms (Hug et al. 2011), in part due to back-documentation of past data. However, 

incorporation of continuous high-resolution data (such as second-by-second vital signs time 

series from the bedside monitors) has the potential to mitigate the aforementioned problems 

and provide a more timely prediction of sepsis.

Sepsis is known as a dysregulated immune-mediated host response to infection. Alteration in 

heart rate (HR) and blood pressure (BP) variability and coupling prior to onset of sepsis has 

been reported in the literature (Buchman 2004, Moorman et al. 2011), and potential links to 

neuro-immune system interactions have been established. According to the anti-

inflammatory reflex model (Huston et al. 2011), pathogen-induced inflammation increases 

the activity of vagus nerve which controls the production of proinflammatory cytokines and 

prevents tissue damage. Although, the relationship amongst inflammation, vagus nerve 

activity and heart rate variability (HRV) and Baroreflex control of BP and HR is complex, 

this model suggests that monitoring indices of heart rate variability and complexity (as 

markers of vagus nerve activity) may provide useful surrogate markers of the inflammatory 

reflexes in health and disease.

Entropy is a measure of unpredictability of the state of a system, or equivalently, of its 

average information content. Information can be thought of as a measure of surprise and 

entropy can be thought of as a measure of average surprise. In recent years, one of the novel 

advances in time series representation and quantification has been the mapping of time series 

to network, based on ideas such as transition probabilities (Campanharo et al. 2011, Nicolis 

et al. 2005), visibility (Lacasa et al. 2015, Luque et al. 2009), and correlations (Steinhauser 

et al. 2008, Yang et al. 2008). Each of these studies demonstrated that many characteristics 

of time series can be extracted from the properties of the corresponding network. Moreover, 

network-based representations are capable of extracting more nuanced characteristics of 

time series.
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In particular, the concept of modularity has been used to characterize time series (Sun et al. 

2007). By modularity, we mean a set of densely connected nodes within a network. Other 

authors have used the terms “cluster” or “communities” (Girvan et al. 2002, Duch et al. 

2005, Fortunato 2010) to denote such constellation of nodes. Networks with high modularity 

have dense connections between the nodes within modules, but sparse connections between 

nodes in different modules. An interpretation of what these modules represent is in terms of 

“set points” of a system. Classical physiology is grounded on the principle of homeostasis in 

which regulatory mechanisms act to maintain a steady state, i.e., “set point”. However, as 

argued by Ary Goldberger et al. in his editorial (Goldberger 2001), many physiological 

systems tend to operate out of equilibrium and in locally stable regimes (several set points 

versus a single set point), hence the observation of modularity in the resulting networks of 

joint HR and BP time series.

Therefore an aim of this study was to investigate the connection between HR and BP time 

series structure, as captured through quantification of the structure of their corresponding 

network representation, and early signs of sepsis. However, physiological time series can 

often exhibit complex patterns of variability over multiple time scales (Ivanov et al. 1999, 

Costa et al. 2002). For instance, time series of BP can exhibit oscillations on the order of 

seconds (e.g., due to the variations in sympathovagal balance), to minutes (e.g., as a 

consequence of fever, blood loss, or behavioral factors), to hours (e.g., due to humoral 

variations, sleep-wake cycle, or circadian effects) (Mancia 2012; Parati et al. 2015). It should 

also be noted that interactions (or coupling) between physiological systems are often caused 

by distinct physiological mechanisms that operate across different time scales (Bartsch et al. 

2014). We therefore investigate the multiscale structure of vital signs network and their 

utility for early prediction of sepsis.

2. Materials and Methods

This section describes the dataset used, as well as the proposed algorithm for prediction of 

sepsis, and the evaluation methods. All data processing, creation of networks, feature 

extraction, and classifier training and testing were performed using Matlab R2016b 

(MATLAB 2016).

2.1. Dataset

Heart rate (HR) and mean arterial blood pressure (MAP) time series at 2 seconds resolution 

were collected from bedside monitors in an Emory affiliated ICU, using the BedMaster 

system (Excel Medical Electronics, Jupiter FL, USA); a third-party software connected to 

the hospitals General Electric (GE) monitors for the purpose of electronic data extraction 

and storage of high resolution waveforms. All adult ICU units were included in this study, 

including Medical and Surgical, Cardiac Care, and Neuro-intensive care units. The bedside 

monitor data was then matched and time synchronized to each patients EMR data. A total of 

100 patients (22%) met the definition of sepsis by Seymour et al. 2016 at some time point 

during their ICU stay. Specifically, all episodes of suspected infection (tsuspicion) were 

identified as the earlier timestamp of antibiotics and blood cultures within a specific time 

span; if the antibiotic was given first, the culture sampling must have been obtained within 
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24 hours. If the culture sampling was first, the antibiotic must have been ordered within 72 

hours. The onset time of sepsis (tsepsis) was then defined as an episode of suspected infection 

with a two or more points change in the Sequential Organ Failure Assessment (SOFA) score 

from up to 48 hours before to up to 24 hours after the tsuspicion. The average length of 

hospital stay (LOS) among the septic patients was 137.6 [68.2–295.7] hours, and the 

percentages of in-hospital mortality and in-patient hospice were 15.2% and 13.5%, 

respectively. The septic patients exhibited a higher average SOFA score compared to non-

septic patients (4.8 [3.1–6.8] versus 1.6 [0.6–3.4]).

2.2. Model

Our goal is to define a set of physiological states, that are represented by the nodes of a 

network. Transition among these physiological states are captured by the network edges, and 

therefore the network structure would capture the state trajectory through time.

Dynamic Bayesian networks have been used to model the trajectory of the state of 

physiological systems (Lehman et al. 2015), where a system’s state refers to a set of 

(observed or latent) attributes of the system that summarize all one needs to know about the 

system to predict its evolution through time (Buchman 1996). Parametric approaches such as 

the switching dynamical systems (Quinn et al. 2009) assume the states transition dynamics 

to follow a Markov Chain. The approach taken in this work is non-parametric and extracts a 

set of system states via adaptive partitioning of the state-space. The partitions define the 

nodes in the corresponding network representation of the time series, and the transition 

probabilities are captured by the edges.

2.2.1. Defining the state-space—Time-lagged embedding provides information on the 

underlying dynamical system without having direct access to all the system variables 

(Takens et al. 1981). As a first step to defining the state-space we applied timed-lagged 

embedding (of order l) to each time series dimensions. Next, the embedded time series 

samples were replaced by their rank orders (via rank order transformation) to achieve 

robustness to outliers. This step exploited the fact that mutual information between a set of 

random variables is invariant to invertible transformations such as the rank order 

transformation. Next, we partitioned the resulting state-space using an adaptive partitioning 

algorithm as described next.

2.2.2. The Darbellay-Vajda (DV) partitioning algorithm—As shown in figure 1 the 

DV partitioning algorithm allows us to partition the state-space associated with a 

multivariate time series into varying size bins (or hypercubes) for the purpose of density 

estimation (Hudson 2006). The DV partitioning was previously shown to be effective in 

calculating transfer entropy (Lee et al. 2012; Nemati et al. 2013), a statistical measure of the 

amount of directed entropy transfer between two random processes, and it was shown to 

have lower computational cost than the competing methods. Similar to the method of 

variable-bandwidth kernel density estimation (Terrell et al. 1992), the DV partitioning 

algorithm automatically adjusts the bin (partition) size, depending on the density and local 

distribution of the data points, but requires no a priori assumption on the Kernel bandwidth 

and is computationally more efficient to evaluate (Lee et al. 2012). This is in contrast to the 
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equipartitioning scheme (aka, a multidimensional histogram) where the entire state-space is 

split into equal partitions, which is an inefficient method to represent non-uniformly 

distributed data (see figure 2).

The DV partitioning algorithm involves recursively dividing the state-space into more 

refined partitions, based on chi-squared test statistic that checks whether the data in the 

proposed partitioned cells are uniformly distributed. Let us consider a bivariate (2-

dimensional) time series, X = [x1, x2, …, xT] and Y = [y1, y2, …, yT] where T is the length 

of the time series. First, a non-linear transformation is applied to X and Y, wherein the data 

in each time series are replaced by their rank orders (also called rank-order transformation). 

Let the rank order transformed time series be denoted by U and V respectively. We perform 

partitioning in the UV space as follows:

i. At every iteration, a bin (parent cell) is partitioned into smaller blocks (child 

cells) and we use the chi-squared test of independence to decide on the need for 

partitioning to child cells or not. The null hypothesis for the chi-squared test is 

that the sample distribution in the parent cell is uniform.

ii. The chi-squared test statistic  is given by

(1)

where, M is the total number of child cells for a parent cell, and Ni (i = 1, ….N) 

are the sample numbers.

iii. For a 5% significance level with 3 degrees of freedom, if  is greater than 

(3), then the distribution of data is not uniform and partitioning is continued. If 

not, the partitioning is stopped at that level. The level of statistical significance is 

a parameter that can be tuned.

iv. At first, the observation space is partitioned at the medians of U, V margins to 

generate 4 child cells. And the Chi-square test of independence is performed, if 

partitioning condition holds, the child cells are split into further smaller blocks 

(partitioned at the medians of their respective margins), and this continues 

recursively until the Chi-square test statistic is no more satisfied across all cells.

The output of the partitioning algorithm is thus a list of partitions P, with each partition 

defined by a lower and upper bound in the observation space. An illustration of the DV 

partitioning algorithm for bivariate data is shown in figure 2 with the scatter plot of the data 

and the corresponding partitions obtained. It should be noted that the aforementioned 

procedure can be easily extended to any arbitrary N dimensional observation space.

2.2.3. Construction of network from partitions—Here we describe the process of 

construction of a network from a multivariate time series X. An example of a multivariate 

time series would be the HR and MAP time series recorded from a single subject. Given a 
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list of partitions P, a map M: T ⇒ G can be defined from the time domain T to the network 

domain G. More formally, let us define a map M from time domain X ∈ T to a network g ∈ 
G, where X = {X1, X2, …, Xk}, k is the total number of time series recorded for each 

subject (in the above example, since HR and MAP are recorded for every subject, k = 2), and 

Xi ∈ ℝL, with L being the length of the time series, and g = {S, A} consisting of a set of 

nodes S and adjacency matrix A. The total number of nodes N correspond to the total 

number of partitions obtained from the DV partitioning algorithm. Therefore each partition 

pi (i = 1, …N) is assigned to a node ni ∈ N in the graph g. Every multidimensional data point 

in X is assigned to one of the partitions. The adjacency matrix A is a N×N matrix where aij 

corresponds to the transition from node ni to node nj. Two nodes ni and nj are connected in 

the network with a weight aij, with aij representing the total number of transitions from node 

ni to nj. Each partition pi can be thought of as a dynamical state in a physiological system 

and the aij of the adjacency matrix represent the probability of transition between the 

dynamical states of the system. In the above example, we would thus construct one network 

from the bivariate time series (HR and MAP time series) recorded from the subject.

2.2.4. Multiscale Network representation—Interactions in biological systems manifest 

on multiple time scales (Bartsch et al. 2014), and the interactions may change in different 

ways at these different time scales. It may therefore be important to capture this multiscale 

nature of the interactions to help differentiate between healthy and unhealthy individuals. 

For a one dimensional time series [x1, x2, …, xN], a coarse grained time series {y(τ)}, 

corresponding to the scale factor τ was constructed as follows: First, the original times series 

was divided into non-overlapping windows of length τ; second, the data points inside each 

window were averaged. In our experiments, we coarse grained both HR and MAP according 

to the scale factor τ. Thus, for every scale factor τi (i = 1, …M), where M is the total number 

of scale factors, a network Gi (i = 1, …M) was constructed. Figure 3 provides a visualization 

of the networks constructed from bivariate time series (HR and MAP) of a control and a pre-

septic patient at different time scales.

2.2.5. Network attributes for classification—In our proposed algorithm, for the 

network that we obtain as described in the previous sections, we compute many topological 

attributes and use the derived features for classification. The following network attributes 

were computed for every network in the dataset: number of nodes (total number of nodes in 

the network), number of edges (total number of edges in the network), Link density 
(defined as the total number of edges divided by the maximum possible edges in the 

network), average degree (the average value of the degree of all nodes in the network, 

where the degree of a node is defined as the total number of its neighboring edges), number 
of loops (the total number of independent loops in the network, also know as the 

“cyclomatic number” or the number of edges that need to be removed so that the network 

cannot have cycles), Loop3 (the total number of loops of size 3 in the network), Loop4 (the 

total number of loops of size 4 in the network), average clustering coefficient (the 

clustering coefficient c(u) for node u can be defined as the ratio of the number of actual 

edges between the neighbors of u to the number of possible edges between them, and the 

average clustering coefficient C(G) of a network is the average of c(u) taken over all the 

nodes in the network), Pearson coefficient (the pearson correlation coefficient for a degree 
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sequence, also known as the assortativity coefficient (Newman 2002)), Algebraic 
connectivity (the second smallest Eigen value of the Laplacian matrix of a network, where 

the Laplacian matrix of a network is the difference between the sum of degrees of the 

diagonal elements in adjacency matrix and the adjacency matrix), Closeness (the closeness 

centrality, cc(u) for node u is the inverse of sum of distance from node u to all other nodes in 

the network, where the closeness centrality of a graph is the average mean of the above is the 

average of cc(u) taken over all the nodes in the network, Average eccentricity (eccentricity 

of a node u is defined as e(u) = max {d(u, v): v ∈ V}, where the distance d(u, v) is the length 

of the shortest path from u to v, and V is the set of all nodes. The average effective 

eccentricity is the average of effective eccentricities over all nodes in the network), 

Maximum effective eccentricity (Also known as the effective diameter, is defined as the 

maximum value of effective eccentricity over all nodes in the graph), Spectral radius 
(defined as the largest magnitude eigenvalue of the adjacency matrix of the network), Trace 
(sum of the eigenvalues of the adjacency matrix, i.e., Σλ, and Energy (squared sum of the 

eigenvalues of the adjacency matrix A. More formally, the energy of a network G is: 

).

2.2.6. Entropy and other EMR features—For every subject, their socio-demographics 

features (Age, Gender, Weight, Race) were collected. We also included features that were 

commonly recorded by the bedside nurses including, Mean Arterial Pressure (MAP), Heart 

Rate (HR), Peripheral capillary Oxygen Saturation (SpO2), Systolic Blood Pressure (SBP), 

Diastolic Blood Pressure (DBP), Respiration Rate (Resp), Glasgow Coma Score (GCS), and 

Temperature (Temp). Each of the above mentioned features were quantized into 8 levels, and 

each level was encoded into dummy binary representations. And these discretized 

representations were used in the classification model. We also extracted a few features that 

capture history, comorbidity, and the clinical context of the patient, including Charlson 

Comorbidity Index, Mechanical Ventilation, Unit Information (surgical, cardiac care, or 

neuro-intensive care), as well as Surgical Speciality (cardiovascular, neuro, ortho-spine, 

oncology, urology, etc) and Wound Type (clean, contaminated, dirty, or infected) if the 

patient had a surgery in past 12 hours.

We also calculated the following features from the HR and MAP time series (2 second 

resolution) derived from the bedside monitors proprietary software from the ECG and BP 

waveforms: standard Deviation of HR (HRSTD), Standard Deviation of MAP (MAPSTD), 

Multiscale Entropy (Costa et al. 2002) of (60/HR or RR intervals) and MAP (Over 17 

Scales; RRMSE, and MAPMSE respectively)

2.3. Feature selection and classification

For every subject in the dataset, networks were constructed for time scales 1 through 10. A 

total of 16 network attributes were extracted from every constructed network. It is to be 

noted that the HR and MAP were each processed with a lag of order l. In addition to the 

network attributes, the Entropy and EMR features as described in Section 2.2.6 were 

extracted. All the features were then used to train a Support Vector Machine (SVM) 

classifier to predict onset of sepsis four hours ahead of time, based on the data from 

preceding six hours. The output of the SVM was the probability of membership in the Sepsis 
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class. Hyper-parameters of the model including the time scale factors, and lag order l were 

optimized using Bayesian Optimization technique (Ghassemi et al. 2014).

For all continuous variables, we have reported the medians with Inter-Quartile range (IQR), 

and utilized a two-sided Wilcoxon ranksum test when comparing the septic and control 

populations. For binary features, we have reported the percentages, and utlized a two-sided 

Chi-square test to assess differences in proportions between the septic and control 

populations. To assess the performance of the proposed algorithm on out-of-sample data, we 

performed a 10 fold cross validation study. The features in training set were transformed to 

have Gaussian distributions using either the identity, square root or logarithmic 

transformations. The transformation which provided the lowest k-statistic using the 

Lilliefors test was used on both training and test sets. The transformed data (both training 

and test data) was then normalized by subtracting the mean computed from the training set 

and dividing by the standard deviation computed from the training set. Feature 

transformation, training, and classifier evaluation was performed separately for all the ten 

folds. Area Under the Receiver Operating Characteristic (AUROC) curve, accuracy, and 

specificity were calculated for training and test sets for all the folds. The sensitivity level 

was fixed at 0.85. We combined all the predictions (probability of being septic) across all the 

10 folds to report a single pooled AUROC (Airola et al. 2009).

3. Results

A total of 250 subjects were considered for this study. The median [IQR] age for the septic 

and control subjects was 63 [47.5 72.5] and 59.5 [46.0 68.0] respectively. The patient 

characteristics of the entire dataset have been tabulated in table 1. It can be observed that the 

onset of sepsis is associated with a drop in MAP as well as SBP, DBP, and a significant 

increase in HR (92.5 vs. 84.8) and a significant decrease GCS (9.7 vs. 14.5), reflecting a 

moderate loss of consciousness or alertness.

3.1. Construction of network based on HR and MAP

The most commonly selected scales and embedding dimension by the Bayesian 

Optimization were scales 2, 3, 5, 6, 7, 9, and 10, lag order of 3. We therefore fixed these 

parameters across all experiments and model comparisons. We employed feature selection to 

find a minimum of set of relevant features. The most commonly selected features across all 

scales included the average clustering coefficient, pearson correlation coefficient, spectral 

radius, energy of graph, Trace, and number of loops of size 4.

In the following experiments we used the graph attributes alone as features for the classifier. 

First, we constructed multiscale networks from HR alone, and the pooled testing AUROC 

was 0.61. Next, we constructed multiscale networks from MAP alone, and the pooled testing 

AUROC was 0.61. By combining HR and MAP, and constructing multiscale networks 

achieved a pooled testing AUROC of 0.78.

3.2. Classifier trained on combination of Network, entropy and EMR features

Seven separate models were constructed, based on, 1) multiscale entropy (MSE) features 

calculated from the HR and MAP time series, 2) EMR features including patient 
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demographics, and other features described in Section 2.2.6, 3) features extracted from 

Multiscale Network Representation (MSNR), 4) combining the EMR features and Entropy 

features (MSE + EMR), 5) combining MSNR and EMR features, 6) combining MSNR and 

MSE features, and 7) combining the EMR, MSNR and MSE features. The performance of 

each of the above models have been tabulated in table 2. The model based on MSNR 
features alone achieved a pooled testing AUROC of 0.78, with a corresponding sensitivity of 

0.85 and specificity of 0.56. Combining the MSE features and MSNR features did not result 

in any improvement of AUROC (statistically insignificant). Combining EMR features and 

the MSNR features resulted in an improvement in AUC from 0.78 to 0.79 (statistically 

significant). For the model corresponding to MSNR + MSE + EMR features, the pooled 

AUROC on test set was 0.80 (statistically significant), with a specificity of 0.57 at 0.85 

sensitivity level. The Receiver Operating Characteristic (ROC) curves for the above models 

have been plotted in figure 4.

4. Discussion

We have shown that features derived from a multiscale HR and MAP time series network 

provide approximately 20% improvement in the area under the receiver operating 

characteristic (AUROC) for four hours ahead prediction of sepsis over traditional indices of 

heart rate entropy. This improvement is attributable to the information embedded in the 

higher order interaction of HR and MAP time series, as well as the proposed novel approach 

to network construction that utilizes adaptive partitioning of the state-space to define a set of 

discrete states. This discretization method naturally trades off uncertainty in defining an 

event (a unique state) for a more accurate estimation of the probability of the event. The 

resulting algorithm is quick to implement and readily extensible to multiscale analysis of the 

time series networks. Our final model, which includes the most commonly available clinical 

measurements in patients electronic medical record (EMR), multiscale entropy features as 

well as the proposed network-based features, achieved an AUROC of 0.80 on the testing set.

The proposed network construction technique takes advantage of the fact that the mutual 

information between a set of random variables is invariant to invertible transformations such 

as the rank order transformation (replacing the data by their ranks). The rank order 

transformation makes the proposed technique robust to time series outliers samples with 

high amplitudes. Moreover, time-lagged embedding provides information on the underlying 

dynamical system without having direct access to all the system variables (Takens et al. 

1981). By applying the DV partitioning algorithm on the space of time-lagged embedded 

HR and MAP time series we arrive at states that capture the nonlinear dynamics of HR and 

MAP. Similar to the method of variable-bandwidth kernel density estimation (Terrell et al. 

1992), the DV partitioning algorithm automatically adjusts the bin size (hypercubes), 

depending on the density and local distribution of the data points, but requires no a priori 
assumption on the Kernel bandwidth and is computationally more efficient to evaluate (Lee 

et al. 2012).

Some of the most important features including the average clustering coefficient are 

reflective of modularity of the network; networks with high modularity have dense 

connections between the nodes within modules but sparse connections between nodes in 
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different modules. In graph theory, a clustering coefficient is a measure of the degree to 

which nodes in a graph tend to cluster together. Further study is needed to assess the 

correlation between the network features considered in this work and other commonly used 

predictive features within the literature. However, we hypothesize that the proposed 

framework provides a more generalizable set of features that are highly descriptive of the 

break down in autoregulatory mechanisms, and predictive of the eventual physiological 

decompensations, as in the case of sepsis. Notably, the multiscale nature of the proposed 

features provides robustness to the varying durations and time-scales of physiological 

deterioration in critically care patients.

Many methods have been proposed in the literature to study human physiology as a complex 

network of interactions among body organs and processes. Much of the effort have been 

concentrated on identification and quantification of the interactions between these 

physiological processes (Ivanov et al. 2014). Bashan et al. (Bashan et al. 2012) proposed the 

concept of time delay stability (TDS) to quantify the dynamic interactions among 

physiological processes, such as sleep and cardio-respiratory coupling. Building upon the 

concept of TDS, interactions across time scales and frequency bands have been explored to 

reveal dynamic interactions across body organs (Bartsch et al. 2015, Liu et al. 2015, Lin et 

al. 2016). Utilizing the concept of “information dynamics”, entropy-based approaches have 

been proposed to quantify the information transfer between physiological processes (Faes et 

al. 2014, Lee et al. 2012). Our proposed MSNR approach complements other pioneering 

works in “Network Physiology“ by introducing a non-parametric approach to partitioning 

the state-space, and taking advantage of network analysis to quantify the non-linear 

interactions among multiple physiological time series.

Clinical decision support tools can help identify those at the highest risk for future sepsis. 

Although, the existing works on utilizing EMR and laboratory data for prediction of sepsis 

seem promising (Lukaszewski et al. 2008; Wang et al. 2010; Desautels et al. 2016), they are 

limited by low-frequency, and often inconsistent data collected for purposes other than 

timely and accurate representation of patients’ physiology. Highly predictive features 

extracted directly extracted from the high-resolution vital signs time series can improve 

sepsis prediction over low-resolution clinical data in the ICU patients, and a high-

performance prediction model can be derived from a combination of EMR and high-

frequency physiologic data. A real-time system capable of early prediction of sepsis, 

followed by appropriate antibiotics therapy, will have a significant impact on the overall 

mortality and cost burden of this deadly disease (Seymour et al. 2017).
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Figure 1. 
Schematic diagram of the proposed algorithm. The DV partitions obtained from the space of 

time-lagged HR and MAP time series are transformed to a network g - which consists of a 

set of nodes and an Adjacency matrix. Every time scale will have a corresponding network. 

Various topological attributes and features derived from the constructed networks are used as 

inputs to the SVM classifier. In addition to the network attributes, EMR features are also fed 

into the SVM classifier
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Figure 2. 
A two-dimensional visualization of DV partitioning. The observation space consists of 1,000 

data points sampled from a bivariate Gaussian distribution with σxy = −0.9, , and . 

The figure shows the observation space after ordinal sampling. It can be observed that 

densely populated regions in the space have smaller partitions, in comparison to fewer 

partitions created in sparser areas.
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Figure 3. 
Examples of networks constructed from bivariate time series (HR and MAP) of a control 

(left panel) and a pre-septic (right panel) patient at different time scales. Within each of the 

networks, the arrows represent the transition from one node to another.
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Figure 4. 
ROC curves for models based on combinations of network, entropy and EMR features. For 

the model corresponding to MSNR + MSE + EMR features, the AUROC on test set was 

0.80, with a specificity of 0.57 at 0.85 sensitivity level. Notably, MSNR features alone 

achieved an AUC of 0.78, with the corresponding sensitivity (0.85) and specificity (0.56) 

marker on the plot
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Table 1

Patient characteristics in the dataset

Control Septic p-value

N 100 150 –

Age 59.5 [46.0 68.0] 63.0 [47.5 72.5] 0.15

Male(%) 56% 48% 0.21

MAP 81.7 [75.0 90.1] 78.5 [70.3 91.3] 0.22

HR 84.8 [73.2 97.6] 92.5 [75.1 110.0] <0.01

SpO2 97.6 [96.3 99.3] 97.9 [95.1 99.5] 0.32

SBP 126.0 [111.7 143.7] 121.2 [103.3 143.3] 0.20

DBP 60.0 [55.0 66.7] 58.3 [52.5 67.2] 0.25

Respiration Rate 16.8 [14.2 18.7] 16.2 [2.25 20.4] 0.3

GCS 14.5 [10.0 15.0] 9.7 [6.0 14.3] <0.01
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Table 2

Performance summary of classifier trained on combinations of network, entropy and EMR features. Values 

shown are pooled AUROCs

Model Training AUROC Testing AUROC

MSE 0.72 0.66

EMR 0.79 0.70

MSNR (MAP + HR) 0.85 0.78

MSE + EMR 0.83 0.73

MSNR + EMR 0.89 0.79

MSNR + MSE 0.85 0.75

MSNR + MSE + EMR 0.89 0.80
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