Skip to main content
. 2017 Dec 19;7:17774. doi: 10.1038/s41598-017-17921-x

Table 2.

Evaluation of the discrimination among NAG−, CAG+, PLGC and GC metabolic profiles by PLS-DA using cross validated accuracy (i.e. % correctly classified samples), AUROC, sensitivity, specificity, PPV and NPV estimates.

Model Latent variables Accuracy (p-value)1 AUROC (p-value) Sensitivity (p-value) Specificity (p-value) PPV (p-value) NPV (p-value)
NAG- vs CAG+ 2 0.41 (>0.05) 0.43 (>0.05) 0.40 (>0.05) 0.42 (>0.05) 0.42 (>0.05) 0.40 (>0.05)
NAG- vs PLGC 1 0.56 (>0.05) 0.82 (>0.05) 0.38 (>0.05) 0.56 (>0.05) 0.60 (>0.05) 0.60 (>0.05)
CAG + vs PLGC 1 0.53 (>0.05) 0.49 (>0.05) 0.57 (>0.05) 0.50 (>0.05) 0.54 (>0.05) 0.53 (>0.05)
NAG− vs GC 2 0.77 (0.002) 0.83 (0.002) 0.80 (0.002) 0.74 (0.004) 0.76 (0.004) 0.78 (0.004)
CAG + vs GC 2 0.80 (0.002) 0.81 (0.002) 0.75 (0.008) 0.85 (0.002) 0.83 (0.002) 0.77 (0.006)
PLGC vs GC 2 0.68 (0.016) 0.74 (0.006) 0.70 (0.01) 0.67 (0.04) 0.70 (0.03) 0.70 (0.01)

1 p-values were computed by permutation testing as the fraction of permuted statistics that are at least as extreme as the test statistic obtained using the original class labels.