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Co-expression analysis is widely used to predict gene function and to identify functionally

related gene sets. However, co-expression analysis using human cancer transcriptomic data

is confounded by somatic copy number alterations (SCNA), which produce co-expression

signatures based on physical proximity rather than biological function. To better understand

gene–gene co-expression based on biological regulation but not SCNA, we describe a method

termed “Genomic Regression Analysis of Coordinated Expression” (GRACE) to adjust for the

effect of SCNA in co-expression analysis. The results from analyses of TCGA, CCLE, and

NCI60 data sets show that GRACE can improve our understanding of how a transcriptional

network is re-wired in cancer. A user-friendly web database populated with data sets from

The Cancer Genome Atlas (TCGA) is provided to allow customized query.
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H ighly coordinated expression of genes functioning in
common processes is a widespread phenomenon in pro-
karyotes and eukaryotes1, 2. Spatial and temporal com-

partmentalization of gene expression in response to
environmental cues allows cells to avoid futile reactions in
metabolism, promotes efficiency in the stoichiometric assembly of
macromolecular complexes, and reduces noise in signal trans-
duction pathways, among other functions. Co-expression analysis
is a widely adopted tool for functional prediction and identifi-
cation of functionally related gene sets. Such analysis identifies
associated genes based on their highly correlated expression
profiles from high-throughput gene expression profiling data
obtained by microarray or RNA-seq experiments3.

Great efforts from multiple projects such as The Cancer
Genome Atlas (TCGA) and Cancer Cell Line Encyclopedia
(CCLE)4, 5 have been put forth to characterize cancer genomics
from tumor tissues and cell lines. A rich resource of cancer
transcriptome data has been generated from these studies. Many
popular cancer data-mining platforms such as Oncomine, cBio-
Portal, and CCLE provide co-expression analysis tools based on
these cancer transcriptome data4, 6, 7. With these tools, users can
search for genes co-expressed with a gene of interest in different
tumor types or in cancer cell lines. However, results from co-
expression analyses using standard methods are often hard to
interpret because many top correlating genes arise from somatic
copy number alteration (SCNA) rather than bona fide tran-
scriptional regulation. Copy number alteration (CNA) is a com-
mon feature in cancer8. Multiple studies have shown that gene
expression levels are correlated with copy numbers in cancer
cells9, 10 as well as cultured human pluripotent stem cells11.
Notably, Fehrmann et al., who re-analyzed 77,840 expression
profiles, found that 99% of all abundantly expressed human genes
exhibited a positive correlation with DNA copy number12.
Dosage-compensation mechanisms, which ensure that genes are
expressed at appropriate levels irrespective of their copy numbers,
have not been found to exist for autosomes in humans13. Hence,
variation of RNA levels in cancer samples is a combined con-
sequence of CNA and biological regulation of transcript pro-
duction, processing and decay. Several groups have used copy
number-adjusted expression values to understand transcriptional
consequences of genomic aberrations14, 15. However, no method
exists to remove the confounding effect of CNAs in the analysis of
gene–gene co-expression using cancer transcriptome data.

To better understand gene–gene co-expression based on bio-
logical regulation but not SCNA, here we describe a method
named genomic regression analysis of coordinated expression
(GRACE) to adjust for the effect of CNA from co-expression
analysis. Through comprehensive analyses of genetics, genomics,
proteomics, metabolomics, and drug response data from the
public domain, we show that GRACE can improve our under-
standing of how a transcriptional network is re-wired in cancer. A
user-friendly web database has also been built with data from
multiple TCGA cohorts to allow for customized query.

Results
SCNA in cancer cause co-expression of neighboring genes.
SCNA is frequently observed in cancer8. In normal tissues where
all cells are diploid, gene–gene correlations are usually a result of
coordinated biological regulation to allow concerted expression of
genes with related functions. In the presence of SCNA, the
expression of genes becomes proportional to the copy number,
while copy number changes in functionally related genes are often
independent of each other. This results in a reduction in corre-
lation between functionally related genes and an increase in
correlation between neighboring genes situated in the same DNA

segment that is affected by the same CNA event (Fig. 1a). The
impact of SCNA confounds the interpretation of co-expression
genes (Fig. 1b). Here we provide some examples based on over
one thousand tumor samples from TCGA Breast Invasive Car-
cinoma (BRCA) cohort. Significant focal and arm level SCNA
events have been found for these samples16. For example, chro-
mosome 1p is frequently deleted, while chromosome 1q is fre-
quently amplified (Fig. 1c). We examined the impact of SCNA on
mRNA abundance in this cohort. A correlation heatmap revealed
a strong positive correlation between expression levels and copy
number values for genes in the same arm of chromosome 1
(Fig. 1d), and a similar pattern was also observed in other
chromosomes. Importantly, because SCNA occurs in segments
that cover multiple genes, RNA levels of a gene not only correlate
with its own copy number values but also broadly correlate with
the copy numbers of the physically neighboring genes, which
causes the co-expression of neighboring genes (Fig. 1b, e). This
bias toward positive correlation between RNA and copy number
occurs for genes within the same chromosome but not for genes
from different chromosomes (Fig. 1f)

GRACE adjusts for effects of SCNA in co-expression analysis.
To adjust for the variation in gene expression contributed by
SCNA, we fit a linear regression model using the copy number
values as the predictor variable and RNA levels as the response
variable. The residuals from this linear regression model repre-
sent variations in gene expression that could not be accounted for
by SCNA. To apply this method, samples with both gene
expression and copy number data were selected. Genes were fil-
tered to remove under-expressed genes or genes with saturated
copy number values so that both the RNA and copy number of
the same gene could have an approximately linear relationship
(“Methods”). The residuals for each gene were then calculated and
used for subsequent co-expression analysis (Fig. 2a). Collectively,
we refer to this method as genomic regression analysis of co-
expression (GRACE). We use an autocorrelation plot to visualize
the effect of our method in removing correlation from neigh-
boring genes due to SCNA. Autocorrelation was calculated for all
genes and averaged over all tumor samples or all normal samples.
The average autocorrelation of gene expression in tumor samples
is much higher than that of the normal samples presumably due
to SCNA, and adjusting expression with copy number data brings
down the gene–gene autocorrelation in tumor (Fig. 2b).

In Fig. 2c–h, we provide a specific example using EIF2D, a gene
encoding eukaryotic translation initiation factor 2D17, to compare
the results from co-expression analysis with the standard method
or GRACE using data from the TCGA BRCA cohort.

EIF2D is located on chromosome 1q32.1. In TCGA BRCA
tumor samples, the gene expression levels of EIF2D positively
correlate with its copy number levels (Fig. 2a) as a result of the
frequent amplification events of chromosome 1q (Fig. 1a). The
residuals from regressing gene expression levels of EIF2D on the
copy number levels of EIF2D were calculated to represent the
variations in EIF2D transcript levels after adjusting for its copy
number levels (Fig. 2a). The standard method of co-expression
analysis calculates expression correlation among genes based on
gene expression levels and sorts the genes by strength of positive
correlation, and the resulting top 10 EIF2D co-expressing genes
are all from chromosome 1q, neighboring the EIF2D locus
(Fig. 2c). In contrast, using our method GRACE, which calculates
correlation based on copy number-adjusted gene expression
levels, the resulting top 10 EIF2D co-expressing genes are from
various chromosomes and are almost exclusively ribosomal
protein genes involved in translational processes similar to EIF2D
(Fig. 2d). An extended view of the top 200 EIF2D co-expressing
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Fig. 1 Increased correlations between genes from neighboring loci as a result of copy number variation. a Schematic diagram illustrating an example of copy
number alteration confounding co-expression analysis. In this example, three subunits of a protein complex are encoded by three genes from different
chromosomes. In normal tissues, coordinated transcriptional regulation ensures equal amounts of three subunits are produced to facilitate stoichiometric
assembly of the complex. Transcript levels of these three genes will therefore be highly correlated. In tumor samples, the third gene is amplified together
with a neighboring oncogene with unrelated functions. Consequently, correlation of the third gene with the other two related genes decreases, whereas its
correlation with the unrelated oncogene neighbor increases. b Schematic diagram delineating correlation relationships between copy numbers of
neighboring genes, between RNA levels of neighboring genes and between copy number and RNA levels of the same gene as a result of CNA events in
cancer. c Relative copy number for genes on Chromosome 1 in 1075 tumor samples from TCGA breast cancer cohort. Genes are ordered by location on
chromosome, and borders of cytobands from p and q arms are marked on top. P arm is frequently deleted and q arm is frequently amplified. d Copy
number-RNA Pearson correlation matrix for genes from chromosome 1. Arm-level copy-number alteration events from chromosome 1 results in positive
correlation between copy number and RNA for genes from the same arm. e RNA–RNA Pearson correlation matrix for genes from chromosome 1. Co-
amplification or co-deletion of genes located in the same segment result in increased positive correlation between neighboring genes. f Copy number-RNA
Pearson correlation matrix for all genes. Genes are ordered by location in chromosomes, and names of chromosomes are given on top. Increased positive
correlation is observed only for genes from the same chromosome or chromosomal arm but not for genes from different chromosomes
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Fig. 2 Genomic regression analysis of co-expression (GRACE) corrects for correlation bias due to copy number variation. a Relative copy number levels vs.
RNA levels of EIF2D for all 1075 tumor samples. The residuals from the linear regression model fitted with all 1075 tumor samples were marked by purple lines.
b Average autocorrelation of neighboring genes in TCGA BRCA samples. Correlations between neighboring genes separated by 0–40 genes in between were
calculated as autocorrelation for each sample. The average of autocorrelations was taken for 1075 tumor samples and 112 normal samples. The autocorrelation
of neighboring genes based on copy number-adjusted expression levels variation (tumor residuals) was markedly reduced compared to autocorrelation based
on tumor RNA. Average autocorrelation from normal samples represent the gene–gene autocorrelation baseline in diploid cells. c, d Top 10 EIF2D correlated
genes by standard method (c) or GRACE (d) based on Spearman correlation. Top 10 EIF2D correlated genes by standard method are all located in cytoband 1q
whereas top 10 EIF2D correlated genes by GRACE are all outside cytoband 1q and are all ribosomal protein genes. e, f Enrichment of KEGG_RIBOSOME genes
from the top 100 EIF2D correlated genes by standard method with a p value of 0.10 (e) or by GRACE with a p value of 9.0e−143 (f). g, h Enrichment of genes
from chromosome 1q in the top 100 EIF2D correlated genes by standard method with a p value of 8.7e−119 (g) or by GRACE with a p value of 0.99 (h). i
Relative frequency distribution of chromosomal neighbors in top 10 co-expressing genes for all genes. GRACE markedly reduced the number of chromosomal
neighbors in the top 10 co-expressing genes. j, k Kernel density estimation plots that visualize the distribution of pooled Spearman rank correlation coefficients
for top 10 co-expressing genes from the same chromosome (j) or not from the same chromosome (k). Compared to the standard method, GRACE decreased
intra-chromosomal gene–gene correlation and increased inter-chromosomal gene–gene correlation. All analyses are based on TCGA BRCA data
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genes by the standard method or by GRACE again shows that
genes identified by the standard method are heavily biased toward
genes in the physical proximity of EIF2D, while genes identified
by GRACE bear more biological relevance to the function of
EIF2D in protein translation (Fig. 2e,g,f,h).

Following this specific example, we also performed a systematic
comparison between GRACE and the standard methods using the
TCGA BRCA data. For every gene, we counted how many of its
top 10 co-expressing genes were from the same chromosome on
which this gene is located. This count of chromosomal neighbor
genes ranges from 0 to 10. The relative frequency distributions of
these counts are given in Fig. 2i. With the standard method, over
25% of genes have all of the top 10 co-expressing genes coming
from the same chromosome, while this number is reduced to
<2% with GRACE. GRACE has largely reduced the number of
physically neighboring genes in the top 10 co-expressing genes.
We have also calculated such distribution using normal samples
from the TCGA BRCA cohort, which are presumably all diploid
cells. Furthermore, we computed the simulated distribution
assuming all genes are randomly distributed across 23 chromo-
somes (the Y chromosome is excluded from the TCGA BRCA
data). The normal samples have more co-expressing genes from
the same chromosome than the simulated distribution, which
agrees with the notion that gene order in the human genome is
not completely random and certain clusters of genes with
functional relevance are co-expressed18.

Next, we compared the strength of correlation among genes
from the same chromosome and among genes from different
chromosomes. As expected, the overall correlation among genes
from the same chromosome is reduced with GRACE compared to
the standard method (Fig. 2j). On the other hand, correlations
among genes from different chromosomes are improved with
GRACE compared to the standard method (Fig. 2k). This
increase in significance of inter-chromosomal gene–gene co-
expression by GRACE is likely a result of SCNA noise removal in
co-expression analysis and could help us better understand the
biological regulation of transcript levels in the cancer context.
Similar results are also observed with the CCLE cell line data and
METABRIC discovery set data4, 19 (Supplementary Fig. 1).

GRACE facilitates discovery of tumor-specific co-expression.
Tissue-specific gene networks are useful in capturing tissue-
specific functional interactions20. But in cancer, the transcription
network could be rewired to support cancer-specific needs. Here
with two specific examples, we show that GRACE can help us
better understand how coordinated gene expression is rewired
from normal to tumor tissues. Supplementary Data 1 include the
top results from systematic identification of tumor-unique- or
normal-unique-coexpressing gene enrichment in gene families
from HUGO Gene Nomenclature Committee (HGNC) classifi-
cation21 or canonical pathway gene sets from the Molecular
Signatures Database (MSigDB) collection22.

In the first example, we examined the difference in co-
expressing genes for Poly (ADP-ribose) polymerase-2 (PARP2) in
tumor tissues vs. normal tissues (Fig. 3a–c). PARP2 is a member
of the PARP family. The founding member PARP1 is a
cancer therapeutic target famous for its role in detection of
DNA damage and recruitment of various proteins for DNA
repair23. PARP inhibitors that target both PARP1 and PARP2
have been used to treat BRCA1- and BRCA2-deficient tumors and
the synergism in conjunction with DNA damaging agents is also
being tested in various clinical trials23. Despite their similar role
in DNA repair, PARP2 lacks the N-terminal DNA-binding zinc
fingers in PARP124. With the TCGA BRCA tumor samples, the
top PARP2 co-expressing genes found by the standard method

are mostly genes located near the PARP2 locus at chromosome
14q11.2, whereas the top co-expressing genes called by GRACE
are from various chromosomes and many are involved in cell
cycle processes (Fig. 3a). The top PARP2 co-expressing genes
found using the normal samples, however, are far less related to
cell cycle. Only two of the top 100 PARP2 co-expressing genes in
BRCA normal samples belong to the “REACTOME_CELL_-
CYCLE” gene set, while close to half of the top 100 PARP2 co-
expressing genes in BRCA tumor samples called by GRACE
belong to this gene set (Fig. 3b). This difference between PARP2
co-expressing genes in tumor samples and in normal samples is
consistently observed over multiple TCGA cohorts (Fig. 3b).
Moreover, genes belonging to the C2H2-type zinc fingers gene
family from the HGNC database21 are frequently found in the top
100 PARP2 co-expressing genes from normal tissues of several
TCGA cohorts (Fig. 3c). This difference in the function of PARP2
co-expressing genes between tumor samples and normal samples
suggests that PARP2 might be highly involved in DNA damaging
repairs in tumor because of the genomic instability in cancer,
while in normal tissues it might be involved in processes that also
require C2H2-type zinc finger proteins, such as transcriptional
regulation25. The levels of PARP2 transcripts are similar in
normal and tumor samples, whereas PARP1 has on average a
twofold increase in tumor samples compared to normal samples
(Supplementary Fig. 2a, b). In addition, PARP1 co-expressing
genes from normal tissues are not enriched in C2H2-type zinc
finger genes, suggesting that unlike PARP2, PARP1 is not
functionally related with the C2H2-type zinc finger transcription
factor (Supplementary Fig. 2d).

In the second example, we examined the co-expressing genes
for CCT4. CCT4 encodes for a subunit of the chaperonin-
containing TCP1 complex (CCT). The CCT complex assists the
folding of newly translated peptides, including actin and
tubulin26. As expected, CCT4 co-expresses with genes encoding
other subunits of the CCT complex in tumor, and this is better
detected by GRACE than by the standard method (Fig. 3d, e).
Interestingly, CCT4 has a much tighter correlation with ribosomal
genes in normal samples in several TCGA cohorts (Fig. 3d–f).
While the co-expression of CCT4 and ribosomal proteins might
suggest better coupling of peptide folding and translation
processes in normal tissue, it is also possible that monomeric
CCT4 could engage in functions independently of the CCT
oligomer27.

Applying GRACE in multi-dimensional data analysis. Cancer
cell lines are widely used as in vitro models for biological
research. Many cancer cell lines have been extensively profiled for
their copy number, transcriptome, proteome, metabolome and
drug sensitivity, among others. Because SCNA also cause a dis-
tortion of RNA levels in these cancer cell lines from what would
normally occur for a diploid cell in the same biological context,
we exploited the use of residuals (RES) from regressing RNA
expression levels on copy number values to identify genes with
copy number-adjusted RNA expression correlated with ortho-
gonal molecular features. We then compared them with the
standard approach using unadjusted RNA expression.

In the first example, we looked at the top 100 genes with RES
or RNA levels correlated with the protein levels of Myc measured
by reverse phase protein array (RPPA) in NCI-60 cell lines. Myc
is a frequently amplified oncogene located on chromosome 8q.
One of its critical roles in tumorigenesis is to broadly regulate
transcription, in particular the ribosome biogenesis program28.
We found a higher prevalence of genes belonging to a previously
characterized Myc target gene set29 or a ribosome gene set from
the top100 Myc RPPA correlated genes by RES than by RNA
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(Fig. 4a, b). This result suggests that using copy number-adjusted
RNA expression improves the correlation between transcription
factor protein abundance and its transcriptional target levels
(Fig. 4a, b).

In the second example, we used the metabolomics data of NCI-
60 cell lines and compared genes correlated with the levels of
several tricarboxylic acid cycle (TCA cycle) intermediates based
on adjusted or unadjusted RNA expression data (Fig. 4c). Since
the pool size of these metabolites could reflect activity of the TCA
cycle that produces reducing equivalents that generate ATPs
through oxidative phosphorylation, we tested the enrichment of
genes involved in oxidative phosphorylation in the genes

significantly correlated with TCA cycle intermediates. While the
results are all significant, for most metabolites, correlation based
on RES outperformed RNA (Fig. 4c), suggesting the association
between the metabolic status of the cell and the transcriptional
program of oxidative phosphorylation is better detected when the
noise from SCNA is reduced.

Lastly, we correlated gene expression to drug sensitivity using
data from CCLE4, using RNA or RES. Genes with negative
correlation to the maximal effect level of each drug were selected
based on a cut-off of adjusted p value less than 0.001. Overall,
correlation with RES identified more significant genes than with
RNA (Fig. 4d), and this often resulted in more significant results
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from functional enrichment analysis. For instance, paclitaxel, a
drug that targets tubulin to interfere with mitotic spindle
assembly, had more significant association with cell cycle-
related gene sets based on correlation by RES compared to
RNA (Fig. 4e), supporting the notion that cells actively engaged in
proliferation could be more susceptible to drugs blocking cell
division. This suggests that the transcriptional profile associated
with drug sensitivity phenotype is better revealed without
influence from SCNA.

For all three sets of orthogonal molecular data, we found that
the number of significantly associated genes detect by the RES
method was significantly larger than by the RNA method
(Supplementary Data 2). One-sided p values from Wilcoxon
signed rank test are 7e−4, 4e−9, and 1e−4 for RPPA, metabolome,
and drug sensitivity data respectively).

The GRACE web database. To introduce our method to the
cancer research community, we have constructed a user-friendly
open-access web database named GRACE (https://grace.biohpc.
swmed.edu) using data sets from TCGA that cover over 20 dis-
ease cohorts. GRACE provides two analysis options, “RNA Copy
Number Scatter Plot” and “Co-expression Analysis”. In “RNA
Copy Number Scatter Plot”, users can visualize the relationship
between the RNA expression and copy number for a gene of
interest in tumor samples of a specific TCGA disease cohort
(Supplementary Fig. 4). In “Co-expression Analysis”, users can
identify co-expressing genes for a specific gene in tumor or
normal samples from a specific TCGA disease cohort. The
standard method and GRACE are both provided for co-
expression analysis of tumor samples. In addition, we also pro-
vide follow-up functional enrichment analysis of the co-
expressing genes. Users may choose from different gene set
databases to run the customized enrichment analysis. From the
resulting enriched gene set table, users can select different gene
sets to view the localization of genes from the chosen gene set in
the co-expressing gene table (Fig. 5).

Discussion
Amplification of oncogenes and deletion of tumor suppressor
genes commonly take place in the process of tumorigenesis8.
However, SCNA are often large-scale events that broadly affect
many passenger genes besides the driver genes and thus nega-
tively impact the fitness of the cells with increased replication
stress, greater burden on the protein quality-control system,
altered metabolism, etc.13. Measurement of copy number changes
in cancer are critical in deciphering the driver events in cancer
and explaining the disease phenotypes; in addition, passenger
events from SCNA could also be exploited as specific vulner-
abilities that could represent alternative therapeutic targets for
cancer30. But from a standpoint of understanding transcriptional
regulation in cancer, SCNA could be a big source of noise. Our
work has revealed that teasing apart the contribution of SCNA
from transcriptome data could improve the biological inter-
pretation of co-expression analysis as well as the correlation
between gene expression data and orthogonal molecular features.
The benefits may be more obvious for genes severely affected by
CNAs and for genes that are more tightly transcriptionally co-
regulated with other genes. Our method can also help to discern
the differences in transcriptional co-regulation between tumor
and normal tissues. For example, we showed that whereas both
PARP1 and PARP2 co-express with cell cycle genes in tumor
samples consistent with their known roles in DNA repair, only
PARP2 strongly co-expresses with many C2H2-type zinc finger
genes in normal tissues. It is possible that while the inhibition of
PARP1 by PARP inhibitors may provide therapeutic efficacy in
cancer, the simultaneous inhibition of PARP2 may result in
toxicity via transcriptional dysregulation in normal tissues.

Our method does have several limitations. First, residuals are
calculated by regressing RNA expression levels of a gene on its
copy number levels. This simultaneous use of two types of data
requires the exclusion of samples or genes available to only one
type. Second, both data sets need to be in linear range in order for
the linear modeling to be accurate. In some cases like the TCGA

Genomic regression analysis of coordinated expression

Fig. 5 Co-expression analysis in web database GRACE. In the analysis page of the web database GRACE, upon entry of gene name, selection of “co-
expression analysis” as the type of analysis and specification of cohort, sample types and method, a table of co-expressing genes will be generated. The
result will include Spearman rank correlation coefficient and the chromosomal location for the co-expressing genes. Users may click the co-expressing gene
names to be redirected to external websites for more information. Additional follow up analysis options are also provided. The user may download the full
list of co-expressing genes, refresh the table with user specified sorting order and length of gene list, or run an enrichment analysis with a gene set library
of their choice. In the resulting table of top enriched gene sets, the user may select from different gene sets and identify their members by the magenta dot
in the “In Set” column of the co-expressing gene table
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BRCA copy number data, we found that copy number mea-
surements were saturated for some highly amplified genes such as
ERBB2, a gene encoding a receptor tyrosine kinase that is highly
amplified in breast cancer (Supplementary Fig. 3a). These
important genes unfortunately need to be filtered out. Genes with
many undetected values also need to be excluded, and this is
more common in microarray data, perhaps due to the lower
sensitivity compared to RNA-seq.

We also noticed that GRACE did not fully correct the bias
toward calling physical neighbors in the co-expression analysis
(Fig. 2b, i, Supplementary Fig. 1a, d). This could be due to an
over-simplified linear model. In our current study, we use pre-
processed data from previous publications. It would be interesting
to assess the impact of different data acquisition and processing
procedures on this method.

Finally, the dynamics of gene–gene correlation or anti-
correlation are much more significant in normal samples com-
pared to tumor samples (Supplementary Fig. 3b, c). Although our
method corrects for noise introduced by SCNA, there is little
change to the strength of correlation (Supplementary Fig. 3b).
Many factors could contribute to the perturbation of transcript
homeostasis in cancer, such as genetic lesions, epigenetic changes,
CNAs that result in aberrant levels of transcription factors,
lncRNA, microRNA, RNA binding proteins, etc. Intratumoral
heterogeneity, presence of stromal cells and infiltrating lympho-
cyte in impure bulk tumors can also add another layer of com-
plexity to the tumor transcriptional profile (Supplementary
Fig. 3d). There are still many challenges in untangling the dys-
regulated transcriptome in cancer and understanding the origin
of cancer-specific transcriptional changes.

Methods
Gene co-expression analysis adjusted for copy number value. In this study, we
propose a practical but powerful method to adjust the effect of copy number on
gene expression data in cancer samples. Let Yj and Xj denote random variables for
the gene expression and the copy number variation (CNV) of gene j, respectively.
Without loss of generality, we assume these variables have zero mean and unit
variance. We consider the following regression models describing the relation
between two genes j and h:

Yj ¼ βjXj þ αjhYh þ εj

Yh ¼ βhXh þ αhjYj þ εh;

where εj and εh are Gaussian noise with variance σ2j and σ2h , respectively. The
regression coefficient αjh describes the association of gene expression between genes j
and h, adjusting for the CNV effect of gene j and h. Our goal is to detect genes with
high absolute values of αjh and αhj to identify co-expressed genes. However, the
identification based on these two coefficients is computationally intensive, as it
requires inference on the above regression models for all pairs of genes simulta-
neously. Instead, our proposed method uses the residual from a simpler regression
model (Yj~βjXj), and correlations between each pair of residuals are used to detect
pairs of genes with high values of |αjh| and |αhj|. We did simulation studies to compare
the calculated coefficients using our approximation method with the true correlation
coefficients conditional on the expression of all other genes. The simulation results
show that our approach provides a good approximation of the true correlation values
under most scenarios (Please see the simulation studies in Supplementary Note.).
This approximation greatly improves the computation efficiency.

To calculate the correlation of the residuals, we regress the gene expression
levels on the copy number values for each gene across different samples and take
the residuals for subsequent co-expression analysis. Specifically, let yij denote the
gene expression of gene j in patient i, and xij denote the corresponding copy
number value. For each gene j, we fit a simple linear regression model: yij = b0j +
b1jxij + eij, and determine the fitted values b̂0j and b̂1j for the gene-specific
coefficients b0j and b1j. Finally, the residual rij ¼ yij � b̂0j � b̂1jxij is calculated and
used as the copy number-adjusted gene expression value (for gene j and patient i),
as seen in the following co-expression analysis.

For standard co-expression analysis using the TCGA data, under-expressed
genes with 0 values in over 10% of the total samples were filtered out. For GRACE
using the TCGA data, we noticed the copy numbers for some highly amplified
genes had saturated detection in the GISTIC copy number data. Hence, in addition
to removal of the under-expressed genes same as above, we also removed genes
with saturated copy number values in over 5% of the total samples.

Functional enrichment analysis was performed based on the hypergeometric
test. Multiple comparisons correction was performed using the
Benjamini–Hochberg procedure with a corrected false discovery rate (FDR) cut-off
of 0.05. To find genes associated with drug sensitivity, too many genes were
identified at the FDR cut-off of 0.05, so in order to find the most important drug
response associated genes, we applied a more stringent cut-off of FDR<0.001.

Spearman rank correlation was used for assessing correlation between gene
expression levels. Comparisons made between the standard method and our
GRACE method are based on data from the same samples, i.e., samples without an
available copy number will also be excluded from the standard analysis, whereas we
include all available samples for the standard method in the GRACE web database.

Statistical analysis and data visualization were carried out using R.

Correlation with orthogonal data sets. In the CCLE data, we did not notice any
saturated copy numbers. However, under-detection of gene expression was more
prevalent, so we filtered out under-expressed genes with 0 values in over 50% of the
total samples. For NCI-60 data, we filtered out genes with missing values in copy
number data or gene expression data.

Spearman rank correlation was used for assessing correlation between protein
levels, metabolite levels and gene expression levels, whereas Pearson correlation
was used for correlation between drug sensitivity and gene expression levels31.

Implementation of the GRACE web database. From the GRACE web database,
users are prompted to input the gene name, choose the type of analysis, pick a
TCGA cohort and select their preferred sample and method in a stepwise manner.
Based on the input from each step, the options without available data will be
disabled from the succeeding steps. The design of the analysis configuration and
relational database follows the flow chart shown in Supplementary Fig. 5. The web
interface was implemented in Javascript.

Data availability. All the data used in this study are from publically available data
sets:

For TCGA data sets, we downloaded the normalized RNA-seq data processed
by RSEM (RNA-Seq by Expectation Maximization) method and copy number data
processed by GISTIC2 from GDAC Firehose (http://firebrowse.org/) from analysis
run “02 April 2015”32. For CCLE data sets, we downloaded gene-centric RMA-
normalized mRNA microarray expression data, DNA copy number data and
pharmacological profiling data from the CCLE website (http://www.broadinstitute.
org/ccle)4. For NCI-60 data sets, we downloaded the five-platform gene transcript-
processed RNA data set and combined aCGH-processed DNA copy number data
from the CellMiner database (http://discover.nci.nih.gov/cellminer/loadDownload.
do)33, 34; we also downloaded the reverse protein lysate data set and Metabolon
metabolomics data set from the NCI DTP Molecular Target program (https://wiki.
nci.nih.gov/display/NCIDTPdata/Molecular+Target+Data).

The webtool we developed in this study allowing users to perform gene–gene
co-expression study using TCGA data can be accessed through: https://grace.
biohpc.swmed.edu/
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