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Leveraging uncertainty information 
from deep neural networks for 
disease detection
Christian Leibig1, Vaneeda Allken1, Murat Seçkin Ayhan1, Philipp Berens   1,2 & Siegfried Wahl   1,3

Deep learning (DL) has revolutionized the field of computer vision and image processing. In medical 
imaging, algorithmic solutions based on DL have been shown to achieve high performance on tasks 
that previously required medical experts. However, DL-based solutions for disease detection have 
been proposed without methods to quantify and control their uncertainty in a decision. In contrast, a 
physician knows whether she is uncertain about a case and will consult more experienced colleagues if 
needed. Here we evaluate drop-out based Bayesian uncertainty measures for DL in diagnosing diabetic 
retinopathy (DR) from fundus images and show that it captures uncertainty better than straightforward 
alternatives. Furthermore, we show that uncertainty informed decision referral can improve diagnostic 
performance. Experiments across different networks, tasks and datasets show robust generalization. 
Depending on network capacity and task/dataset difficulty, we surpass 85% sensitivity and 80% 
specificity as recommended by the NHS when referring 0−20% of the most uncertain decisions for 
further inspection. We analyse causes of uncertainty by relating intuitions from 2D visualizations to the 
high-dimensional image space. While uncertainty is sensitive to clinically relevant cases, sensitivity to 
unfamiliar data samples is task dependent, but can be rendered more robust.

In recent years, deep neural networks (DNNs)1 have revolutionized computer vision2 and gained considerable 
traction in challenging scientific data analysis problems3. By stacking layers of linear convolutions with appropri-
ate non-linearities4, abstract concepts can be learnt from high-dimensional input alleviating the challenging and 
time-consuming task of hand-crafting algorithms. Such DNNs are quickly entering the field of medical imaging 
and diagnosis5–15, outperforming state-of-the-art methods at disease detection or allowing one to tackle problems 
that had previously been out of reach. Applied at scale, such systems could considerably alleviate the workload of 
physicians by detecting patients at risk from a prescreening examination.

Surprisingly, however, DNN-based solutions for medical applications have so far been suggested without any 
risk-management. Yet, information about the reliability of automated decisions is a key requirement for them 
to be integrated into diagnostic systems in the healthcare sector16. No matter whether data is short or abundant, 
difficult diagnostic cases are unavoidable. Therefore, DNNs should report - in addition to the decision - an asso-
ciated estimate of uncertainty17, in particular since some images may be more difficult to analyse and classify 
than others, both for the clinician and the model, and the transition from “healthy” to “diseased” is not always 
clear-cut.

Automated systems are typically evaluated by their diagnostic sensitivity, specificity or area under 
receiver-operating-characteristic (ROC) curve, metrics which measure the overall performance on the test set. 
However, as a prediction outcome can decide whether a person should be sent for treatment, it is critical to know 
how confident a model is about each prediction. If we were to know which patients are difficult to diagnose, 
humans and machines could attend especially to these, potentially increasing the overall performance. In fact, 
if the machine was making most mistakes when uncertain about a case, one could devise a strategy mimicking 
typical medical decision making. When faced with a difficult case and feeling uncertain about a decision a junior 
doctor will consult a more experienced colleague. Likewise, a diagnostic algorithm could flag uncertain cases as 
requiring particular attention by medical experts.

1Institute for Ophthalmic Research, Eberhard Karls University, Tübingen, Germany. 2Bernstein Center for 
Computational Neuroscience and Centre for Integrative Neuroscience, Eberhard Karls University, Tübingen, 
Germany. 3Carl Zeiss Vision International GmbH, Aalen, Germany. Philipp Berens and Siegfried Wahl jointly 
supervised to this work. Correspondence and requests for materials should be addressed to C.L. (email: leibig.
christian@gmail.com)

Received: 24 July 2017

Accepted: 1 December 2017

Published: xx xx xxxx

OPEN

http://orcid.org/0000-0002-0199-4727
http://orcid.org/0000-0003-3437-6711
mailto:leibig.christian@gmail.com
mailto:leibig.christian@gmail.com


www.nature.com/scientificreports/

2SCIENTIfIC RePortS |  (2017) 7:17816  | DOI:10.1038/s41598-017-17876-z

Estimating the uncertainty about a machine learning based prediction on a single sample requires a distribu-
tion over possible outcomes, for which a Bayesian perspective is principled. Bayesian approaches to uncertainty 
estimation have indeed been proposed to assess the reliability of clinical predictions18–21 but have not been applied 
to the large-scale real-world problems that DNNs can target. Outside the medical domain, the integration of the 
Bayesian ideas and DNNs is an active topic of research22–33, but the practical value of the developed methods has 
yet to be demonstrated.

Due to its ease of use and inherent scalability, a recent insight from Gal & Ghahramani30,31,34 is particularly 
promising for use in medical settings. Using dropout networks35,36, where subsets of units are inactivated during 
training to avoid overfitting, one can compute an approximation to the posterior distribution by sampling multi-
ple predictions with dropout turned on. This allows one to perform approximate but efficient Bayesian inference 
by using existing software implementations in a straightforward way. Another advantage of this approach is that 
it can be applied to already trained networks.

Here we assess whether this allows us to retrieve informative uncertainty estimates for a large-scale, real world 
disease detection problem and contrast it against straightforward alternatives: (i) the conventional network out-
put via standard dropout and (ii) Gaussian processes37 (GPs). Diabetic retinopathy (DR) is one of the leading 
causes of blindness in the working-age population of the developed world38. If the symptoms are detected in 
time, progress to vision impairment can be averted but the existing infrastructure is insufficient and manual 
detection is time-consuming. With the increase in the global incidence of diabetes39, clinicians now recognize 
the need for a cost-effective, accurate and easily performed automated detection of DR to aid the screening pro-
cess14,38,40–42. Previous recommendations of the British Diabetic Association (now Diabetes UK) are often cited as 
80% sensitivity and 95% specificity 41,43,44, and references therein] but the current minimum thresholds set by the 
NHS Diabetes Eye Screening programme are 85% sensitivity and 80% specificity for sight-threatening diabetic 
retinopathy16.

Using a Bayesian DNN, we achieve state-of-the-art results for diabetic retinopathy detection on the publicly 
available dataset Messidor45. The computed measure of uncertainty allowed us to refer a subset of difficult cases 
for further inspection, resulting in substantial improvements in detection performance in the remaining data. 
While it is sometimes believed that the conventional network output captures the networks uncertainty, neither 
this nor a GP alternative were competitive under the decision referral scenario. This finding generalized across 
different model architectures, detection tasks and datasets. In practice, patients whose samples result in uncertain 
decisions would either be sent for further screening tests or referred directly to a specialist. We further explore 
the causes of uncertainty in our scenario. Intuitions illustrated on a 2D toy problem are used to understand how 
uncertainty might behave in the high-dimensional image space. This allowed us to predict the kind of application 
relevant scenarios for which the assessed uncertainty is informative.

Results
Here we tackle two major questions: first, we evaluate whether model uncertainty obtained from deep disease 
detection networks at test time is useful for ranking test data by their prediction performance without knowing 
the latter. In the second part, we open the black box in order to learn what renders predictions uncertain.

Diabetic retinopathy datasets.  We used a DNN-based approach to detect diabetic retinopathy (DR) from 
fundus images. Our main dataset used for training is taken from a previous Kaggle competition46. This dataset 
consists of 35,126 training images and 53,576 test images, graded into five stages of DR by clinicians according 
to the following scale47: 0 - No DR, 1 - Mild, 2 - Moderate, 3 - Severe and 4 - Proliferative DR. The percentage of 
images labelled with No DR is about 73% in both the training and test dataset.

In order to measure the true generalization of our insights we in addition applied all networks to the publicly 
available Messidor dataset45. This dataset comprises 1,200 images divided into the following categories: 0 - No DR, 
1 - Mild non-proliferative, 2 - Severe non-proliferative, 3 - Most serious DR.

Disease detection tasks.  Because the question of whether a patient has to be sent to a physician at all, is of 
high priority, we reduced the problem to a binary classification task. Therefore we split the data into a “healthy” 
versus “diseased” set by grouping some of the classes. In order to analyse how model uncertainty behaves for 
different tasks, we varied the disease onset level. If set to 1, the classes except for 0 are in the “diseased” category 
resulting in a detector for mild DR (or more severe) whereas for disease onset level 2, classes {0, 1} are considered 
“healthy” and moderate DR (or more severe levels) are in the “diseased” group.

Network architectures.  We used two different network architectures for our experiments: (1) Two net-
works trained for the questions at hand. (2) The publicly available network architecture and weights48 provided by 
the participant who scored very well in the Kaggle DR competition46, which we will call JFnet.

The JFnet comprises 13 convolutional layers, 3 fully connected layers and a concatenation layer combining 
information from the contralateral eyes of a patient. Convolutional layers are interleaved with 5 max pooling 
layers, fully connected layers are interleaved with two feature pooling and dropout (pdrop = 0.5) layers each. All 
non-linearities are ReLUs49 or Leaky ReLUs50 (leakiness 0.5) except for the softmax output layer51. We recast the 
original model’s five output units (trained for Kaggle DR’s level discrimination task) to our binary tasks by sum-
ming the output of respective units.

Our own network architecture was inspired by the monocular part of the JFnet (which in turn is VGG-like52, 
a standard CNN architecture that has been shown to perform well in a variety of applications), with the fully 
connected part replaced by the concatenation of a global mean and a global max pooling layer, followed by a 
softmax output layer. In contrast to the JFnet, our networks do not rely on both images of a given patient being 
present, i.e. they do not perform eye blending. Furthermore, they have more network parameters that are treated 
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in a Bayesian manner31, because we added dropout (pdrop = 0.2) after each convolutional layer for which reason 
we denote these networks as Bayesian convolutional neural networks (BCNNs).

Bayesian model uncertainty.  For the main part of the paper, we measured the uncertainty associated with 
the predictions of the DNNs described above, exploiting a relationship between dropout networks and a Bayesian 
posterior30. For evaluation purposes, we compare against alternative uncertainty measures where appropriate. 
Typically, the softmax output of a classification network denotes a single prediction given a sample. In case of 
DR detection from a fundus image (see Fig. 1a left, for a “diseased” example) a trained network would output 
the probability that the given image is “diseased” (Fig. 1a, right). The softmax probability is based on a single set 
of network parameters, whereas in a Bayesian setting one aims for the predictive posterior (compare eq. 2), i.e. a 
distribution over predictions (in our case the softmax values) obtained by integrating over the distribution over 
possible parameters.

The predictive posterior of a neural network is hard to obtain. However, Gal and colleagues30 showed that by 
leaving dropout turned on at test time, we can draw Monte Carlo samples from the approximate predictive poste-
rior (for details see Methods). We will summarize each predictive posterior distribution by its first two moments. 
The predictive mean μpred (eq. 7) will be used for predictions and the predictive standard deviation σpred (eq. 8) as 
the associated uncertainty.

Based on a fundus image, a DNN can be certain (Fig. 1a) or more or less uncertain (Fig. 1b,c) about its deci-
sion, as indicated by the width of the predictive posterior distribution: For example, an image can be classified 
as certainly diseased, where all sampled predictions are 1.0, such that σpred = 0 (Fig. 1a). A different example is 
classified as “healthy”, but the network predictions are more spread out (σpred = 0.14) (Fig. 1b). The predicted label 
is still correct, because μpred = 0.36 < 0.5. Finally, some examples produce high uncertainty in the DNN (σpred = 
0.27) and result in an erroneous “diseased” prediction (μpred = 0.68 0.5) (Fig. 1c).

If high model uncertainty was indicative of erroneous predictions, this information could be leveraged to 
increase the performance of the automated system by selecting appropriate subsets for further inspection. Indeed, 
model uncertainty was higher for incorrect predictions (Fig. 1d). This means that σpred (a quantity that can be 
evaluated at test time) can be used to rank order prediction performance (a quantity unknown at test time), 
in order to mimic the human clinical work flow. In face of uncertain decisions, further information should be 
obtained.

Importantly, model uncertainty as quantified by σpred adds complementary information to the conventional 
network output as quantified by p(diseased|image) (eq. 1), i.e. with dropout turned off at test time. Specific soft-
max values do not determine the precise values that σpred assumes (Fig. 2). This decouples prediction uncertainty 
as measured by p(diseased|image) from model uncertainty. Lower probabilities that an image is diseased are 
associated with a larger range of uncertainties while high probabilities that an image is diseased are confined to 
smaller uncertainties, indicating that if an image can be classified as diseased, this typically happens with confi-
dence. In contrast, healthy is a much less crisp concept, where variation among individuals can lead to significant 
uncertainty in judgement.

Figure 1.  Bayesian model uncertainty for diabetic retinopathy detection. (a–c) left: Exemplary fundus images 
with human label assignments in the titles. (a–c) right: Corresponding approximate predictive posteriors 
(Eq. 6) over the softmax output values p(diseased | image) (Eq. 1). Predictions are based on μpred (Eq. 7) and 
uncertainty is quantified by σpred (Eq. 8). Examples are ordered by increasing uncertainty from left to right. (d) 
Distribution of uncertainty values for all Kaggle DR test images, grouped by correct and erroneous predictions. 
Label assignment for “diseased” was based on thresholding μpred at 0.5. Given a prediction is incorrect, there is a 
strong likelihood that the prediction uncertainty is also high.
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Uncertainty rank orders prediction performance.  Performance improvement via uncertainty-informed 
decision referral.  To test whether we could exploit the uncertainty measurement proposed above to mimic the 
clinical workflow and refer patients with uncertain diagnosis for further testing, we performed predictions (using 
the BCNN trained for disease onset 1 on the Kaggle DR training images) for all Kaggle DR test images and sorted 
the predictions by their associated uncertainty. We then referred predictions based on various levels of tolerated 
uncertainty for further diagnosis and measured the accuracy of the predictions (threshold at 0.5) for the remain-
ing cases (Fig. 3a).

We observed a monotonic increase in prediction accuracy for decreasing levels of tolerated model uncertainty, 
which translates to the same behaviour when monitoring the fraction of retained, that is automatically diagnosed, 
data instead (Fig. 3b, blue curve). As a control experiment, we compared with randomly selected data samples, 
that is without using uncertainty information (Fig. 3b, red curve). For less than 2% decisions referred for further 
inspections, the 95% confidence intervals of the two scenarios are already non-overlapping. Uncertainty is hence 
informative about prediction performance, here measured by accuracy.

Figure 2.  Relation between Bayesian model uncertainty σpred and maximum-likelihood, i.e. conventional 
softmax probabilities p(diseased/image). Each subplot shows the 2-dimensional density over Kaggle DR test set 
predictions conditioned on: correctly (a) vs. erroneously (b) classified images respectively.

Figure 3.  Improvement in accuracy via uncertainty-informed decision referral. (a) The prediction accuracy 
as a function of the tolerated amount of model uncertainty. (b) Accuracy is plotted over the retained data set 
size (test data set size - referral data set size). The red curve shows the effect of rejecting the same number 
of samples randomly, that is without taking into account information about uncertainty. Exemplarily, if 
20% of the data would be referred for further inspection, 80% of the data would be retained for automatic 
diagnostics. This results in a better test performance (accuracy ≥ 90%, point on blue curve) on the retained 
data than on 80% of the test data sampled uniformly (accuracy ≈ 87%, point on red curve). Uncertainty 
informed decision referral derived from the conventional softmax output cannot achieve consistent 
performance improvements (Fig. 4).
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Performance improvement for different costs, networks, tasks and datasets.  Here we build on the idea of uncer-
tainty informed decision referral introduced above (Fig. 3) and assess whether performance improvements 
are robust across different settings. So far (Figs 1–3), predictions had been converted to labels by thresholding 
the network output at 0.5. In a medical setting however, different costs are associated with false positive and 
false negative errors. These can be controlled by the decision threshold at which the diseased probability given 
an image is converted to the category “diseased”. A complete picture can be obtained by the decision system’s 
receiver-operating-characteristic, which monitors sensitivity over 1 - specificity pairs for all conceivable decision 
thresholds. The quality of such a ROC curve can be summarized by its area under the curve (AUC), which varies 
between 0.5 (chance level) and 1.0 (best possible value). Importantly, ROC characteristics allow us to assess model 
uncertainty independent of prediction uncertainty.

ROC AUC improves monotonically with decreasing levels of tolerated uncertainty (Fig. 4a, left, blue curve). In 
addition, ROC curves for all Kaggle test images as well as under 10, 20 and 30% decision referral reveal that both 
sensitivity and specificity consistently improved (Fig. 4a, right). These results were found to be robust for a variety 
of settings, that is for our different networks/tasks (disease onset 1 (Fig. 4, left double column) vs. disease onset 2 
(Fig. 4, right double column)) as well as when applied to the completely independent Messidor database (Fig. 4, 
2nd row). For comparison with a different network architecture we refer to Supplementary Figure S1.

The application to Messidor provides a report of the true generalization performance, because it had never 
been used for either of our networks. Our networks are thus robust against the distributional shift between K 
aggle and Messidor which will be analysed further below in more detail.

Even though our primary aim was not to achieve high performance, we surpassed the requirements of both 
the NHS and the British Diabetic Association (Fig. 4, blue and green dots respectively) for (automated) patient 
referral for several settings and perform on par with the non-ensembling approach of Antal & Hajdu43. We also 
performed similar ensembling43,53, by selecting an optimal (forward-backward search while monitoring AUC) 
ensemble of 100 networks from a much larger pool of dropout networks by controlling the random seeds. 
Performance improvements however were marginal and did not generalize to test data, probably because this 
compromises the stochastic nature of the regularizing effects of dropout. For a summary of the different configu-
rations and comparison with the state-of-the-art we refer to Table 1.

The better performance for moderate DR detection (onset 2) as compared to mild DR detection (onset 1) 
across networks and datasets is in line with the more pronounced expression of symptoms as the disease pro-
gresses. Comparison across datasets reveals that for both tasks, the models performed better on Messidor than on 
Kaggle data (compare Fig. 4a vs. c and b vs. d). Specifically, we achieved both the BDA and NHS requirements on 

Figure 4.  Improvement in receiver-operating-characteristics via uncertainty-informed decision referral 
for different networks/tasks (left vs. right double column), datasets (1st vs. 2nd row) and methods (1st and 
3rd single column). (a), left) ROC AUC over the fraction of retained data under uncertainty informed (MC 
dropout: blue, Gaussian process: green, standard dropout: orange) and random (red) decision referral for a 
Bayesian CNN, trained for disease onset 1 and tested on Kaggle DR. (a, right) Exemplary ROC curves under 
decision referral using the best method from (a, left), that is MC dropout. ROC curves improve when increasing 
the number of referred samples (90/80/70% retained data: purple/brown/pink curves respectively) as compared 
to no referral (turquoise). Panels (b)–(d) have the same layout. National UK standards for the detection of sight-
threatening diabetic retinopathy (in73 defined as moderate DR) from the BDA (80%/95% sensitivity/specificity, 
green dot) and the NHS (85%/80% sensitivity/specificity, blue dot) are given in all subpanels with ROC curves. 
(b) same as (a), but for disease onset 2. (c) Same network/task as in (a), but tested on Messidor. (d) Same 
network/task as in (b), but tested on Messidor.



www.nature.com/scientificreports/

6SCIENTIfIC RePortS |  (2017) 7:17816  | DOI:10.1038/s41598-017-17876-z

Messidor without having to refer decisions whereas for Kaggle data we have to refer 0–30% of the data, depending 
on the recommendation, task difficulty and network capacity. It has been reported previously that about 10%54 of 
the Kaggle DR images were considered ungradable according to national UK standards. We want to emphasize 
that the proposed uncertainty informed decision referral did not rely on labels for such cases, that is we could 
detect performance impeding images without training a separate, supervised detection algorithm. To what extent 
images associated with low model confidence relate to clinically relevant cases or ungradable images will be ana-
lysed in the section about what causes uncertainty.

Comparison with alternative uncertainty measures.  We rendered large-scale disease detection networks Bayesian 
by using the MC dropout approach put forward by Gal and colleagues55 because it is theoretically sound, easy to 
implement and computationally efficient. It remains however an open question how MC dropout compares to 
alternative uncertainty measures. The decision referral scenario can serve as a minimal benchmark for comparing 
uncertainty methods. Here we contrast against two straightforward and seemingly appealing alternatives, that is 
the conventional network output (standard dropout) and GPs37 fit to the penultimate layer features.

Because the conventional network output denotes the probability that a given image is diseased, the decision 
referral scenario can reveal whether a Bayesian approach is indeed necessary. Because we do not have a distribu-
tion over predictions in case of standard dropout, σpred is undefined. We can however resort to quantifying the 
uncertainty about a prediction by the binary entropy H(p) = −(plogp + (1−p)log(1−p)) instead. Entropy is theo-
retically grounded and applicable to the Bayesian and conventional network outputs as well as the GP outputs. For 
our Bayesian networks, the entropy performs comparable to σpred as shown in Supplementary Figure 2 and can 
hence be used as a drop-in replacement for the decision referral scenario. In case of using the uncertainty derived 
from standard dropout network (orange curves in Fig. 4), the performance improvement under decision referral 
is lower than with MC dropout (blue curves in Fig. 4). When referring up to ≈30% of the decisions considered 
most uncertain in case of detecting mild DR, standard dropout performs even worse than random referral (Fig. 4, 
left, orange vs. red curves). This means that the class probabilities obtained via standard dropout are miscalibrated 
(see as well Fig. 2) and not suited for performance improvements under decision referral. Because we need to 
compute either the mean (for H(μpred)) or the standard deviation σpred of the (approximated) predictive posterior, 
we conclude that we do need Bayesian methods to achieve our results.

Given this, GPs could in principle constitute an alternative approach to MC dropout (see Supplementary 
Information). While they may theoretically seem more appealing than dropout-uncertainty, they scale badly 
with both the dimensionality of the feature space and the size of the dataset. The standard GP learning exhibits a 
runtime complexity of O(N3) and memory complexity of O(N2), where N is the size of the dataset37,56. To render 
the application of GPs feasible for disease detection from a large collection of high-dimensional medical images, 
we adopted the minibatch approach and the 512-dim activations of the last hidden layers of our Bayesian net-
works were used as input to the GP classifiers that are equipped with neural network covariance functions (see 
Supplementary notes). As it was necessary to work with a single feature vector per image, conventional dropout 
was used to obtain them. While this was sufficient to achieve similar performance without referring data (blue 
and green curves overlap strongly for 100% retained data in the 1st and 3rd column of Fig. 4), such a greedy train-
ing of GPs, which are essentially shallow neural networks, on the last hidden layer activations of a deep network 
inherently suffers from two issues: (i) the loss of the Bayesian treatment of MC dropout, and (ii) the lack of access 
to the full stack of knowledge from earlier layers. As a result, GPs cannot keep up with our Bayesian networks 
under any decision referral scenario (Fig. 4, green vs. blue curves for both datasets and disease detection tasks).

Dataset Architecture Task 100% data AUC 90% data AUC 80% data AUC 70% data AUC

Kaggle DR Bayes. CNN (0) vs (1, 2, 3, 4)
0.889 0.898 0.908 0.918

CI: [0.885–0.892] CI: [0.894–0.902] CI: [0.904–0.912] CI: [0.914–0.922]

Kaggle DR Bayes. CNN (0, 1) vs (2, 3, 4)
0.927 0.938 0.947 0.956

CI: [0.924–0.930] CI: [0.935–0.941] CI: [0.944–0.950] CI: [0.953–0.959]

Messidor Bayes. CNN (0) vs (1, 2, 3)
0.936 0.948 0.956 0.968

CI: [0.922–0.949] CI: [0.935–0.960] CI: [0.943–0.968] CI: [0.956–0.978]

Messidor Bayes. CNN (0, 1) vs (2, 3)
0.955 0.965 0.973 0.978

CI: [0.943–0.967] CI: [0.953–0.975] CI: [0.962–0.983] CI: [0.967–0.988]

Kaggle DR JFnet (0) vs (1, 2, 3, 4)
0.911 0.918 0.925 0.932

CI: [0.908–0.914] CI: [0.914–0.921] CI: [0.921–0.929] CI: [0.928–0.935]

Kaggle DR JFnet (0, 1) vs (2, 3, 4)
0.947 0.953 0.954 0.956

CI: [0.944–0.950] CI: [0.949–0.956] CI: [0.951–0.958] CI: [0.952–0.960]

Messidor Single best43 (0) vs (1, 2, 3) 0.936 — — —

Messidor Ensemble43 (0) vs (1, 2, 3) 0.989 — — —

Messidor-2* CNN14 (0, 1) vs (> = 2)
0.990 — — —

CI: [0.986–0.995] — — —

Table 1.  Model performance (measured by AUC) with two different datasets, architectures and tasks when 
data with higher uncertainty levels is referred to further inspection. *For Messidor-245,74 no labels are publicly 
available for comparison with our networks.
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In addition to architectural disadvantages, we report on practical difficulties of using GPs. Despite the prom-
ises of Expectation Propagation (EP) for approximate inference for GP classification (see Supplementary notes), 
we could not utilize it in our experiments. More specifically, the inference routine failed to converge during 
our trials, and we had to resort to a simpler approximate inference algorithm, namely Laplace Approximation 
(LA). Given that this method has been reported to substantially underestimate the mean and covariance of a GP, 
especially in high-dimensional spaces (see Supplementary notes), we speculate that it prevented the uncertainty 
estimates from being as good as they could be with EP, and ultimately hindered the performance of GPs under 
the decision referral scenario.

As the Bayesian network approach performed best throughout, the following sections will exclusively analyse 
the properties of the uncertainty derived from MC dropout. Some aspects of what causes uncertainty are anyway 
fundamentally determined by the fact of dealing with a classification problem and should qualitatively hold for 
different uncertainty measures.

What causes uncertainty?  Next we asked what causes the networks to consider the prediction about 
an image uncertain. In order to build an intuitive understanding of uncertainty estimates, we trained a simple 
Bayesian neural network (3 hidden layers with 100 units each) with dropout layers interleaved (pdrop = 0.5) on a 
2D toy classification problem (Fig. 5).

The network learns the non-linear hyperplane (defined by p(y = 1|x, θ) = 0.5) that separates the two classes 
(Fig. 5a) shown as the network’s softmax output when evaluated traditionally, that is with dropout turned off at 
test time. The first (Fig. 5b, eq. 7) and second moment (Fig. 5c, eq. 8) of the approximate predictive posterior 
(eq. 6) in turn are more spread out along directions orthogonal to the separating hyperplane given by the con-
ventional softmax output. This is because the Bayesian perspective models a distribution over possible separating 
hyperplanes. In contrast to the conventional network output, μpred and σpred are more related. Incidentally, this 
was also true in the high-dimensional real world setting, where mean and the standard deviation of the predictive 
posterior resulted in similar uncertainty judgements (Fig. S2). Note that regions in the input space that have high 
probabilities of belonging to either class in the non-Bayesian setting (Fig. 5a) may still carry substantial uncer-
tainties in the Bayesian setting (Fig. 5c), which is in line with the high-dimensional case as illustrated by Fig. (2).

In order to evaluate the relationship of uncertainty with respect to the class boundary, we devised an exper-
iment that makes use of the gradual progression of disease levels from 0 to 4 as provided by physicians in case 
of Kaggle DR data. We probed what happened to images with different “distances” from the healthy/diseased 
boundary defined by the disease onset level of a given task. To this end, we quantified the proportion of the dif-
ferent disease levels in the data referred for further inspection for various levels of tolerated uncertainty (Fig. 6).

If no model uncertainty is tolerated, we observe the prior distribution (shown on the vertical axis at σpred = 
0) of disease levels because all data is referred. If instead only the most uncertain cases are referred, the contri-
bution of those disease levels that are adjacent to the healthy/diseased boundary (black lines in Fig. 6a and b)  
is increased. For mild DR defining the disease onset and large tolerated uncertainties, disease levels 0 and 1 
dominate the pool of referred data (Fig. 6a). If we shifted the disease onset to moderate DR, in an analogous 
manner disease levels 1 and 2 dominate the referred data sets for high uncertainties (Fig. 6b). In an intermediate 
regime however, such as e.g. around an uncertainty of 0.1 for which we still refer less than 25% of the data, the 
relative contribution of disease levels is already resembling the prior. Taken together with the fact that we improve 
performance throughout at least up to 50% data referral (compare Figs 3 and 4) it is not only those samples that 
neighbour the class boundaries that carry meaningful uncertainties as determined by the networks.

As a side note, depending on the therapeutic possibilities - moderate DR detection (Fig. 6a) might be prefer-
able to mild DR detection (Fig. 6a) as the uncertainty still detected level 1 patients in the latter case but reduced 
the amount of healthy patients sent for referral.

Figure 5.  Illustration of uncertainty for a 2D binary classification problem. (a) Conventional softmax output 
obtained by turning off dropout at test time (eq. 1). (b) Predictive mean of approximate predictive posterior 
(eq. 7). (c) Uncertainty, measured by predictive standard deviation of approximate predictive posterior (eq. 8). 
The softmax output (a) is overly confident (only a narrow region in input space assumes values other than 0 or 
1) when compared to the Bayesian approach (b,c). Uncertainty (c) tends to be high for regions in input space 
through which alternative separating hyperplanes could pass. Colour-coded dots in all subplots correspond to 
test data the network has not seen during training.
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In the following we devised an experiment that aimed to evaluate the algorithm’s referral decisions against 
physicians’ decisions. For that purpose we made use of the availability of both eyes’ images for each patient in 
case of Kaggle DR data. Even though therapeutic intervention is typically based on a patient level diagnosis, the 
contra-lateral eye of a given patient may be in a different state and therefore carry a different label. A strong cor-
relation of the two eyes’ disease states was leveraged to improve performance by many Kaggle competition partic-
ipants46. However, even after compilation of the 5-class problem to the binary disease detection problem, 5–10% 
of images categorized as diseased have images from the contra-lateral eye with a disagreeing label.

Whether the corresponding patients are diseased or not is therefore undefined and they should be subject 
to referral. By measuring the proportion of images whose contra-lateral ground truth label is different for the 
referred and retained data sets respectively (Fig. 7), we could analyse to what extent the model uncertainty reflects 
a physician’s uncertainty. Exemplarily (Fig. 7a), if the tolerated model uncertainty were 0.2, only ≈8% of the 
retained images (σpred < = 0.2) belong to a patient with ambiguous disease state whereas nearly 20% of the 
referred images (σpred 0.2) belong to a patient with ambiguous disease state. Throughout, images from patients 
with one healthy and one diseased eye are more likely to be referred for further inspection than retained (Fig. 7). 
For both disease detection tasks (Fig. 7a/b for mild/moderate DR as disease onset respectively) this is particularly 
pronounced in the regime of high uncertainty.

Uncertainty about unfamiliar data samples.  Ideally, model uncertainty about the predicted class would 
be high for data not trained to be recognized or even be sensitive to adversarial attacks57. In this case, one could 
use uncertainty not only to determine which images are hard to diagnose and require further inspection, but also 
to sort out unusable data. Unfortunately, uncertainty about a discriminative model (family) is not necessarily 
suited to detect samples “far” from the training data. In two dimensions (compare Fig. 5c) it is easy to see that 
regions that are both far away from the data and carry high model uncertainty are not isotropically distributed 
with regard to the data but rather task dependent. With increasing dimensionality of the input space, more sep-
arating hyperplanes are conceivable to solve a given task, attributing non-zero uncertainties to a larger fraction 
of the input space. Nevertheless, the task dependency is built into the model. In the following we show for the 
high-dimensional scenario that the task and dataset difficulty influence the separability of unfamiliar data sam-
ples from the distribution the network was trained for.

The space of images with content unknown to the disease detection networks was sampled by performing pre-
dictions with associated uncertainties on the 2012 Imagenet validation set (49101 coloured, non-fundus images 
from 1000 different categories)58 (Fig. 8a,b). Interestingly, Messidor images have the lowest average uncertainty, 
followed by Kaggle and Imagenet samples, especially for disease onset 2. The networks perform much better on 
the Messidor dataset than on the Kaggle dataset, and disease detection for onset 2 is much easier than for onset 
1, indicating that in relatively easy tasks/datasets uncertainty does to some extent serve to detect out-of-sample 
images. If the distinction between “healthy” and “diseased” was clear cut such as in the case of many classes used 
for classical computer vision tasks, it is well conceivable that the uncertainty distributions would be well separated 
for the known and unknown classes53. Because we observe substantial uncertainty about the presence of DR, the 
detection of unfamiliar data samples is however obscured, at least for the Kaggle dataset.

Figure 6.  Proportion of disease levels in referred datasets. The value on the x-axis indicates the uncertainty of 
a sample to be tolerated for automatic diagnosis. All samples in the referral dataset have thus uncertainties of at 
least the value on the x-axis. The relative proportion of disease levels for tolerated uncertainty = 0 corresponds 
to the prior. (a) Disease onset level is mild DR (1). Disease levels 0 and 1 neighbour the healthy/diseased 
boundary (black) and dominate the referral dataset for high but not intermediate uncertainty. (b) Disease onset 
level is moderate DR (2). In analogy to (a), disease levels 1 and 2 neighbour the healthy/diseased boundary 
(black) and dominate the decision referral populations with high in contrast to intermediate uncertainties.
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If the task is to detect samples far from the training distribution, an alternative to using the model uncertainty 
from the task dependent, discriminative setting (Fig. 8a,b) is to model the training data distribution in order to 
detect outliers. For comparison we therefore performed anomaly detection by autoencoding the 512-dimensional 
feature vectors of the penultimate layer of a disease detection network. The deep autoencoder (DAE) comprised 
two fully-connected (FC) encoding layers with 128 and 32 units, followed by two FC decoding layers with 128 

Figure 7.  Decision referral of images from ambiguous patients. (a) Disease onset is mild DR (1). (b) Disease 
onset is moderate DR (2). Both subplots show the relative proportion of images from ambiguous patients in 
the referred (blue) and retained (green) data buckets for various tolerated uncertainty values. Patient level 
ambiguity is defined by images whose contra-lateral eye (from the same patient) carries a different label. Note 
that the decision referral of images is based on the uncertainty from a single image. Ground truth labels and the 
contra-lateral eye information are only used as meta information for evaluation purposes. Especially in the high 
uncertainty regime, images from ambiguous patients are more likely to be referred for further inspection than 
accepted for automatic decision. This is in line with how a physician would decide because ambiguous patients 
have an undefined disease state and should be subject to further examination.

Figure 8.  Uncertainty in face of (un)familiar data samples. (a) Empirical distributions of model uncertainty 
(σpred) for familiar data with known semantic content (Kaggle) and unfamiliar data with known semantics 
(Messidor) vs. unknown semantics (Imagenet). (b) Same as in (a) but for the task of detecting moderate (2) 
instead of mild DR (1). (c,d) Reconstruction errors of a deep autoencoder trained on the penultimate layer 
features of the Kaggle training set. All distributions shown in a–d for Kaggle refer to the test set.
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and 512 units respectively. We quantified the distance of data samples from the (Kaggle) training data distribu-
tion by measuring the reconstruction error between a penultimate layer feature vector and its autoencoder based 
reconstruction (Fig. 8c/d: disease onset 1/2). Here, Imagenet samples clearly show a higher anomaly score such 
that their presence could be detected based on the features learned by our network. The distribution of Messidor 
and Kaggle images seems similar, with Messidor images having slightly higher anomaly scores, being indicative 
of the fact that Kaggle and Messidor datasets have slightly different statistics.

Discussion
Here we showed that it is feasible to associate deep learning based predictions about the presence of DR in fun-
dus photographs with uncertainty measures that are informative and interpretable. Using the recently identified 
connection between dropout networks and approximate Bayesian inference30,31, we computed meaningful uncer-
tainty measures without needing additional labels for an explicit uncertain category. Computing this uncertainty 
measure was efficient, as computing the approximate predictive posterior for one image took about ≈200 ms. 
Seemingly appealing alternative uncertainty measures derived from either the conventional softmax output or GP 
classification applied to the penultimate layer features of our Bayesian networks were not found to be competitive 
for the purpose of deep learning based disease detection.

While not being crucially necessary for the purpose of evaluating model uncertainty, the performance 
achieved by our networks met the requirements for UK national standards for automatically diagnosing DR 
under several settings (Table 1, Fig. 4). For all settings we could improve performance in terms of ROC AUC 
(Figs 4, S1) by referring uncertain (Figs 5, 6, 7) cases for further inspection, outperforming alternative uncertainty 
measures throughout (Fig. 4). Acquiring further opinions naturally integrates into the traditional clinical work 
flow as well as into a human-machine loop in which especially attended, difficult cases could be fed back into the 
model for its continuous improvement59.

We observed slightly worse performance on Kaggle data as compared to Messidor. We want to point out, that 
the quality of the former dataset was questioned previously - albeit informally, both by competition participants46 
as well as by clinicians54. The extent to which the set of images considered uncertain by our approach overlaps 
with the images considered ungradable or wrongly labelled by humans is, however, unclear. Because images con-
sidered ungradable by clinical specialists may coincide with difficult diagnostic cases, these should be identifiable 
via high uncertainties from our approach. Easy decisions for images with wrong labels in turn should cause wrong 
predictions with low uncertainty. Both situations could hence be identified by our approach and be used to selec-
tively reduce label noise and improve model performance.

The scope of which scenarios the assessed uncertainty is able to deal with can be understood by our results 
regarding the causes of uncertainty. We showed that model uncertainty was sensitive to clinically relevant cases, 
that is patients with an undefined disease state as determined by physicians (Fig. 7). Aiming for a qualitative 
understanding, we showed that it is in particular difficult decisions that are considered uncertain by the networks, 
both for the 2D toy examples (Fig. 5) as well as for the high-dimensional image case (Figs 6 and 7). The main 
difference of a Bayesian approach with respect to the plain softmax output is the fact that multiple separating 
hyperplanes instead of just a single one are taken into account. This renders the model uncertainty to extend 
beyond regions around the prediction uncertainty of the conventional network output (Fig. 5a vs. c). Because we 
observed monotonic performance improvements under decision referral (Fig. 4) and a composition of disease 
levels resembling the prior for intermediate uncertainties (Fig. 6), a much higher fraction of the input space is 
associated with uncertainty (see as well Fig. 8a,b) than the 2D scenario might suggest (Fig. 5c). Recent research 
on uncertainty measures33,53 is actually relying on this in order to detect unknown classes or adversarial attacks. 
The task dependency of discriminative model uncertainty together with high uncertainty due to diffuse class 
boundaries may however obscure the detectability of unfamiliar data samples (Fig. 8a,b). Out-of-sample image 
detection was however feasible to some extent by modelling the data distribution in the penultimate layer’s feature 
space (Fig. 8c,d).

We conclude that this work successfully demonstrated the benefits, applicability and limitations of uncer-
tainty in deep learning55 for disease detection. This paradigm can readily be applied to recently published high 
performance disease detection networks14,15 as well as other medical tasks and datasets as initial work on image 
registration60 and genome data61 has already shown. We also believe that segmentation29 and regression62 prob-
lems which are omnipresent in biomedical imaging and diagnostics could largely benefit from taking uncertainty 
into account.

Methods
General DNN methodology.  Image preprocessing.  All images were cropped to a squared centre region 
and resized to 512 × 512 pixels. In order to compensate for the decreased network depth in case of the Bayesian 
CNNs we additionally subtracted the local average colour for contrast enhancement purposes as described63 and 
used13 previously. Images fed to the JFnet were normalized the same way as had been used for training by the 
author48, whereas those fed to the BCNNs were standard normalized for each colour channel separately.

Network training.  We trained one Bayesian CNN for each disease detection task using 80% of the Kaggle DR 
training data. We minimized the cross-entropy plus regularization terms (Eq. 5) using stochastic gradient descent 
with a batch size of 32 and Nesterov updates (momentum = 0.9). All parameters were initialized with the weights 
from the JFnet. Final weights were chosen based on the best ROC AUC achieved on a separate validation set (20% 
of Kaggle DR training data) within 30 training epochs. The learning rate schedule was piecewise constant (epoch 
1–10: 0.005, epoch 11–20: 0.001, epoch 21–25: 0.0005, epoch 26–30: 0.0001). L2-regularization (λ = 0.001) was 
applied to all parameters, L1-regularization (λ = 0.001) to only the last layer in the network. Data augmentation 
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was applied to 50% of the data in an epoch. Affine transformations were composed by drawing uniformly from 
ranges for zooming (±10%), translating (independent shifts in x-and y-directions by ±25 pixels), and rotating 
(±π). Transformed images were in addition flipped along the vertical and/or the horizontal axis if indicated by 
respective draws from a Binomial distribution (μ = 0.5). Effects of class imbalance onto the stochastic gradient 
were compensated by attributing more weight to the minority class, given by the relative class frequencies in each 
mini-batch64 p(k)mini−batch. To achieve this, we reweighed the cross-entropy part of the cost function (compare 
eq. 5) for a mini-batch of size n to:
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We fixed the amount of dropout for the convolutional layers to pdrop = 0.2, because this was a good compromise 
between getting a reasonable performance and uncertainty measures. We observed convergence problems for 
larger pdrop when initializing the Bayesian CNNs with the pretrained weights from the network without drop-
out between conv. layers. Gradually increasing dropout during training could potentially ease convergence. 
Alternatively, the dropout rates could be learnt via variational dropout27.

Approximate Bayesian model uncertainty for deep learning.  Recently, it was shown30 that a 
multi-layer-perceptron (i.e. a stack of densely connected layers) with dropout after every weight layer is math-
ematically equivalent to approximate variational inference51 in the deep GP model65,66. This result holds for any 
number of layers and arbitrary non-linearities. Next, this idea was extended to incorporate convolutional layers31, 
potentially loosing the GP interpretation, but preserving the possibility to obtain an approximation to the predic-
tive posterior in a Bayesian sense. Here, we summarize the core idea for deep classification networks and highlight 
in particular the difference between the Bayesian perspective and the classification confidence obtained from the 
softmax output.

Softmax vs. Bayesian uncertainty.  DNNs (with or without convolutional layers) for classifying a set of N obser-
vations {x1, ..., xi, ..., xN} into a set of associated class memberships {y1, ..., yi, ... z, yN} with yi ∈ {1, ..., K}, and K the 
number of classes, can be trained by minimizing the cross-entropy between the distribution of the true class labels 
and the softmax network output:
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Equation (1) denotes the probability that the observation xi belongs to class k, if propagated through the network 
function f with all parameters summarized by θ, i.e. weights Wi and biases bi of all layers i ∈ {1, ..., L}. For the 
example of disease detection from images, we have a single unit whose output denotes the probability for the 
presence of the disease in a given image.

Cross-entropy minimization results in a single best parameter vector θ, constituting the maximum-likelihood 
solution. L2-regularization, typically used to prevent overfitting, is equivalent to putting a Gaussian prior on the 
network parameters, resulting in a maximum-a-posteriori (MAP) solution.

A fully probabilistic treatment in a Bayesian sense, however, would consider a distribution over network 
parameters instead of a point estimate. By integrating over the posterior p(θ|X, y, x*) given the entire training 
data {X, y} and a new test sample x* one would like to obtain the predictive posterior distribution over class mem-
bership probabilities:

∫ θ θ θ| = | |⁎ ⁎ ⁎ ⁎p y p y p dX, y, x X, y, x( ) ( ) ( ) (2)

Whereas equation (1) determined a single value specifying the probability that an image belongs to the diseased 
class, the predictive posterior (Eq. 2) defines a distribution of such predictions, that is the probability values that 
a single image is diseased. Intuitively, the width of the predictive posterior should reflect the reliability of the 
predictions. For large training data sets, the parameter point estimates (from maximum-likelihood or MAP) 
may correspond to the mean or mode of the predictive posterior, resulting in a potentially strong relationship 
between the width of the predictive posterior and the softmax output, however this is not guaranteed. Indeed 
we’ve found that only for the original JFnet the softmax output may be used as a proxy for (prediction instead of 
model) uncertainty (values close to 0.5 were considered uncertain), whereas the Bayesian treatment worked for 
all investigated scenarios.

Bayesian convolutional neural networks with Bernoulli approximate variational inference.  In practice, equation 
(2) is intractable and a common way to find approximating solutions is via variational inference. We assume the 
true posterior to be expressible in terms of a finite set of random variables ω. The posterior is then approximated 
by the variational distribution q(ω) as follows:

∫ ∫θ θ ω ω ω θ ω ω ω| ≈ | | ≈ |⁎ ⁎ ⁎p p p d p q dX, y, x x X, y x( ) ( , ) ( ) ( , ) ( ) (3)

Maximizing the log evidence lower bound with respect to the approximating distribution q(ω):
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∫ ω ω ω ω ω= | − ||p q d KL q py X,: ( ) ( ) ( ( ( ))) (4)VI

has two effects. The first term maximizes the likelihood of the training data {X, y}, whereas the second term takes 
care of approximating the true distribution p(ω) by q(ω). The key insight from Gal & Ghahramani was then to 
link equation (4) with dropout training. Here, we will summarize the derivations34 in words. The integral in eq. 
(4) is still intractable and therefore approximated with Monte Carlo sampling. This results in the conventional 
softmax loss for dropout networks, for which units are dropped by drawing from a Bernoulli prior with proba-
bility pdrop for setting a unit to zero. The KL term in (4) was shown34 to correspond to a L2-regularization term in 
dropout networks. Summing up, approximate variational inference with a Bernoulli approximating distribution 
can be performed with the following loss:
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We use ω̂i as a shorthand notation for stating that in order to decide whether a unit is dropped, we independently 
sample from a Bernoulli distribution (with probability pdrop) for each unit in all layers for each training sample. 
Note that Monte Carlo sampling from q(ω) is equivalent to performing dropout during training, hence we get the 
Bayesian network perspective as well for already trained models.

Obtaining model uncertainty at test time.  Obtaining model uncertainty for a given image is as simple as keeping 
the dropout mechanism switched on at test time and performing multiple predictions. The width of the distribu-
tion of predictions is then a reasonable proxy for the model uncertainty. More formally expressed, we replace the 
posterior with the approximating distribution (Eq. 3) and plug it into the expression for the predictive posterior 
(2):

∫ ω ω ω| ≈ |⁎ ⁎ ⁎ ⁎p y p y q dX, y, x x( ) ( , ) ( ) (6)

We then approximate the integral by Monte Carlo sampling and compute the predictive mean (to be used for 
a final prediction on a test image):
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as well as the predictive standard deviation as a proxy for the uncertainty associated with this prediction:
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An intuitive illustration is given in the main text (Fig. 1). In short: the wider the distribution, the less the  
different subnetworks agree. Regarding the choice of T, we fixed it to T = 100 because it was shown by31  
to suffice for reducing the test error by improving the quality of the predictive mean estimation. Different  
values for T affect how well the true population moments μpred and σpred can be estimated: μ =

σ
ˆVar( )pred T

pred
2

 and 
σ = × + −ˆVar constant T( ) ( )pred T

2 1 2 67. It should however be noted, that the computation of MC samples is 
extremely fast: The test predictions could be performed in parallel, but even a serial implementation takes less 
than 200ms per image. Hence there is no practical reason to compute fewer testing samples than the T = 100 used 
to obtain the results presented here.

Analysis of results.  All density plots are based on Gaussian kernel density estimates, for which the bandwidth 
was chosen based on Scott’s method68. All line plots are based on the entire data and the 95% confidence intervals 
were obtained from 104 bootstrap samples.

Data and code availability.  We used the deep learning framework Theano69 (0.9.0dev1.dev-RELEASE) 
together with the libraries Lasagne70 (0.2.dev1) and Keras71 (1.0.7). Network trainings and predictions were per-
formed using a NVIDIA GeForce GTX 970 and a GeForce GTX 1080 with cuda versions 7.5/8 and cuDNN 
4/5. For the GP analysis, we used the Gaussian Processes for Machine Learning (GPML) Toolbox72 (v3.6). All 
code and models for fast DR detection under uncertainty are publicly available at https://github.com/chleibig/
disease-detection. 

References
	 1.	 Schmidhuber, J. Deep Learning in Neural Networks: An Overview. Neural Networks 61, 85–117 (2015).
	 2.	 Krizhevsky, A., Sutskever, I. & Hinton, G. E. ImageNet Classification with Deep Convolutional Neural Networks. Advances in Neural 

Information Processing Systems 1–9 (2012).
	 3.	 Rusk, N. Deep learning. Nature Methods 13, 35–35 (2016).
	 4.	 LeCun, Y., Bengio, Y. & Hinton, G. Deep learning. Nature 521, 436–444 (2015).
	 5.	 Ciresan, D. C., Giusti, A., Gambardella, L. M. & Schmidhuber, J. Mitosis detection in breast cancer histology images with deep 

neural networks. Lecture Notes in Computer Science 8150, 411–418 (2013).

https://github.com/chleibig/disease-detection
https://github.com/chleibig/disease-detection


www.nature.com/scientificreports/

13SCIENTIfIC RePortS |  (2017) 7:17816  | DOI:10.1038/s41598-017-17876-z

	 6.	 Greenspan, H., van Ginneken, B. & Summers, R. M. Guest editorial deep learning in medical imaging: Overview and future promise 
of an exciting new technique. IEEE Transactions on Medical Imaging 35, 1153–1159 (2016).

	 7.	 Miotto, R., Li, L., Kidd, B. A. & Dudley, J. T. Deep Patient: An Unsupervised Representation to Predict the Future of Patients from 
the Electronic Health Records. Scientific Reports 6, 26094 (2016).

	 8.	 Litjens, G. et al. Deep learning as a tool for increased accuracy and efficiency of histopathological diagnosis. Scientific Reports 6, 
26286 (2016).

	 9.	 Chen, C. L. et al. Deep Learning in Label-free Cell Classification. Scientific Reports 6, 21471 (2016).
	10.	 Lipton, Z. C., Kale, D. C., Elkan, C. & Wetzell, R. Learning to Diagnose with LSTM Recurrent Neural Networks. International 

Conference on Learning Representations (ICLR) (2016).
	11.	 Lu, L. et al. Deep Convolutional Neural Networks for Computer-Aided Detection: CNN Architectures, Dataset Characteristics and 

Transfer Learning Deep Convolutional Neural Networks for Computer-Aided Detection: CNN Architectures, Dataset 
Characteristics and Transfer. IEEE Transactions on Medical Imaging 35, 1285–1298 (2016).

	12.	 Tajbakhsh, N. et al. Convolutional Neural Networks for Medical Image Analysis: Full Training or Fine Tuning? IEEE Transactions 
on Medical Imaging 35, 1299–1312 (2016).

	13.	 van Grinsven, M. J. J. P., van Ginneken, B., Hoyng, C. B., Theelen, T. & Sánchez, C. I. Fast convolutional neural network training 
using selective data sampling: Application to hemorrhage detection in color fundus images. IEEE transactions on medical imaging 
35, 1273–1284 (2016).

	14.	 Gulshan, V. et al. Development and Validation of a Deep Learning Algorithm for Detection of Diabetic Retinopathy in Retinal 
Fundus Photographs. JAMA 304, 649–656 (2016).

	15.	 Esteva, A. et al. Dermatologist-level classification of skin cancer with deep neural networks. Nature 542, 115–118 (2017).
	16.	 Widdowson, D. T. S. The management of grading quality: good practice in the quality assurance of grading. Tech. Rep. (2016). 

https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/512832/The_Management_of_Grading.pdf.
	17.	 Ghahramani, Z. Probabilistic machine learning and artificial intelligence. Nature 521, 452–459 (2015).
	18.	 Kononenko, I. Inductive and Bayesian Learning in Medical Diagnosis. Applied Artificial Intelligence 7, 317–337 (1993).
	19.	 Kononenko, I. Machine learning for medical diagnosis: History, state of the art and perspective. Artificial Intelligence in Medicine 23, 

89–109 (2001).
	20.	 Wang, S. & Summers, R. M. Machine learning and radiology. Medical Image Analysis 16, 933–951 (2012).
	21.	 Sajda, P. Machine learning for detection and diagnosis of disease. Annual Review of Biomedical Engineering 8, 537–65 (2006).
	22.	 Tishby, N., Levin, E. & Solla, S. A. Consistent inference of probabilities in layered networks: predictions and generalizations. 

International joint Conference on Neural Networks (1989).
	23.	 MacKay, D. J. C. A Practical Bayesian Framework for Backpropagation Networks. Neural Computation (1992).
	24.	 Hinton, G. E., Hinton, G. E., van Camp, D. & van Camp, D. Keeping the neural networks simple by minimizing the description 

length of the weights. Proceedings of the sixth annual conference on Computational learning theory (COLT) (1993).
	25.	 Neal, R. M. Bayesian learning for neural networks. Lecture notes in statistics (1996).
	26.	 Graves, A. Practical Variational Inference for Neural Networks. Advances in Neural Information Processing Systems (2011).
	27.	 Kingma, D. P., Salimans, T. & Welling, M. Variational Dropout and the Local Reparameterization Trick. Advances in Neural 

Information Processing Systems (2015).
	28.	 Blundell, C., Cornebise, J., Kavukcuoglu, K. & Wierstra, D. Weight Uncertainty in Neural Networks. Proceedings of the 32nd 

International Conference on Machine Learning (2015).
	29.	 Kendall, A., Badrinarayanan, V. & Cipolla, R. Bayesian SegNet: model uncertainty in deep convolutional encoder-decoder 

architectures for scene understanding. arXiv:1511.02680 (2015).
	30.	 Gal, Y. & Ghahramani, Z. Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning. arXiv: 

1506.02142 (2015).
	31.	 Gal, Y. & Ghahramani, Z. Bayesian Convolutional Neural Networks with Bernoulli Approximate Variational Inference. arXiv: 

1506.02158 (2015).
	32.	 Louizos, C. & Welling, M. Structured and Efficient Variational Deep Learning with Matrix Gaussian Posteriors. Proceedings of the 

33rd International Conference on Machine Learning (2016).
	33.	 Li, Y. & Gal, Y. Dropout Inference in Bayesian Neural Networks with Alpha-divergences arXiv: 1703.02914 (2017).
	34.	 Gal, Y. & Ghahramani, Z. Dropout as a Bayesian Approximation: Appendix. arXiv: 1506.02157 (2015).
	35.	 Hinton, G. E., Srivastava, N., Krizhevsky, A., Sutskever, I. & Salakhutdinov, R. R. Improving neural networks by preventing co-

adaptation of feature detectors. arXiv: 1207.0580 (2012).
	36.	 Srivastava, N., Hinton, G. E., Krizhevsky, A., Sutskever, I. & Salakhutdinov, R. Dropout: A Simple Way to Prevent Neural Networks 

from Overfitting. Journal of Machine Learning Research (JMLR) 15, 1929–1958 (2014).
	37.	 Rasmussen, C. E. & Williams, C. K. I. Gaussian processes for machine learning, vol. 1 (MIT press Cambridge, 2006).
	38.	 Zaki, W. M. D. W. et al. Diabetic retinopathy assessment: Towards an automated system. Biomedical Signal Processing and Control 

24, 72–82 (2016).
	39.	 World Health Organization. Global Report on Diabetes. (2016).
	40.	 Mane, V. M. & Jadhav, D. V. Progress towards automated early stage detection of diabetic retinopathy: Image analysis systems and 

potential. Journal of Medical and Biological Engineering 34, 520–527 (2014).
	41.	 Kapetanakis, V. V. et al. A study of whether automated Diabetic Retinopathy Image Assessment could replace manual grading steps 

in the English National Screening Programme. Journal of medical screening 22, 112–118 (2015).
	42.	 De Fauw, J. et al. Automated analysis of retinal imaging using machine learning techniques for computer vision. F1000Research 5, 

1573 (2016).
	43.	 Antal, B. & Hajdu, A. An ensemble-based system for automatic screening of diabetic retinopathy. Knowledge-Based Systems 60, 

20–27 (2014).
	44.	 Sundling, V., Gulbrandsen, P. & Straand, J. Sensitivity and specificity of Norwegian optometrists’ evaluation of diabetic retinopathy 

in single-field retinal images - a cross-sectional experimental study. BMC health services research 13, 17 (2013).
	45.	 Decencière, E. et al. Feedback on a publicly distributed database: the Messidor database. Image Analysis & Stereology 33, 231–234 

(2014).
	46.	 Kaggle competition on Diabetic Retinopathy Detection (2015). https://www.kaggle.com/c/diabetic-retinopathy-detection.
	47.	 Wu, L., Fernandez-Loaiza, P., Sauma, J., Hernandez-Bogantes, E. & Masis, M. Classification of diabetic retinopathy and diabetic 

macular edema. World journal of diabetes 4, 290–4 (2013).
	48.	 De Fauw, J. 5th place solution of the Kaggle Diabetic Retinopathy competition (2015). https://github.com/JeffreyDF/kaggle_

diabetic_retinopathy.
	49.	 Nair, V. & Hinton, G. E. Rectified Linear Units Improve Restricted Boltzmann Machines. Proceedings of the 27th International 

Conference on Machine Learning 807–814 (2010).
	50.	 Maas, A. L., Hannun, A. Y. & Ng, A. Y. Rectifier nonlinearities improve neural network acoustic models. In Proceedings of the 30th 

International Conference on Machine Learning (2013).
	51.	 Bishop, C. M. Pattern Recognition and Machine Learning, Springer-Verlag New York, Inc., Secaucus, NJ, USA, (2006).
	52.	 Simonyan, K. & Zisserman, A. Very Deep Convolutional Networks for Large-Scale Image Recoginition. International Conference on 

Learning Representations (ICLR) (2015).

https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/512832/The_Management_of_Grading.pdf
https://www.kaggle.com/c/diabetic-retinopathy-detection
https://github.com/JeffreyDF/kaggle_diabetic_retinopathy
https://github.com/JeffreyDF/kaggle_diabetic_retinopathy


www.nature.com/scientificreports/

1 4SCIENTIfIC RePortS |  (2017) 7:17816  | DOI:10.1038/s41598-017-17876-z

	53.	 Lakshminarayanan, B., Pritzel, A. & Blundell, C. Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles. 
arXiv:1612.01474 (2016).

	54.	 Pratt, H., Coenen, F., Broadbent, D. M., Harding, S. P. & Zheng, Y. Convolutional Neural Networks for Diabetic Retinopathy. 
Procedia Computer Science 90, 200–205 (2016).

	55.	 Gal, Y. Uncertainty in Deep Learning. Ph.D. thesis, University of Cambridge (2016).
	56.	 Nickisch, H. & Rasmussen, C. E. Approximations for binary Gaussian process classification. Journal of Machine Learning Research 

9, 2035–2078 (2008).
	57.	 Goodfellow, I. J., Shlens, J. & Szegedy, C. Explaining and Harnessing Adversarial Examples. International Conference on Learning 

Representations (ICLR) (2015).
	58.	 Russakovsky, O. et al. ImageNet Large Scale Visual Recognition Challenge. International Journal of Computer Vision 115, 211–252 

(2015).
	59.	 Settles, B. Active Learning Literature Survey. Machine Learning 15, 201–221 (2010).
	60.	 Yang, X., Kwitt, R. & Niethammer, M. Fast Predictive Image Registration. International Workshop on Large-Scale Annotation of 

Biomedical Data and Expert Label Synthesis, 48–57 (Springer, 2016).
	61.	 Angermueller, C. & Stegle, O. Multi-task deep neural network to predict CpG methylation profiles from low-coverage sequencing 

data. NIPS MLCB workshop (2015).
	62.	 Kendall, A. & Cipolla, R. Modelling Uncertainty in Deep Learning for Camera Relocalization. arXiv:1509.05909v2 (2016).
	63.	 Graham, B. Kaggle Diabetic Retinopathy Detection competition report. Tech. Rep., University of Warwick (2015).
	64.	 Dalyac, A., Shanahan, P. M., Kelly, J. & London, I. C. Tackling Class Imbalance with Deep Convolutional Neural Networks (2014).
	65.	 Williams, C. K. I. Computing with infinite networks. Advances in neural information processing systems 295-301 (1997).
	66.	 Damianou, A. C. & Lawrence, N. D. Deep Gaussian Processes. International Conference on Artificial Intelligence and Statistics 31, 

207–215 (2013).
	67.	 Cho, E. & Cho, M. J. Variance of sample variance with replacement. International Journal of Pure and Applied Mathematics 52, 43–47 

(2009).
	68.	 Scott, D. W. On optimal and data-based histograms. Biometrika 66, 605–610 (1979).
	69.	 Al-Rfou, R. et al. Theano: A Python framework for fast computation of mathematical expressions. arXiv:1605.02688 (2016).
	70.	 Dieleman, S. et al. Lasagne 0.2.dev. https://github.com/Lasagne/Lasagne (2016).
	71.	 Chollet, F. & Others. Keras 1.0.7. https://github.com/fchollet/keras (2016).
	72.	 Rasmussen, C. E. & Nickisch, H. Gaussian Processes for Machine Learning (GPML) toolbox. The Journal of Machine Learning 

Research 9999, 3011–3015 (2010).
	73.	 Younis, N., Broadbent, D. M., Harding, S. P. & Vora, J. P. Incidence of sight-threatening retinopathy in Type 1 diabetes in a systematic 

screening programme. Diabetic medicine: a journal of the British Diabetic Association 20, 758–765 (2003).
	74.	 Quellec, G. et al. Optimal wavelet transform for the detection of microaneurysms in retina photographs. IEEE Transactions on 

Medical Imaging 27, 1230–1241 (2008).

Acknowledgements
This work was funded by the German excellence initiative through the Institutional Strategy of the University 
of Tübingen and the Center for Integrative Neuroscience (EXC 307), the Bernstein Award for Computational 
Neuroscience by German Ministry for Education and Research (BMBF; FKZ: 01GQ1601) to PB. Additionally, 
we acknowledge support from the early career program of the Medical Faculty of the University of Tübingen, 
Deutsche Forschungsgemeinschaft and Open Access Publishing Fund of the University of Tübingen.

Author Contributions
C.L., P.B. and S.W. designed the concept of the study. C.L. conducted the study. M.S.A. conducted the GP analysis 
and wrote respective sections. C.L., V.A. and P.B. wrote the manuscript. All authors reviewed the manuscript.

Additional Information
Supplementary information accompanies this paper at https://doi.org/10.1038/s41598-017-17876-z.
Competing Interests: The authors declare that they have no competing interests.
Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Cre-
ative Commons license, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons license and your intended use is not per-
mitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the 
copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
 
© The Author(s) 2017

https://github.com/Lasagne/Lasagne
https://github.com/fchollet/keras
http://dx.doi.org/10.1038/s41598-017-17876-z
http://creativecommons.org/licenses/by/4.0/

	Leveraging uncertainty information from deep neural networks for disease detection

	Results

	Diabetic retinopathy datasets. 
	Disease detection tasks. 
	Network architectures. 
	Bayesian model uncertainty. 
	Uncertainty rank orders prediction performance. 
	Performance improvement via uncertainty-informed decision referral. 
	Performance improvement for different costs, networks, tasks and datasets. 
	Comparison with alternative uncertainty measures. 

	What causes uncertainty? 
	Uncertainty about unfamiliar data samples. 

	Discussion

	Methods

	General DNN methodology. 
	Image preprocessing. 
	Network training. 

	Approximate Bayesian model uncertainty for deep learning. 
	Softmax vs. Bayesian uncertainty. 
	Bayesian convolutional neural networks with Bernoulli approximate variational inference. 
	Obtaining model uncertainty at test time. 
	Analysis of results. 

	Data and code availability. 

	Acknowledgements

	Figure 1 Bayesian model uncertainty for diabetic retinopathy detection.
	Figure 2 Relation between Bayesian model uncertainty σpred and maximum-likelihood, i.
	Figure 3 Improvement in accuracy via uncertainty-informed decision referral.
	Figure 4 Improvement in receiver-operating-characteristics via uncertainty-informed decision referral for different networks/tasks (left vs.
	Figure 5 Illustration of uncertainty for a 2D binary classification problem.
	Figure 6 Proportion of disease levels in referred datasets.
	Figure 7 Decision referral of images from ambiguous patients.
	Figure 8 Uncertainty in face of (un)familiar data samples.
	Table 1 Model performance (measured by AUC) with two different datasets, architectures and tasks when data with higher uncertainty levels is referred to further inspection.




