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Abstract

Background—Identity-by-descent (IBD) mapping using empirical estimates of IBD allele 

sharing may be useful for studies of complex traits in founder populations, where hidden 

relationships may augment the inherent genetic information that can be used for localization.

Methods and Results—Through IBD mapping, using ~400,000 SNPs, of serum lipid profiles 

we identified a major linkage signal for triglycerides (TG) in 1,007 Pima Indians (LOD=9.23, 

p=3.5×10−11 on chromosome 11q). In subsequent fine-mapping and replication association studies 

in ~7,500 Amerindians, we determined that this signal reflects effects of a loss-of-function 

Ala43Thr substitution in APOC3 (rs147210663) and 3 established functional SNPs in APOA5. 

The association with rs147210663 was particularly strong; each copy of the Thr allele conferred 

42% lower TG (β=−0.92±0.059 SD unit, p=9.6×10−55 in 4,668 Pimas and 2,793 Southwest 

Amerindians combined). The Thr allele is extremely rare in most global populations, but has a 

frequency of 2.5% in Pimas. We further demonstrated that 3 APOA5 SNPs with established 

functional impact could explain the association with the most well-replicated SNP (rs964184) for 

TG identified by genome-wide association studies (GWAS). Collectively these 4 SNPs account for 

6.9% of variation in TG in Pimas (and 4.1% in Southwest Amerindians), and their inclusion in the 

original linkage model reduced the linkage signal to virtually null.

Conclusions—APOC3/APOA5 constitutes a major locus for serum triglycerides in 

Amerindians, especially the Pimas, and these results provide an empirical example for the concept 

that population-based linkage analysis is a useful strategy to identify complex trait variants.
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Genome-wide association studies (GWAS) of unrelated individuals have become popular 

approaches for identifying susceptibility genes for complex traits. A well-known drawback 

is that they require very large samples to detect the modest effect sizes often associated with 

single variants; furthermore, relevant functional variants must be well-captured by the 

genotyping platform. Analyses of related individuals can have advantages over those of 

unrelated individuals because they allow for the efficient detection of high-impact variants 

with a relatively small sample size and increased power for follow-up association studies.1 

Linkage studies, which analyze phenotypic similarity among related individuals with respect 

to identity by descent (IBD) in a given region, may efficiently detect regions which contain 

multiple functional variants and they do not require functional variants to be highly 

concordant with genotyped markers. However, conventional linkage studies have been 

limited by only analyzing allele sharing among individuals with known relationships. In 

recent years, methods have been developed to improve calculation of sharing of alleles IBD 

from dense genotypic data. These methods allow for the IBD calculation among individuals 

without known relationships (i.e., they are cryptically related). With this approach, one may 

considerably improve the efficiency of variance component IBD mapping (also known as 

population-based linkage analysis). This approach may be particularly appealing for studies 

in founder populations, as members of such populations tend to share longer chromosomal 

segments IBD with one another.2 In this study, we performed a population-based genome-

wide linkage study (GWLS) of serum lipid levels in 1,024 individuals from a founder 

population, the Pima Indians residing in the United States, who had previously participated 

in a GWAS.3 We were able to pinpoint specific functional variants explaining a very 

significant linkage signal for serum triglycerides (TG) through a four-stage study, including 

a GWLS, fine-mapping analyses, replication association studies, and the fitting of a final 

linkage-and-association model.

METHODS

Study populations

Much of the data were derived from a longitudinal community-based cohort study of type 2 

diabetes (T2D) conducted in Arizona, where most of the participants are Pima Indians (the 

Pima study).4 For the initial discovery involving GWLS, 1,024 Pima subjects, who had also 

participated in a GWAS3 with available lipid data, including total cholesterol, high-density 

lipoprotein cholesterol (HDL-C), TG and low-density lipoprotein cholesterol (LDL-C) 

measurements, were included (1,007 had TG measurements).

The first sample for replication studies included 5,491 (4,668 with TG data) additional Pima 

subjects who were not part of the initial discovery set and did not have GWAS data. Among 

these participants, 2,713 are full-heritage Pima Indians (defined as self-reported 8/8th Pima 

heritage) and another 2,778 subjects are, on average, 6/8th American Indian (typically 4/8th 

Pima and an additional 2/8th from other tribes). A subset of the Pima participants (n=296) 
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had whole genome sequence (WGS) data available, which were used to profile the genomic 

variations in this population.

A second set of samples for the replication studies came from the Phoenix extension of 

FIND (Family Investigation of Nephropathy and Diabetes), a multicenter study designed to 

identify genes involved in diabetic nephropathy and related traits. Eligible subjects 

(n=3,189; 2,793 with TG data) had ≥50% Amerindian heritage and most were urban-

dwelling Amerindians living in or near Phoenix. Table S1 (in the Data Supplement) shows 

characteristics of these 3 groups. Studies were approved by the Institutional Review Board 

of the National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), and all 

participants provided written informed consent. Phenotypic measurements were based on 

standard protocols and are described in the Data Supplement.

Genotypic data ascertainment

Genotypes used in the linkage analysis (to calculate IBD sharing in the autosomal genome 

and to assess local IBD) were produced with the Affymetrix 6.0 Human SNP Array (see 

Methods in the Data Supplement). A total of 398,430 autosomal SNPs passed quality control 

checks and were used in subsequent analyses. As part of our fine-mapping studies, we used 

WGS data of 296 Pima Indians for variant discovery and imputation. The WGS data were 

generated by Illumina (San Diego, CA) at a coverage of 30–40X.

Genotyping of single nucleotide polymorphisms (SNPs) in both replication sets used a 

variety of genotyping approaches, which are described in detail in the Data Supplement. In 

addition, 45 selected ancestry informative markers with large differences in allele frequency 

between Amerindian and European populations5 were genotyped and used to control for 

population admixture in replication samples, in which GWAS data were not available.

Statistical analyses

Estimation of the percentage of alleles shared IBD—The execution of variance 

components linkage analysis of quantitative traits requires information on the alleles shared 

IBD between 2 individuals. We used the program Beagle6 and genetic maps from the 

Hapmap project to carry out IBD estimation at each of ~400,000 SNPs; this program 

estimates IBD from haplotypic similarity based on a hidden Markov model that takes 

recombination and linkage disequilibrium (LD) among SNPs into account. More details 

regarding the parameter settings and calculation are provided in the Data Supplement.

GWLS of 4 lipid traits: All traits were normalized by inverse Gaussian transformation prior 

to analysis. Linkage analysis was conducted using the principles of the variance-components 

method developed by Amos7 and carried out using SAS (SAS Institute, Cary, NC; see 

Methods in the Data Supplement). For computational efficiency, we carried out linkage 

analysis at every 50th variant across the genome, after which the maximum LOD (max LOD) 

was determined. In other words, ~8,000 tests (at ~0.44 cM intervals) were carried out.

Since we used the IBD matrix generated from the Beagle estimates among all 523,776 pairs 

of individuals in the sample, instead of those from known relationships, the present study is 

termed a population-based linkage analysis.
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Fine-mapping study – association analysis conditional on linkage effects—To 

identify whether association with specific genetic variant(s) may explain the observed 

linkage signals, we carried out association analyses conditional on linkage effects (i.e. 

accounting for random effects of both local and global IBD) to evaluate the association of 

variants under the linkage peak in the 1,024 subjects used in linkage analyses. The region of 

interest was defined as the “2-LOD” support interval (i.e., the interval in which the LOD is 

within 2 units of the max LOD). Sources of genotypic data used in these analyses are 

described in the Data Supplement. To account for the relatedness among family members in 

the analyses, we used the measured genotype approach,8 in which the genotypic effects are 

incorporated as fixed effects in the mixed model. In an effort to identify genetic variants 

with distinct effects, variant(s) with stronger association(s) were included as covariate(s) in 

the next round of analysis, until no significant association was observed (i.e. p value <0.05 

corrected for multiple comparisons, see Methods in the Data Supplement).

Replication association analyses of TG—Replication studies were carried out in 2 

stages. First, we conducted the replication study in Pima Indians (the Pima sample, n=4,668 

after exclusion of those in the GWLS). If any associations were replicated, we conducted a 

second replication study using 2,793 Amerindian samples from FIND). Detailed statistical 

approaches and meta-analysis methods are described in the Data Supplement. Because 

variants examined were from a small region of the genome with a high density of variants 

where extensive LD was present, we corrected for multiple comparisons using the approach 

suggested by Moskvina and Schmidt9 (more details in the Data Supplement). All presented 

p values for the fine-mapping and replication studies are corrected p values.

Haplotype construction and analyses—Once we identified multiple variants within a 

small gene with strong association with TG, we carried out haplotype analysis to assess 

associations conditional on specific allelic backgrounds constituting ≥2 SNPs (see the Data 

Supplement for details).

Covariates (population admixture estimates, type 2 diabetes status and sex) used in all 

models are described in the Data Supplement. Population admixture estimates used in the 

linkage studies were obtained using principal components analysis, and those used in the 

replication studies were calculated as Amerindian heritage based on 45 ancestry informative 

markers. Details are described in the Data Supplement.

RESULTS

Empirical IBD estimates

Among the 1,024 subjects in the GWLS, the average estimated IBD across the genome 

ranged from 0.00001 to 0.57 for 523,776 pairs of subjects. Pairs with no known relationship 

(98.2% of all pairs) had a mean IBD of 0.02±0.01 (median=0.02). In contrast, the mean IBD 

for 171 pairs of individuals of white ethnicity genotyped with the same SNP array was 

0.0009±0.0007 (median=0.0008), suggesting that average relatedness among Pimas was 

much greater. A plot showing the estimated empirical IBD sharing by the expected 

relatedness is shown in the Data Supplement (Figure S1).
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Genome-wide linkage studies

Among 4 lipid traits analyzed, significant linkage (max LOD≥3) was identified for TG and 

HDL-C. The max LOD for TG was 9.23 (p=3.5×10−11) on chromosome 11q23, explaining 

10.6% of phenotypic variance (after accounting for effects of covariates), and the max LOD 

for HDL-C was 3.77 (p=1.5×10−5) on chromosome 1p, explaining 7.5% of the variance 

(Table S2 and Figure S2 in the Data Supplement). When the same analysis was conducted 

using only pairs with known self-reported relationships (n=9,664), the max LOD for TG was 

still observed in the same genomic region, however, with a much reduced significance 

(LOD=3.24, p=5.6×10−5) (Figure 1A). A similar reduction in LOD was observed for HDL-

C, and the max LOD was 2.55 (Figure 1B). We further refined the location of the max LOD 

by running additional linkage analyses at 5-SNP intervals within the 2-LOD region. This 

resulted in max LOD of 9.32 (explaining 10.8% of the variance ) and 4.05 (explaining 7.9% 

of the variance), for TG and HDL-C respectively. These refined max LOD locations were 

used to define genomic regions investigated in subsequent fine-mapping studies.

We also conducted a GWAS of these traits in the same sample, and observed associations for 

TG with SNPs in 11q23 at genome-wide significance (Figure S3 in the Data Supplement). 

The strongest association was with rs4417316, an intronic SNP in ZPR1 (p=1.8×10−10), but 

rs964184, the most commonly reported GWAS SNP for TG observed in multiple 

populations, also was strongly associated (p=4.0×10−8). The associations of all SNPs in this 

region were attenuated to p >10−5 after adjusting for the effects of rs964184. Thus, it 

appeared that the GWAS associations in Pimas largely reflected the effect of the established 

SNP rs964184. In contrast, linkage analyses of TG conditional on the effect of rs964184 or 

rs4417316 showed significant residual effect (LOD=6.02 and 4.80, respectively), suggesting 

the possibility of multiple variants in the region.

Fine-mapping study: association analyses of TG and HDL conditional on linkage effect

We performed imputation, using WGS data from 296 Pimas as the reference, and we 

conducted fine-mapping of the 2-LOD support interval for both regions by testing 

association conditional on the peak linkage signal in the same 1,024 samples used in GWLS. 

We selected the variant with the strongest association and analyzed associations of 

additional variants conditional on this strongest association; this procedure was repeated 

until no statistically significant associations were observed. For TG, after 4 rounds of 

analyses of 3,450 variants in a 1.81Mb region on 11q23, we identified 3 variants with 

distinct and significant associations (Table 1). The SNP with the strongest association with 

TG was rs147210663 explaining 6.9% of the variance (p=1.6×10−13) (Table 1). This SNP is 

in the apolipoprotein C3 gene (APOC3) at codon 43 (Ala → Thr substitution, or A43T); the 

minor allele codes for the Thr residue and has a frequency of 2.6% in GWLS. The SNP with 

the second strongest association with TG was rs2072560 after adjusting for the effect of 

rs147210663 (p=0.00028). This SNP resides in intron 3 of the apolipoprotein A5 gene 

(APOA5) but has no known function. The third variant with a significant association was 

rs11357208 after adjusting for the effects of 2 previous SNPs (p=0.0049). This insertion-

deletion variant residesin intron 5 of the SIK family kinase 3 gene (SIK3) without any 

known function. For HDL-C, no significant association was identified with any variant in the 

2-LOD support interval on chromosome 1p.

Hsueh et al. Page 5

Circ Cardiovasc Genet. Author manuscript; available in PMC 2018 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Replication association analyses of TG

To confirm and further characterize the associations identified in the fine-mapping study, we 

analyzed the 3 distinctly associated TG variants, along with their tags (r2>0.8 in Pima WGS 

data) and nearby established TG-associated SNPs selected from published data. These 

studies were conducted in 2 different samples, namely 1) additional Pimas from the same 

parent study who were not part of GWLS (n=4,668, the Pima sample) and 2) southwestern 

urban Amerindians from the FIND sample (n=2,793). We, thus, analyzed 11 SNPs, 

including 6 established TG-associated SNPs (collectively called “GWAS SNPs”, including 

rs964184, rs3135506, rs651821, rs662799, rs12225230, and rs139961185).10–19 As shown 

in Table 1, there was no tag SNP for rs147210663 nor rs11357208. The SNP rs2072560 had 

3 tag SNPs (one of them, rs651821, was also identified in several published GWAS reports). 

As in the fine-mapping study, several rounds of analysis were conducted, with association 

examined conditional on the strongest variants identified in previous rounds. In the Pima 

sample, the association with the APOC3 A43T SNP strongly replicated (rs147210663, 

p=7.4×10−48), as did the 2nd variant (represented by rs651821, p=0.0012) (Table 2 and Table 

S3 in the Data Supplement). In addition, we also observed a strong association with a 

GWAS SNP (rs964184, p=2.1×10−22) distinct from rs147210663. The variant rs11357208 

did not show an association distinct from rs147210663, rs964184 and rs651821. However, as 

rs964184 was in moderate LD with both rs651821 and rs11357208 (r2=0.20 and 0.45, 

respectively), this may partially explain the lack of replicated association with rs11357208. 

In the second replication study (the FIND sample), we also observed distinct associations 

with rs964184 (1.4×10−10) and rs147210663 (p=6.3×10−7). Of note, the frequency of the 

Thr allele of rs147210663 in the FIND sample was much lower than that in the Pima sample 

(1% vs. 2.5%). Taken together, we replicated 2 distinct associations (with rs147210663 and 

rs964184).

Determining whether known functional variants account for the observed association with 
rs964184

The “GWAS” SNP rs964184 resides near the 3’UTR of the zinc finger gene (ZPR1, also 

known as ZNF259), but evidence for a functional effect of this SNP is lacking. Two 

“haploblocks” (see methods) encompassing 3 SNPs (rs964184 and rs651821 identified in 

the replication studies, and rs2072560 identified from fine-mapping analyses) harbor 2 

genes: ZPR1 and APOA5. APOA5 is expressed solely in liver tissues, the key organ for lipid 

metabolism, whereas ZPR1 is expressed ubiquitously. APOA5 has a known role in TG 

metabolism, and has a SNP (rs651821) significantly associated with TG. Therefore, we 

extended our association study to investigate if other functional variants in these 2 genes 

may explain the observed association with rs964184. Based on Pima WGS data, 4 SNPs in 

APOA5 were previously documented to be functional20–23 with a minor allele frequency 

(MAF) ≥1%: rs2266788, rs3135506, rs651821 and rs662799. We tested associations 

between TG and these SNPs to examine the extent to which they explained the association 

of rs964184 with TG. As shown in Figure 2, in the Pima sample, rs964184 (dark bars) 

accounted for 2.2% of the trait variance with p=5.7×10−23 when no APOA5 SNP was 

included in the model (conditioning on the effect of rs147210663 and other covariates). This 

effect was gradually diminished with the addition of more APOA5 SNPs. When 3 APOA5 
SNPs (rs651821, rs3135506, rs2266788) were included, they accounted for 2.4% of the 
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variance (p=1.2×10−22) collectively, whereas the effect of rs964184 was reduced to 0.07% 

(p=0.015). The addition of rs662799 (r2=0.96 with rs2266788), did not contribute 

significantly beyond other APOA5 SNPs. We also conducted similar analyses of all SNPs in 

the exons or UTRs of ZPR1 (rs61905116, rs144966144, and rs35120633, identified in our 

Pima WGS data). The effects of rs964184 on TG remained highly significant after adjusting 

for all 3 SNPs. In addition, although our study populations had a high T2D prevalence, the 

genetic associations with these SNPs in APOC3 and APOA5 were observed in those with or 

without diabetes (data not shown). The exclusion of subjects taking antilipidemic 

medications (~5%) from analyses did not affect any results significantly (data not shown).

Haplotype analyses of APOA5 SNPs

Assessment of the distinct contribution of 3 APOA5 SNPs is difficult because they are in LD 

(r2=0.04–0.75, Figure S4 in the Data Supplement) and their statistical associations may be 

codependent when their effects are assessed individually. Therefore, we carried out analysis 

of haplotypes composed of these 3 SNPs to better evaluate allelic effects of each of these 

SNPs relative to the allelic background of other 2. Previous studies have described three 

common haplotypes at these SNPs: APOA5*1 containing the TG-lowering allele at all 3 loci 

(T-Ser-A for rs2266788-rs3135506-rs651821), APOA5*2 containing the TG-raising allele at 

rs2266788 and rs651821 (C-Ser-G), and APOA5*3 containing the TG-raising allele only at 

rs3135506 (T-Trp-A). In East Asian populations, an additional haplotype (APOA5*4) 

containing only one TG-raising allele (at rs651821, T-Ser-G) has been observed.24 In the 

Pimas we found that *1, *2 and *3 were common haplotypes and we observed an additional 

haplotype with frequency of 3.6% which contains the TG-raising allele at rs2266788 only 

(C-Ser-A, which we call APOA5*5). Given the same allelic background at the other 2 SNPs, 

distinct allelic effects of all 3 APOA5 SNPs were statistically significant (Table 3). For 

instance, compared with the allelic background of rs2266788 and rs651821 (reference 

haplotype: APOA5*1), the APOA5*3 haplotype, which differs only at the minor allele of 

rs3135506, was still significantly associated with higher TG (p=1.3×10−12). Furthermore, 

compared with APOA5*1, APOA5*2, which differs at rs651821 and rs2266788 was 

associated with significantly higher TG (p=2.2×10−23). The haplotypic associations were 

replicated in the FIND sample with the exception of the comparison of APOA5*2 with 

APOA5*5, whose borderline significance was likely due to the low frequency of APOA5*5 
(0.5%).

Final linkage-and-association model fitting

From replication studies, we identified the APOC3 A43T SNP (rs147210663) and 3 APOA5 
SNPs (rs2266788, rs3135506 and rs651821), which are well-established as functional, as 

having significant influences on TG. Their effects all appeared additive (Figure S5 in the 

Data Supplement). Therefore, we included these 4 SNPs as covariates in the original linkage 

model (n=1,007 Pimas) and assessed the extent to which these 4 SNPs explain the linkage 

signal. As shown in Table 4, the APOC3 43T SNP alone reduces the LOD from 9.32 to 2.24. 

When we added 3 APOA5 SNPs to the model, the collective effect of these 4 SNPs reduced 

the remaining linkage signal to LOD of 0.08 (residual variance explained=1.4% after 

accounting for the effects of 4 SNPs and all covariates). In other words, these 4 SNPs 

virtually explained the linkage signal on 11q23 for TG.
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DISCUSSION

Although GWAS in unrelated individuals has been successful in identifying common 

variants associated with complex traits, family-based studies, such as IBD mapping (linkage) 

analysis, may have advantages in some situations, such as when the functional variants are 

not well-captured in the standard GWAS array. In this study, we used an IBD mapping 

approach in a founder population to identify genomic region(s) harboring substantial genetic 

effects on lipid levels. Estimating IBD empirically using dense genotypic data, we 

performed linkage analysis using all possible pairs within our study sample.

Using this approach, we identified a significant linkage signal with LOD=9.23 for TG in our 

GWLS. Through subsequent fine-mapping and 2 sets of replication studies, we identified 2 

SNPs (rs147210663 and rs964184) with significant and distinct associations with TG. One 

replicated SNP (rs964184) has no known function and is located near the 3’UTR of ZPR1. 

Little evidence has been found to indicate ZPR1’s influence on lipid metabolism despite 

rs964184 being the most widely replicated GWAS SNP for TG. Thus, we focused on 

variants in the only other candidate, APOA5. APOA5 variants have been extensively studied 

functionally due to the protein’s importance in TG metabolism. From Pima WGS data, we 

identified 4 SNPs in APOA5 with strong functional evidence from literature. We showed 

that the effect of rs964184 could be mostly explained by 3 of these APOA5 SNPs (the 4th 

SNP is in almost perfect LD with one of these 3). In other words, we consider it highly 

likely that rs964184 acts as a marker for the aggregate effect of these 3 SNPs with known 

effects on APOA5. Collectively, the APOC3 A43T SNP and the 3 strongly-associated 

functional SNPs in APOA5 explained most of the linkage signal.

The APOC3 A43T SNP had the strongest association with TG, and had an effect size (β=

−0.92±0.64 SD unit for the minor allele Thr, which corresponds to a 42% reduction in TG) 

among the largest reported for any complex trait.25 Its effect accounted for 4.7% of the 

variance of TG despite a fairly low frequency of the Thr allele (2.5%) in Pimas. It was also 

significantly associated with other lipid traits and lipid fractions, including with higher 

HDL-C and lower TG contained in very low density lipoprotein particles (VLDL-TG) (Table 

S3 in the Data Supplement). The Thr allele is rare in most other populations, with an MAF 

of ~1% in the other Southwest Amerindians, and very rare in most non-Amerindians with a 

collective frequency of 0.3% in phase 3 data from the 1000 Genomes Project (www.

1000genomes.org). The A43T SNP was initially identified in two Mayan Indians with low 

TG and APOC3 levels (where it was denoted as A23T).26 Strong associations between TG 

and rare non-synonymous SNPs (nsSNPs) in APOC3 have been observed in other 

populations as well, with loss-of-function variants conferring lower TG levels. Such an 

association was first suggested by a fine-mapping study following a GWAS in the Amish,27 

in whom a premature stop codon (R19X, rs76353203) which is rare in most populations, had 

frequency of 2.8% and was strongly associated with low TG levels. This same SNP was also 

identified as strongly associated with low TG levels in a Greek population isolate, in whom 

its frequency was 1.9%.28 Subsequently, several large sequencing or candidate gene studies 

have also provided evidence for strong protective effects of loss-of-function mutations in 

APOC3 on TG and cardiovascular diseases;28–33 these variants included the A43T SNP, but 

were tested for association in aggregate. The present study shows that the A43T SNP is 
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relatively common in some Amerindian populations (particularly Pimas), among whom the 

association achieves genome-wide statistical significance.

APOC3 is a small gene with 4 exons and 297 nucleotides. The protein is synthesized mainly 

in the liver, and strongly inhibits hepatic uptake of VLDL-C and intermediate density 

lipoproteins. Intracellularly, it promotes hepatic VLDL-C assembly and secretion.34 

Extracellularly, it attenuates hydrolysis and clearance of triglyceride-rich lipoproteins 

(TRLs) and impairs the lipolysis of TRLs by inhibiting lipoprotein lipase and the hepatic 

uptake of TRLs by remnant receptors.34 Recently, inhibitors of APOC3 synthesis have been 

shown to reduce hypertriglyceridemia.35 The sequence of APOC3 has been extensively 

determined in large and diverse samples. In the Pimas, there is only 1 nsSNP (A43T) 

identified in 296 samples. Findings from in vitro studies show that this A→T substitution 

probably alters the structure of APOC3, and leads to loss of its function in promoting the 

assembly and secretion of triglyceride-rich VLDL from hepatic cells.36 Also it has been 

shown that, it has less efficient lipid binding capacity; this leads to faster catabolism of 

APOC3 and less competition with APOE. This in turn is responsible for enhanced clearance 

of TG rich lipoproteins and lower plasma TG levels.26 Given all available statistical, 

functional, and physiological evidence, and the observation that the A43T SNP has no tag 

SNP, we consider that this SNP is likely a causal variant for TG.

In our replication studies, the SNP with the second strongest association with TG was 

rs964184. It is one of the most well-replicated SNPs from many large lipid GWAS, with 

particularly strong associations for TG.10, 12–15, 19, 25, 37, 38 Previous studies in Amerindian-

derived populations have identified strong associations between TG and variants in this 

chromosomal region, particularly rs964184.14, 19, 39 SIK3 has been suggested as a functional 

candidate based on evidence for recent natural selection centered on rs139961185.19 In our 

study, however, rs139961185 was not associated with TG after conditioning on rs964184 

(Table S3 in the Data Supplement). BUD13 and ZNF259 have also been implicated, based 

largely on the strong association with the nearby rs964184.14, 39 The SNP rs964184 is also 

near APOA5, however, and 4 common APOA5 SNPs (rs2266788, rs3135506, rs651821, 

rs6622799) have well-documented functional effects on APOA5. The only nsSNP of these 4 

is rs3135506 (S19W) which impairs protein translocation and secretion,20, 21 whereas 

rs651821 is located in the promoter region, and rs2266788 is located in the 3’ UTR of 

APOA5, a functional target site for a liver-expressed microRNA gene miR-485-5p. Our 

findings provided statistical evidence to implicate 3 functional SNPs (rs651821, rs3135506, 

and rs2266788) in APOA5 that explained almost all of the association of rs964184 with TG, 

contributed distinct effects, and that reduced the original linkage signal to virtually null. It 

should be noted that our findings are in concordance with functional studies that suggest 

distinct effects of each of these SNPs (Table 3, Figure 2). These 3 APOA5 SNPs all have 

elevated MAFs in Pimas (0.14–0.20, vs. 0.06–0.08 in whites), which resulted in increased 

statistical power in our study populations. One caveat is that as the 4th putatively functional 

SNP, rs6622799, is in almost perfect LD with rs2266788 (r2=0.96), their effects are not 

statistically distinguishable in our study populations.

Many studies have reported associations of haplotypes composed of these APOA5 
functional variants with TG. In 2001, Pennacchio et al. reported that the APOA5*2 
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haplotype, defined by the minor alleles of 3 SNPs (encompassing multiple functional 

variants rs662799–rs651821–rs2266788), was associated with elevated TG levels,40 and 

similar observations were replicated in multiple populations.24, 41–43 In some GWAS, these 

SNPs were individually reported as significant.11, 17, 44 Our study identified these same 

SNPs in a systematic approach, and provides additional support for multivariant influences 

from APOA5 on TG. In vitro studies suggest that all 3 SNPs have functional effects,22 but 

separate effects are difficult to observe in vivo because of the high degree of LD. With the 

additional haplotypic information available in the present study, we provide evidence for 

distinct effects of rs651821, rs3135506 and rs2266788/rs662799 on TG in vivo, and 

associations with the haplotypes APOA5*2 and APOA5*3 (representing rs3135506) achieve 

genome-wide statistical significance. Although these 3 APOA5 SNPs were only in moderate 

LD with rs964184 individually (r2=0.25–0.40, Figure S4 in the Data Supplement), the 

haplotypes comprised of any minor (TG-raising) allele of APOA5 SNPs were in strong LD 

with the minor allele of rs964184 collectively (r2=0.97) (Figure S6 in the Data Supplement), 

and, thus, the APOA5 SNPs can largely account for the association of rs964184 with TG in 

Amerindians. Based on analysis of data from the 1000 Genomes project (www.

1000genomes.org), it is noteworthy that rs964184 is similarly highly concordant with 

haplotypes containing a TG-raising allele at these APOA5 SNPs in populations 

representative of those where rs964184 was identified as a top GWAS SNP (e.g. r2=0.96 in 

CEU and GIH, r2=0.82 in CHB and MXL); thus these APOA5 SNPs might explain the 

association between rs964184 and TG in other populations as well. The role of APOA5 in 

influencing TG levels is supported by recent human sequencing studies showing rare 

deleterious APOA5 mutations associated with TG.45 Given statistical, functional and 

physiological evidence, we conclude that rs964184 is likely a marker for the collective 

effects of APOA5 functional SNPs on TG.

The linkage analysis results provide a context for interrogating whether multiple sources of 

genetic effect exist in the same genomic region. In our GWAS using the same 1,007 

subjects, we observed associations for TG with SNPs on 11q23 at genome-wide statistical 

significance, but these associations were greatly attenuated after adjustment for the 

established variant, rs964184. On the other hand, substantial residual linkage remained after 

adjustment for the effects of rs964184, and this served as the impetus for more detailed 

investigation of the region. Although computational tools for the IBD calculations required 

for population-based linkage analyses are available in several software packages, the method 

has not been widely-used. Our results suggest it can provide complementary information to 

a standard GWAS approach.

An advantage of the population-based linkage approach is that, in contrast to association 

analysis, it retains power even when the variants on the genotyping array are not highly 

concordant with a functional variant. The approach may be especially useful for identifying 

regions with susceptibility variants not well-captured by the genotyping platform (which 

will often be of low frequency) or identifying regions containing multiple susceptibility 

variants. For the 11q23 region identified here as linked with TG, both situations apply. The 

method uses information from all pairs of individuals in the population, and this remarkably 

enhances the statistical power, compared with conventional pedigree-based linkage analysis, 

particularly in populations recently descended from a small number of founders, in which 
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many individuals without known relationships may share large genomic segments IBD. The 

approach may be less useful in outbred populations, however. Power of the linkage approach 

is limited, compared with conventional association analysis, in the situation where a single 

functional variant, which is well-captured by the genotyping array, drives the association. A 

further limitation of the present study is that, with the limited sample size of GWLS, only 

relatively strong effect sizes are detectable; we estimate the detectable effect size is 9.7% of 

the variance for LOD>3 with 80% power (our linkage signal for TG had an effect size of 

10.8% of the variance).

In conclusion, we carried out a population-based GWLS of serum lipids and subsequently 

identified 4 SNPs with known functional effects in 2 apolipoprotein genes (APOC3 and 

APOA5) that influence TG levels. These findings suggest that population-based GWLS may 

provide complementary information to GWAS, particularly in founder populations. 

Identification of the TG-lowering nsSNP in APOC3 (A43T) was facilitated by population-

specific WGS data, which allowed for accurate imputation of this variant despite its low 

frequency, and the fact that it was not on the GWAS array (this SNP could not be captured 

by imputation using the 1000Genome data as the reference panel). The APOC3 A43T SNP 

has been established as a loss-of-function variant leading to lower TG based on a small 

number of previously described individuals and functional studies. By uncovering a founder 

effect in the Pimas for this SNP, we now provide population level data that unequivocally 

establish the TG-lowering properties of this SNP. Thus, the linkage signal we detected 

represents effects of both an established TG variant (rs964184) and a “novel” variant 

(A43T), not captured by standard GWAS arrays. We also provide evidence for 3 functional 

APOA5 SNPs exerting distinct and additive effects on TG. The association between 

rs964184 and TG has been replicated in multiple populations; our study demonstrates that 

rs964184 is likely a marker tagging aggregate effects of 3 functional SNPs in APOA5, at 

least in Amerindians. Thus, a single well-replicated GWAS signal can reflect the effects of 

multiple functional variants. Taken together, the APOC3 and APOA5 SNPs account for 

6.9% of the variation in TG, an effect which constitutes a major locus in Pimas. Our findings 

provide an empirical example for the concept that population-based linkage analysis, 

particularly in founder populations, can be useful for studies of complex traits.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Clinical Perspective

Identity-by-descent mapping using empirical estimates of allele sharing between all pairs 

of individuals may be powerful in founder populations, where hidden relationships may 

augment the inherent genetic information that can be used for gene localization. We 

tested the usefulness of this approach by analyzing lipid profiles in 1,024 Pima Indians, a 

relatively genetically homogeneous population. We identified a major locus for serum 

triglycerides (p=2.9 10–11 on chromosome 11q). In multi-stage follow-up analyses using 

~9,000 subjects, we determined that this signal reflects effects of an Ala43Thr 

substitution in the APOC3 gene, and 3 established functional genetic variants in the 

APOA5 gene, collectively accounting for 6.9% of variation of triglyceride levels in 

Pimas. We further demonstrated that these 3 APOA5 variants could explain the 

association with the well-established variant for triglycerides levels, rs964184. This study 

provides a proof of concept that identity-by-descent mapping can be a useful strategy to 

identify causal variants affecting complex traits. The identification of these genes and 

specific genetic variants that affect an important risk factor for cardiovascular diseases 

(CVD) may contribute to the development of novel CVD interventions.
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Figure 1. 
Linkage study results of serum lipids showing the maximum LOD>3. (A) Results of 

triglycerides on chromosome 11; (B) Results of HDL-cholesterol on chromosome 1

Hsueh et al. Page 16

Circ Cardiovasc Genet. Author manuscript; available in PMC 2018 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. 
The impact of APOA5 SNPs on the association between rs964184 and serum triglycerides in 

the Pima sample. The top panel shows the % variance (%σ2) of triglycerides explained by 

rs964184 (black bars, conditional on any APOA5 SNPs) and the % σ2 resulting from the 

addition of the APOA5 SNPs (gray bars) to the statistical model. The bottom panel shows 

the significance of association (log(p)). Covariate effects adjusted included age, sex, diabetes 

status and rs147210663 genotypes. The order of APOA5 SNP addition was determined by 

their association significance conditioning on effects of SNPs with stronger effects. The p 

values for the APOA5 SNP associations were calculated with the df equal to the number of 

SNPs in the model.
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Table 4

Effects of 4 functional SNPs with significant triglyceride associations on the observed linkage signal

Model Observed
LOD

variance due
to linkage

variance due
to all SNP(s)

p for all SNP
effects

Linkage only 9.32 10.8% ---- ----

APOC3 SNP effect 2.24 6.2% 6.9% 1.9 × 10−13

APOC3 + 3 APOA5 SNP effects 0.08 1.4% 9.1% 2.1 × 10−12*

*
The p value was determined based on a 4-df test.
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