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Abstract Physical and chemical factors influencing the anti-

leukemic L-asparaginase enzyme production by Bacillus

subtilis VUVD001 were optimized using multi-stage opti-

mization on the basis of preliminary experimental outcomes

obtained by conventional one-factor-at-a-time approachusing

shake flasks. Process variables namely carbon, nitrogen

sources, pH and temperature were taken into consideration

during response surface methodology (RSM) optimization.

The finest enzyme activity of 0.51 IUml-1 obtained byOFAT

method was enhanced by 3.2 folds using RSM optimization.

Artificial neural network (ANN) modelling and genetic

algorithm (GA) based optimizations were further carried out

to improve the enzyme drug yield. Resultswere also validated

byconducting experiments at optimumconditions determined

by RSM and GA optimization methods. The novel bacterium

yielded in 2.88 IUml-1 of enzyme activity at optimum pro-

cess variables determined by GA optimization, i.e., 0.5%

glucose, 8.0% beef extract, 8.3 pH and 49.9 �C temperature.

The study explored the optimized culture conditions for better

yielding of anti-leukemic enzyme drug from a new bacterial

source namely Bacillus subtilis VUVD001.

Keywords Artificial neural networks � Bioprocess
optimization � Genetic algorithm � L-Asparaginase �
Statistical optimization methods

Introduction

For the therapy of deadly diseases like acute myelocytic leu-

kaemia, acute lymphoblastic leukaemia, acute myelomono-

cytic leukaemia, lymphosarcoma treatment, reticulosarcoma,

chronic lymphocytic leukaemia,melanoarcoma, andHodgkin

disease one of the potent chemotherapeutic drugs is L-as-

paraginase (Verma et al. 2007; Stecher et al. 1999). Due to its

antioxidant property (Maysa et al. 2010) and its ability to

reduce up to 90% of food acrylamide levels it also has its

application in food industry. A hypersensitivity reaction

caused by this enzyme restricts its continuous use (Reynolds

and Taylor 1993) and it also results in neutralization of the

drug effect or an anaphylactic shock because of development

of anti-asparaginase antibody. Recently, to conquer the

drawbacks above said renewed L-asparaginases from other

wide-ranging sources and regulated preparations have been

accepted. Escherichia coli and Erwinia chrysanthemi L-as-

paraginase enzymes have been highly efficient in lym-

phoblastic leukaemia therapy, acute leukaemia and

lymphosarcoma (Graham 2003) for long days with excep-

tional remedial response (Duval et al. 2002). This resulted to

test new microbial sources to ascertain strains proficient of

manufacturing novel enzyme for ALL therapy with more

yield. The L-asparaginase associated toxicity is partially

traceable to the same enzyme’s glutaminase activity (Howard

and Carpenter 1972). L-glutamine is essential not only in the

function of L-asparagine by but also in numerous other

metabolic pathways (Prager and Bachynsky 1968). In recent
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time major research is concerted on microbial L-asparaginase

production which is glutaminase free. Some attempts were

also made to reveal the key residues of enzyme that are

involved in the binding of L-asparagine as well as L-glutamine

substrates using different in silico approaches like homology

modelling of enzyme drug structure, molecular docking

studies with enzyme substrates and molecular dynamic sim-

ulation studies, etc., (Erva et al. 2013, 2015; Rajulapati and

Erva 2015; Reddy et al. 2015, 2016). Though quite a good

number of microbial L-asparaginases are intracellular a few

are extracellular which are advantageous. The fermentative

synthesis of L-asparaginase is highly influenced by both cul-

ture conditions and composition of the medium. With the

minimal cost, raise in productivity of anticancer enzyme is

possible either by optimization of fermentation conditions or

by the strain improvement. From the past few decades, sta-

tistical experimental designs are in use for optimization pur-

pose inmany bioprocesseswhich can be imposed on a number

of stages. The competent and strategicRSMexperimental tool

can be applied to establish optimal process conditions inmulti

variable biotechnology practices. Sometimes applicability of

RSM to all modelling and optimization studies is difficult for

which alternatives were ANN modelling and GA optimiza-

tion. ANN mimics the brain which takes whole ‘black box’

methodology for data modelling. GAs are optimization

algorithmswhich are unorthodox search based and help in the

direct search for an elucidation to a problem by imitating part

of the process of natural evolution. Through a given set of

alternatives, GA performs direct random searches to find the

finest choicewith regard to the specified criterion for goodness

of fit, which is expressed as a fitness function. The use of

ANNs and GAs is well established in environmental

biotechnology and biochemical engineering, for modelling of

analytical biochemistry signals, chromatographic spectral

pattern recognition, cancer research, genomic and proteomic

sequence functional analyses, analysis of alterations in soil

microbial community composition, etc., (Almeida 2002).

Unavailability of scientific literature on modelling and sta-

tistical optimization studies using Bacillus subtilis VUVD001

for L-asparaginase production gave the scope to do the present

work where process variables are optimized for L-asparagi-

nase synthesis using Bacillus subtilis VUVD001 with an

importance to the noteworthy parameters (temperature, pH,

glucose, and beef extract).

Experimental

Production and optimization of L-asparaginase

by RSM

Bacillus subtilis VUVD001 has been isolated from Vignans

University, Vadlamudi, Guntur district, Andhra Pradesh,

India (NCBI accession number KT894158). Crude L-as-

paraginase enzyme activity measurement was done by

ammonia developed quantification spectroscopically.

Standard Nesslerization technique was employed for L-as-

paraginase activity assessment by quantifying the total

ammonia liberated during L-asparagine hydrolysis spec-

trometrically at 480 nm. One unit (IU) of L-asparaginase

activity is defined as the magnitude of enzyme which

releases 1 lmol of ammonia per minute under the typical

assay conditions (Wriston and Yellin 1973). The sub-

merged fermentation approach was used for the production

L-asparaginase using the media components in the range of

KH2PO4 0.5–2.0%, MgSO4�7H2O 0.5–2.0%, CaCl2�2H2O

0.5–2.0%, L-asparagine 1.0–4.0%, beef extract 1.0–5.0%

and glucose 0.5–3.0% and incubated in a orbital shaker at

35 �C with an agitation rate of 200 rpm for 6 days and the

enzyme activity was measured. Later the effect of pH

(4–7), temperature (20–35 �C), size of inoculum (0.5–4.0%

V/V) and agitation speed (50–250 rpm) were also evalu-

ated using OFAT optimization methodology (Ashok and

Kumar 2017; Doriya and Kumar 2016; Erva et al. 2017; Xu

et al. 2003).

The investigational RSM design was drawn in the

choice of each autonomous bioprocess parameter at three

levels. Amongst the total parameters evaluated for their

significance on L-asparaginase activity in OFAT method

(results are not shown here), four variables (pH, tempera-

ture, glucose and beef extract) were found to be potent.

Using the method of least squares, the response function

was approximated by a second degree polynomial of

quadratic and interaction effects (Rajulapati et al. 2011).

The ranges of glucose (A), beef extract (B), pH (C) and

temperature (D) was considered for experimental study

using the full factorial face centred central composite

design (FCCCD). Table 1 describes the real ranges of

coded factors which were obtained on the basis of OFAT

method outcomes (data is not shown here). For designing

of experiments as well as analysis of experimental design,

design-expert7� statistical software package was used

(Stat- Ease Inc, USA). Overall 30 experiments were

designed (Table 2) and the L-asparaginase synthesis data

were analyzed using analysis of variance (ANOVA) to

distinguish significance of individual variables. The sta-

tistical correlation was deliberated by the second-order

polynomial equation between the finale objective (L-as-

paraginase activity) and the independent variables,

Y ¼ B0 þ
X

BiXi þ
X

BiiX
2
i þ

X
BijXiXj; ð1Þ

where Y = predicted response, B0 = intercept term,

Bi = linear effect, Bii = squared effect and Bij = interac-

tion effect. The linear, quadratic and interactive effect of

autonomous bioprocess parameters on ultimate objective
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can be approximated using Eq (1). The substantial

response surface plots specify the response function on z-

axis where the other two axes (X and Y) indicating the two

autonomous process parameters while retaining the other

invariable at the center point. All experimentations were

performed in triplicate and computations were carried out

to determine the mean values.

Modelling using artificial neural networks (ANNs)

ANN models imitate the role of a biological network, made

up of neurons and are applied to decipher composite

functions in diverse applications. Simple synchronous

processing elements are included in NN which are moti-

vated by the biological nerve systems. Neurons are the

basic unit of ANN and they are linked to one another by

synapses, and a weight factor is allied with every synapse

(Zhang and Friedrich 2003). Back-propagation (BP) is one

of the trendiest algorithms in ANN which is used in this

study, with one hidden layer enhanced with numerical

optimization technique named Levenberg-Marquardt (LM)

(Arcaklioglu et al. 2004).

Table 1 Variables used in experimental design

Name Code Lower limit (- 1) Upper limit (? 1)

Glucose (%) A 0.5 2.5

Beef extract (%) B 2 8

pH C 4 10

Temp (�C) D 30 50

Table 2 Experimental design and response

S. no Glucose (%) Beef extract (%) pH Temperature (�C) L-Asparaginase activity (IUml-1)

RSM experimental RSM predicted ANN predicted

1 0.5 2 4 30 0.24 ± 0.04 0.34 0.35

2 1.5 5 7 40 1.11 ± 0.12 1.09 1.19

3 2.5 8 10 50 0.19 ± 0.02 0.2 0.20

4 0.5 8 4 30 0.35 ± 0.03 0.44 0.35

5 2.5 5 7 40 0.21 ± 0.11 0.59 0.21

6 2.5 8 4 50 0.41 ± 0.02 0.41 0.41

7 0.5 8 4 50 1.2 ± 0.01 1.12 1.20

8 1.5 5 7 30 0.89 ± 0.02 0.91 0.89

9 0.5 2 4 50 0.99 ± 0.01 0.94 1.01

10 2.5 2 4 50 0.22 ± 0.03 0.22 0.19

11 1.5 5 7 40 0.86 ± 0.02 1.09 1.19

12 1.5 5 4 40 0.35 ± 0.01 0.58 0.41

13 1.5 5 7 40 0.78 ± 0.02 1.09 1.19

14 0.5 5 7 40 1.56 ± 0.01 1.27 1.56

15 2.5 2 4 30 0.25 ± 0.02 0.08 0.24

16 2.5 8 4 30 0.29 ± 0.03 0.18 0.28

17 1.5 8 7 40 1.21 ± 0.05 1.25 1.22

18 1.5 5 7 40 1.38 ± 0.01 1.09 1.19

19 1.5 5 7 40 1.41 ± 0.02 1.09 1.19

20 0.5 2 10 50 1.09 ± 0.09 1.3 1.05

21 1.5 5 7 50 1.03 ± 0.06 1.1 1.03

22 2.5 8 10 30 0.5 ± 0.11 0.42 0.50

23 2.5 2 10 50 0.41 ± 0.05 0.2 0.43

24 0.5 8 10 30 0.96 ± 0.03 1.06 0.96

25 1.5 5 7 40 1.27 ± 0.04 1.09 1.19

26 1.5 2 7 40 1.14 ± 0.02 1.2 1.13

27 1.5 5 10 40 1.01 ± 0.01 0.88 1.00

28 2.5 2 10 30 0.31 ± 0.02 0.5 0.34

29 0.5 2 10 30 1.27 ± 0.09 1.15 1.29

30 0.5 8 10 50 1.25 ± 0.02 1.3 1.25
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Process optimization by GA

A theoretical universal search and optimization technique

called GA copies the metaphor of natural biological evo-

lution. GA works on a population of likely solutions

implying the principle of survival of the fittest to produce

sequentially superior estimations to a solution. A fresh set

of estimation is produced at each generation by the process

of individual selection as per their fitness level in the

domain of problem and their replication using rented

operators from natural genetics. This practice directs to the

progression of individual populations that better suited for

their environment compared to the individuals from which

they were created, just as in normal adaptation process.

The GA optimization begins with initialization of the

population of solutions P(t). The population size was 16

(4 9 no. of variables) and the initial population type cho-

sen was double. In the present optimization for the process

of the selection among the available methods, Rank

method opted. The scattered option was used as crossover

operator and other constraints used for reproduction and

mutations are 0.8 crossover rate and constraint dependent

mutations function. Other approximated parameters were

forward migration direction, 0.2 migration fraction and 20

as migration interval. The stopping criterion usually advi-

ses the upper limit of iterations or verifies if the finest

solution attained is acceptable. Values considered for

stopping criteria includes ceiling iteration number of 400

(100 9 no. of variables), infinite time limit, infinite fitness

limit, 50 stall generations, infinite stall time limit, function

tolerance and nonlinear constraint tolerance of 10-6 (Ra-

julapati and Narasu 2011).

Results and discussion

RSM optimization

RSM is an efficient method in which the principal aim is to

run swiftly and impressively along the path of augment

towards the universal habitat of the best, identifying the

finest probable segment for running fermentation. Glucose

(A), beef extract (B), pH (C) and temperature (D) were the

four self-regulating variables used for this rationale. For

final response of L-asparaginase activity [Eq. (2)] use of

RSM furnished the consequent quadratic regression equa-

tion. Table 1 stands for the range of process parameters;

investigational design and the outcomes gained for ultimate

objective are presented in Table 2. Interpretation of results

of this experimental study depicts that, the finale enzyme

drug activity was assemblage on the blend of glucose, beef

extract, pH and temperature. Assessment of the predicted

response values with investigational outcomes signifies that

the data were in reasonable harmony. Optimized biopro-

cess parameter values for boosting up of finale objective

were recognized as 0.51, 7.99, 7.56 and 49.73 for glucose,

beef extract, pH and temperature, respectively.

Y ¼ 1:09� 0:34 � Aþ 0:024� B þ 0:15 � C

þ 0:096 � D þ 0:001875 � A � B� 0:097 �A�C

� 0:11�A�D� 0:046�B�C þ 0:019�B�D

� 0:11�C�D� 0:16�A2 þ 0:13�B2� 0:36�C2

� 0:084�D2 ð2Þ

where Y is the activity of L-asparaginase.

ANOVA was executed to confirm the model suitability

and Table 3 describes the results.

ANOVA analysis recommends that the RSM model with

computed 5.68F value for the quadratic regression model is

significant and Prob[F value is\ 0.0001, which is

smaller than 0.05. A poor coefficient of variation (CV)

value of suggests superior uniformity to the experimenta-

tion and the accomplished CV value of 30.51% authenti-

cates an elevated steadiness of the experimental trials. R2

denotes the CV of response under trial whose values

always reside between 0 and 1; with nearer to 1 for the

more vigorous statistical model and healthier is the pre-

diction of response (Montgomery and Myers 1995). The R2

value of 0.8413 for finale objective signifies that the RSM

model can explicate 84.13% of discrepancy in the response

and only 15.87% of the disparities for ultimate objective

are not explained by it. Based on the P values, significance

of distinctive parameters is assessed, with superior signif-

icant terms holding a lesser P value and in this case A, C

and C2 was found to be significant (Table 3).

Mutual effects of process variables

Figure 1a–f describes the four process variables with their

mutual effects on final response as response surface plots.

The greatest enzyme drug activity can also be attained

from the subsequent multi interaction blends by maintain-

ing other process parameters stagnant at optimal levels.

Artificial neural network model development

With 4 inputs and one output using feed forward back-

propagation network and TRAINLM training function

training, testing and validation of NN were carried out.

Table 2 describes the results. The outcomes found from the

analysis were very pleasing, and an elevated regression

value of 0.9506 was attained. The subsequent performance

curve was gained on training, testing, and validation of the

data shown in the Fig. 2 using MATLAB 2009a. Regres-

sion plot showing the output versus target was attained

with ten hidden nodes and 0.9506 regression value of was
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accomplished which shows the model validation. Table 2

shows the experimental and predicted data from statistical

regression and ANN.

ANN strategy for modelling was also applied for pro-

duction of l-glutaminase from Bacillus cereus MTCC 1305

(Singh et al. 2013), Bacillus subtilis RSP-GLU (Sathish

and Prakasham 2010) and also for the production of L-

asparaginase using Aspergillus terreus MTCC 1782 (Gu-

runathan and Sahadevan 2012) and achieved a reasonably

good models than RSM.

Table 3 ANOVA analysis

Source Sum of squares Df Mean square F value P value prob[F

Model 4.79 1 0.34 5.68 0.0009 Significant

A—glucose 2.08 1 2.08 34.52 \ 0.0001

B—beef extract 0.011 1 0.011 0.18 0.6787

C—pH 0.40 1 0.40 6.67 0.0208

D—temp 0.17 1 0.17 2.76 0.1175

AB 5.625E-005 1 5.625E-005 9.332E-004 0.9760

AC 0.15 1 0.15 2.49 0.1354

AD 0.21 1 0.21 3.47 0.0821

BC 0.033 1 0.033 0.55 0.4688

BD 6.0006E-003 1 6.0006E-003 0.100 0.7566

CD 0.20 1 0.20 3.32 0.0883

A2 0.065 1 0.065 1.08 0.3149

B2 0.045 1 0.045 0.74 0.4025

C2 0.34 1 0.34 5.68 0.0308

D2 0.018 1 0.018 0.30 0.5917

Residual 0.90 15 0.060

Lack of fit 0.55 10 0.055 0.77 0.6623 Non-significant

Pure error 0.36 5 0.071

Cor total 5.70 29

Fig. 1 Interaction effects of process parameters on response
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Genetic algorithm based process optimization

and model validation

RSM projected best promising solutions for anti-leukemic

enzyme synthesis. For validating the RSM model, experi-

mentation was carried out at the best ten suggested solu-

tions and a finale response of 1.62 IUml-1 was obtained

which is pretty nearer to predicted response value of

1.57 IUml-1 (Table 4). As the experimental outcomes

attained were as good as the RSM predicted values the

RSM model is validated. After statistical optimization

Bacillus subtilis VUVD001 resulted in an ultimate enzyme

activity of 1.62 IUml-1.

The nonlinear statistical regression equation obtained

from RSM was optimized using GA and the plausible

results are described in Table 5 and Fig. 3. Utmost

response (enzyme activity) of 2.88 IUml-1 was achieved at

following optimum process conditions, i.e., Glucose 0.5%,

Beef extract 8.0%, pH of 8.3 and temperature of 49.9 �C.
At these conditions, the predicted maximum enzyme

activity is 2.76 IUml-1 which is comparable to previous

sources of L-asparaginase production both in submerged

and solid substrate fermentation. Mukherjee and group

described a ceiling value of 0.57 IUml-1 using Enter-

obacter aerogenes without L-asparagine in medium

(Mukherjee et al. 2000). Bhaskar and co-workers, on the

other hand, attained an upper level of l-asparaginase

Fig. 2 Comparison of RSM

and ANN outcomes

Table 4 Best ten solutions from RSM optimization

S. no Glucose (%) Beef extract (%) pH Temp (�C) RSM predicted values Experimental values

1 0.5 8 7.63 47.85 1.561 1.55 ± 0.01

2 0.5 7.98 7.33 48.13 1.562 1.57 ± 0.01

3 0.51 7.88 7.18 49.71 1.560 1.58 ± 0.005

4 0.51 7.99 7.78 48.9 1.562 1.54 ± 0.02

5 0.55 7.98 7.63 49.1 1.560 1.55 ± 0.01

6 0.5 7.99 7.61 49.85 1.572 1.62 ± 0.03

7 0.5 7.99 7.02 48.73 1.561 1.59 ± 0.01

8 0.54 7.99 7.41 49.01 1.564 1.55 ± 0.02

9 0.5 8 7.96 49.77 1.561 1.57 ± 0.005

10 0.56 7.95 7.4 49.97 1.562 1.54 ± 0.02

Table 5 Optimized process variables by GA for maximum L-asparaginase activity

Glucose (%) Beef extract (%) pH Temp (�C) Experimental enzyme activity (IUml-1) Predicted enzyme activity (IUml-1)

A B C D Y Y

0.51 7.99 7.56 49.75 2.88 ± 0.02 2.76
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activity with the use of ANN coupled GA optimization

with same organism (Baskar et al. 2011). They also

attained 19.129 IUml-1 of enzyme activity using tri

sodium citrate (1.88%) as carbon source (Baskar et al.

2009). Another group has accomplished 15.1 IUml-1 of

activity with 1.4% of L-asparagine in medium using

Bacillus sp.RKS 20 (Mahajan et al. 2014). In this particular

study Bacillus subtilis VUVD001 gave comparable levels

of l-asparaginase activity against E. coli ATCC 11303

(Kenari et al. 2011), Pseudomonas plecoglossicida RS1,

Cladosporium sp., Pectobacterium carotovorum MTCC

1428 (Kumar et al. 2009) and Erwinia aroideae (Peterson

and Ciegler 1969) using RSM only. Some L-asparaginase

sources took as longer as 120 h of production time to gain

the same levels of enzyme activity that were obtained by

Bacillus subtilis VUVD001. The findings of the present

study are unlike our previous findings from Enterobacter

aerogenes MTCC 111 which involved the use of L-as-

paragine inducer (Erva et al. 2017; Reddy et al. 2017).

Moreover, this strain is producing the anti-leukemic

enzyme at higher temperatures, i.e., 49.9 �C. Though this

organism proved its efficacy to produce lactase (Venka-

teswarulu et al. 2017), this is the first report describing the

optimum bioprocess variables for L-asparaginase synthesis

by Bacillus subtilis VUVD001 with lower fermentation

time (30 h) with no use of L-asparagine inducer in shake

flask submerged fermentation, which are incredibly vital in

view of industry. Experimental values were compared with

predicted responses by RSM and Neural Network (Table 2

and Fig. 2). In the present study, genetic algorithm gave

more accurate predicted values and the optimized response

value compared to RSM optimization (Table 6).

Conclusion

The outcome of this anti-leukemic enzyme drug opti-

mization study provides the central idea on levels of fer-

mentation parameters using novel bacterial source namely,

Bacillus subtilis VUVD001. An investigational yield of

1.62 IUml-1 from RSM optimized bioprocess parameters

is quite nearer to predicted RSM activity. RSM optimiza-

tion resulted in 3.2 fold augmentation of L-asparaginase

activity in contrast to OFAT approach. Further, the anti-

cancer enzyme drug yield was enhanced by 5.6 times

(2.88 IUml-1) with no L-asparagine inducer, lower carbon

source concentrations in reasonably less amount of fer-

mentation time using multi-stage optimization. These

findings propose Bacillus subtilis VUVD001 as a novel and

prospective microbial source for anti-leukemic enzyme

drug production in comparison to other producers.
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analyses of refrigerant mixtures using artificial neural networks.

Appl Energy 78:219–230

Fig. 3 GA optimization based

fitness value and best individual

(process parameter)

Table 6 Comparison of RSM and GA optimization for maximum L-asparaginase activity

S. no Method of optimization Experimental enzyme activity (IUml-1) Predicted enzyme activity (IUml-1)

1 RSM 1.62 ± 0.03 1.57

2 GA 2.88 ± 0.02 2.76

3 Biotech (2018) 8:24 Page 7 of 8 24

123



Ashok A, Kumar DS (2017) Different methodologies for sustainabil-

ity of optimization techniques used in submerged and solid state

fermentation. 3 Biotech 7:301

Baskar G, Dharmendira Kumar M, Anand Prabu A, Renganathan S,

Yoo C (2009) Optimization of carbon and nitrogen sources for L-

asparaginase production by Enterobacter aerogenes using

response surface methodology. Chem Biochem Eng Q

23:393–397

Baskar G, Rajasekar V, Renganathan S (2011) Modeling and

optimization of L-asparaginase production by Enterobacter

Aerogenes using artificial neural network linked genetic algo-

rithm. Int J Chem Eng Appl 2:98

Doriya K, Kumar DS (2016) Isolation and screening of L-asparaginase

free of glutaminase and urease from fungal sp. 3 Biotech 6:239.

https://doi.org/10.1007/s13205-016-0544-1

Duval M et al (2002) Comparison of Escherichia coli–asparaginase

with Erwinia-asparaginase in the treatment of childhood lym-

phoid malignancies: results of a randomized European Organ-

isation for Research and Treatment of Cancer—Children’s

Leukemia Group phase 3 trial. Blood 99:2734–2739

Erva RR, Rajulapati SB, Reddy CVK, Reddy KD, Sugunakar YJ

(2013) Omics of asnA gene from Enterobactor aerogenes

KCTC2190. Int J Fundam Appl Sci 2:30–32

Erva RR, Rajulapati SB, Potla Durthi C, Bhatia M, Pola M (2015)

Molecular dynamic simulations of Escherichia coli L-asparagi-

nase to illuminate its role in deamination of asparagine and

glutamine residues. 3 Biotech 6:2

Erva RR, Goswami AN, Suman P, Vedanabhatla R, Rajulapati SB

(2017) Optimization of L-asparaginase production from novel

Enterobacter sp., by submerged fermentation using response

surface methodology. Prep Biochem Biotechnol 47:219–228

Graham ML (2003) Pegaspargase: a review of clinical studies. Adv

Drug Deliv Rev 55:1293–1302

Gurunathan B, Sahadevan R (2012) Optimization of culture condi-

tions and bench-scale production of L-asparaginase by sub-

merged fermentation of Aspergillus terreus MTCC 1782.

J Microbiol Biotechnol 22:923–929

Howard JB, Carpenter FH (1972) L-asparaginase from Erwinia

carotovora substrate specificity and enzymatic properties. J Biol

Chem 247:1020–1030

Kenari SLD, Alemzadeh I, Maghsodi V (2011) Production of L-

asparaginase from Escherichia coli ATCC 11303: optimization

by response surface methodology. Food Bioprod Process

89:315–321

Kumar S, Pakshirajan K, Dasu VV (2009) Development of medium

for enhanced production of glutaminase-free L-asparaginase

from Pectobacterium carotovorum MTCC 1428. Appl Microbiol

Biotechnol 84:477–486

Mahajan RV, Mihooliya KN, Saran S, Saxena RK (2014) L-

asparaginase from Bacillus sp. RKS-20: process optimization

and application in the inhibition of acrylamide formation in fried

foods. J Proteins Proteomics 5

Maysa E, Amira M, Gamal E, Sanaa T, Sayed E (2010) Production,

immobilization and anti-tumor activity of L-asparaginase of

Bacillus sp R36. J Am Sci 6:157–165

Montgomery DC, Myers RH (1995) Response surface methodology:

process and product optimization using designed experiments.

Wiley, Hoboken

Mukherjee J, Majumdar S, Scheper T (2000) Studies on nutritional

and oxygen requirements for production of L-asparaginase by

Enterobacter aerogenes. Appl Microbiol Biotechnol 53:180–184

Peterson R, Ciegler A (1969) L-asparaginase production by Erwinia

aroideae. Appl Microbiol 18:64–67

Prager MD, Bachynsky N (1968) Asparagine synthetase in asparag-

inase resistant and susceptible mouse lymphomas. Biochem

Biophys Res Commun 31:43–47

Rajulapati SB, Erva RR (2015) Homology modeling of L-asparagi-

nase enzyme from Enterobactor aerogenes KCTC2190. Chem-

ical and bioprocess engineering: trends and developments, vol

185. CRC Press, Boca Raton

Rajulapati SB, Narasu LM (2011) Neural network modeling and

optimization of [alpha]-amylase production from spoiled starch

rich vegetables. J Chem Biol Phys Sci 2:201

Rajulapati SB, Narasu L, Vundavilli P (2011) Optimization of a-
amylase production from Aspergillus Niger using spoiled starch

rich vegetables by response surface methodology and genetic

algorithm. In: India Conference (INDICON), 2011 Annual IEEE,

IEEE. pp 1–9

Reddy ER, Babu RS, Durthi CP (2015) Structural modelling and

molecular dynamics study on Erwinaze towards its substrates.

In: International Conference on Advances in Biotechnology

(BioTech). Proceedings, 2015. Global Science and Technology

Forum, p 166

Reddy ER, Babu RS, Chandrasai PD, Madhuri P (2016) Exploration

of the binding modes of L-asparaginase complexed with its

amino acid substrates by molecular docking, dynamics and

simulation 3. Biotech 6:105

Reddy ER, Babu RS, durthi Chandrasai P, Madhuri P (2017) Neural

network modeling and genetic algorithm optimization strategy

for the production of L-asparaginase from Novel Enterobacter sp.

J Pharm Sci Res 9:124–130

Reynolds D, Taylor J (1993) The fungal holomorph: a consideration

of mitotic meiotic and pleomorphic speciation. CAB Interna-

tional, Wallingford

Sathish T, Prakasham RS (2010) Enrichment of glutaminase produc-

tion by Bacillus subtilis RSP-GLU in submerged cultivation

based on neural network—genetic algorithm approach. J Chem

Technol Biotechnol 85:50–58

Singh P, Shera SS, Banik J, Banik RM (2013) Optimization of

cultural conditions using response surface methodology versus

artificial neural network and modeling of l-glutaminase produc-

tion by Bacillus cereus MTCC 1305. Biores Technol

137:261–269

Stecher A, De Deus PM, Polikarpov I, Abrahao-Neto J (1999)

Stability of L-asparaginase: an enzyme used in leukemia

treatment. Pharm Acta Helv 74:1–9

Venkateswarulu T, Prabhakar KV, Kumar RB (2017) Optimization of

nutritional components of medium by response surface method-

ology for enhanced production of lactase. 3 Biotech 7:202

Verma N, Kumar K, Kaur G, Anand S (2007) L-asparaginase: a

promising chemotherapeutic agent. Crit Rev Biotechnol

27:45–62

Wriston JC Jr, Yellin T (1973) L-asparaginase: a review. Adv

Enzymol Relat Areas Mol Biol 39:185–248

Xu C-P, Kim S-W, Hwang H-J, Choi J-W, Yun J-W (2003)

Optimization of submerged culture conditions for mycelial

growth and exo-biopolymer production by Paecilomyces

tenuipes C240. Process Biochem 38:1025–1030

Zhang Z, Friedrich K (2003) Artificial neural networks applied to

polymer composites: a review. Compos Sci Technol

63:2029–2044

24 Page 8 of 8 3 Biotech (2018) 8:24

123

https://doi.org/10.1007/s13205-016-0544-1

	Multi level statistical optimization of l-asparaginase from Bacillus subtilis VUVD001
	Abstract
	Introduction
	Experimental
	Production and optimization of l-asparaginase by RSM
	Modelling using artificial neural networks (ANNs)
	Process optimization by GA

	Results and discussion
	RSM optimization
	Mutual effects of process variables
	Artificial neural network model development
	Genetic algorithm based process optimization and model validation

	Conclusion
	Acknowledgements
	References




