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ABSTRACT Model-based methods are increasingly used in
all areas of biopharmaceutical process technology. They can
be applied in the field of experimental design, process charac-
terization, process design, monitoring and control. Benefits of
these methods are lower experimental effort, process transpar-
ency, clear rationality behind decisions and increased process
robustness. The possibility of applying methods adopted from
different scientific domains accelerates this trend further. In
addition, model-based methods can help to implement regu-
latory requirements as suggested by recent Quality by Design
and validation initiatives. The aim of this review is to give an
overview of the state of the art of model-based methods, their
applications, further challenges and possible solutions in the
biopharmaceutical process life cycle. Today, despite these ad-
vantages, the potential of model-based methods is still not fully
exhausted in bioprocess technology. This is due to a lack of (i)
acceptance of the users, (ii) user-friendly tools provided by
existing methods, (iii) implementation in existing process con-
trol systems and (iv) clear workflows to set up specific process
models. We propose that model-based methods be applied
throughout the lifecycle of a biopharmaceutical process,
starting with the set-up of a process model, which is used for
monitoring and control of process parameters, and ending
with continuous and iterative process improvement via data
mining techniques.
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INTRODUCTION

A safe product is the target of every production process. In the
field of pharmaceutical products, this is ensured by elaborate
approvals and the continuous control of independent author-
ities such as the Food and Drug Administration or the
European Medicines Agency. The International Conference
on Harmonisation (ICH) has established quality guidelines
which should be considered during process lifecycle (1). A
process lifecycle includes process development, scale up and
continuous optimization until product discontinuation. The
basis of a production process is a definition of the product by
a quality target product profile (QTPP) that includes critical
quality attributes (CQA) (2), such as physicochemical proper-
ties, biological activity, immunochemical properties, purity
and impurities (3). The aim of each industrial production pro-
cess is to satisfy the predetermined CQAs with a maximum of
productivity. According to the ICH Q8(R2) guidelines the
quality by design (QbD) approach is a one way of engineering
an adequate production process. QbD combines sound sci-
ence and quality risk management in order to identify critical
material attributes (CMA) and critical process parameters
(CPP), which shows significant effects on CQAs. In addition,
the functional relationships between CMAs and CPPs on
CQAs should be investigated (2). This requires the use of
mathematical models within the framework of QbD. The ba-
sic idea of the QbD approach is that a process with controlled
CMAs and CPPs in a defined design space will lead to con-
tinuous CQAs and finally to a sufficient QTPP. In order to
achieve this goal process analytical technology (PAT) – tools
are used. PAT includes the tasks of designing, analyzing and
controlling production processes based on real-time monitor-
ing of critical parameters including them CMAs, CPPs and
CQAs (2,4).

In addition to adequate product quality, each process aims
for high productivity. This includes the thoughtful use of raw
materials, technologies and human resources in addition to
the reduction of unwanted by-products. In contrast to CPPs
which only affect product quality, key process parameters
(kPP) affect productivity and economical viability (5). During
the whole process lifecycle, CPPs and kPPs have to be im-
proved in order to react to changed boundary conditions such
as fluctuations in raw materials, new production facilities and
locations, new technologies and constantly fluctuating staff. In
summary, the following four challenges arise during a process
lifecycle: I) generation of process knowledge, II) process
monitoring, III) process optimization and IV) continuous
improvement of the process (Fig. 1). In order to fulfill
these challenges during the entire process lifecycle, a
lifecycle management is indispensable. ICH Q8(R2)
and Q12 address this issue but don’t give any concrete
solution (2,6). The reason for this is the lack of practicable
knowledge management systems (7).

In order to solve the four previously presented chal-
lenges during the process lifecycle an overview of avail-
able methods and technologies is given in the present
manuscript. The focus lies on model-based methods
which are characterized by the use of mathematical
models. Basically, each process model can be described
by an Eq. [1], which is defined by a model output/
outputs y, a function f, the time t, model states x, and
the design vector φ, including all necessary process pa-
rameters (CPPs & kPPs) such as feed rates, temperature,
pH etc., and the model parameters θ.

y ¼ f t; x; φ; θð Þ ð1Þ

In order to show the interaction between the four separate
challenges (I-IV), the red line of this paper will be analogous to
a simple control loop (Fig. 1). This approach allows a scientific
discussion of interaction and a possible outlook with respect to
the process lifecycle.

The first challenge (challenge I) investigated is the identifi-
cation of CPPs, kPPs and the generation of process knowl-
edge. Process development and improvement can only occur
if relationships and interactions are understood. With respect
to model-based methods process relevant (critical) knowledge
is defined as the sum of relationships and interactions, which
should be considered in a process model in order to predict a
target value (CPP, kPP or CQA). Modelling is a tool for the
identification and description of these relationships withmath-
ematical equations verified by statistic tests. In chapter 2.1,
different modelling workflows will be presented and compared
with respect to the modelling goal, complexity as well as
transferability to biopharmaceutical production process-
es. The basis of the parametrization and verification of
each model are data. Especially in model development,
data have a major impact on model structure and va-
lidity space. Therefore, there is a strong iteration be-
tween modelling and data collection. In the second part
of chapter 2.1 methods are described as to which data
should be collected to verify the process model. The
main output of this chapter are methodologies in order
to generate adequate model structures f and model pa-
rameters θ, which can be adapted during the process
lifecycle based on additional data and knowledge. The
models and their parameters are necessary for further
monitoring and control applications.

Since every process is affected by certain disturbances
which affect quality and productivity, monitoring is a need
for biopharmaceutical production processes (challenge II) (2).
Monitoring is defined as the supervision of process parameters
and variables, which is needed for subsequent control actions.
Monitoring hereby includes the collection of information by
measurements and subsequent data processing, whereas in the
latter model-based methods can be applied. These methods
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and their application in monitoring will be discussed in chap-
ter 2.2. It will focus on methods which help to define the
needed measurements, allow the combination of multiple
measurements to handle process noise and measurement un-
certainty and finally allow the estimation of unmeasured
states.

The final aim of process design is process control, discussed
in chapter 2.3. Mainly two topics will be discussed within the
challenge III) BProcess Optimization^. The first topic is a clear
description of the control goal within certain boundaries that
are based on product, technical, physiological and economic
limits. Thereby various model-based methods for open-loop
and closed-loop applications will be presented. With regard to
model-based methods, methodologies for optimal and predic-
tive control are presented. The second topic is estimating an
Boptimal^ design vector and identifying critical process limi-
tations, which provide an important input for further process
optimization.

Certain disturbances that affect every process can be
classified as a) known but neglected and b) unknown
and neglected ones. Both can have a significant impact
on process performance and should be continuously im-
proved. This continuous improvement (challenge IV) is
a key innovation motor for existing processes during
their entire lifecycle. New analytical methods, measure-
ment devices, automation, further data evaluation and
others can lead to process relevant knowledge which
should be taken into account. Within chapter 2.4 this
continuous improvement of the process will be investi-
gated. Regarding model-based methods the focus will be
on data-mining tools, which allow researchers to set up
hypotheses of potential correlations. These hypotheses
are a necessary input for further process model-
extensions and support the overall goal of an adequate
product quality and high productivity throughout the
entire process lifecycle.

Finally, an overall statement on further applications and
perspectives of model-based methods within the biopharma-
ceutical process lifecycle is presented in the conclusion.

RESULTS & DISCUSSION

Generation of Process Knowledge

Modelling

Within the process lifecycle, knowledge is defined as the ability
to describe relationships between (critical) process parameters
and critical quality or performance attributes. This knowledge
needs to be documented. The trend of the last years is clearly
from a transfer approach, which is based on spoken and writ-
ten words, towards a model approach (8). In the context of
biopharmaceutical processes, this indicates the possible usage
of process models as knowledge storage systems (9). The setup
of these process models is still challenging. Contributions pre-
senting workflows for modeling are increasing (10–15).
According to good modelling practice, the single steps of
modelling are always similar (14). These steps are: i) setup of
a modelling project, ii) setup of a model, iii) analysis of the
model. In addition, the documentation of the complete
modelling project should be entire and transparent.

The basis of each modelling workflow is a clear definition
of the model goal. This often resents a major challenge and
cannot be achieved without iterations between modelers and
project managers. The model goal should include the defini-
tion of target values, acceptance criteria and boundary condi-
tions. Furthermore, the application of the model should be
considered. Each process related model should be as simple
as possible and as accurate as necessary. From this dogma, it
follows that a model should only include necessary (critical)
states, model parameters and process parameters. Depending
on the goal of the model, different model types are suitable.
Frequently used is the classification between data driven,
mechanistic and hybrid models (16). In terms of applications
of models, the classification between dynamic and static
models is more appropriate. Dynamic models include differ-
ential equations, typically over time or location coordinates
which allow prediction. Static models are correlations which
cannot provide time-dependent simulation results. Hence,

Optimal
CPP/kPP

Controller
-

Controlled 
System

Actual
CPP/kPP

Feedback

Disturbance 
Variable

II) Process 
Monitoring

III) Process Optimization

IV) Continuouse Improvement 
via Data Mining

I) Generation of Process 
Knowledge

CQA &
Productivity

Fig. 1 A simple control loop with the related four challenges (I-IV) of process development and the process lifecycle. Challenge I is the generation and storage of
knowledge within models. Challenge II is the process monitoring. Challenge III is the determination of optimal process conditions for different applications and IV
the continuous improvement of a process by data mining tools.
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they are not applicable for prediction over time or location,
which is commonly required in bioprocess development. Data
driven, mechanistic as well as hybrid models can be both,
static and dynamic.

The set up and analysis of a model are iterative steps within
each modelling workflow (13,17), which are illustrated
in Fig. 2. For the setup of models, different approaches are
reported in literature. To date, experts are required to set up
models, as they strongly depend on prior knowledge. This
limited prior knowledge is a general gap for the application
of all model-based methods. Only a few workflows for auto-
mated modelling are available. With regard to the process
lifecycle, the focus of this review will be on these automated
workflows for the setup of dynamic mechanistic models. A
generic and strongly knowledge-driven approach is shown
by the company Bayer AG (18,19): Based on an extensive
dynamic metabolic flux model in combination with a generic
algorithm, the initial complex model is reduced to the most
necessary parts. The benefit of this top-down approach is the
intense use of prior knowledge. The working group of King
shows another approach, based on the detection of process
events in combination with a model library (10,20,21). The
benefit of this approach is that less prior knowledge is neces-
sary and the transferability on other bioprocesses is given. As
one of the drawbacks of model-based methods is the valida-
tion of models and there parameters an automated workflow
for the generation of substantial target-oriented mechanistic
process models was developed in our working group (22). This
approach allows the generation and validation of pro-
cess models with less prior knowledge and without model
libraries.

The analysis of each model follows the same order. Based
on collected data and an assumed model structure a parame-
ter fit is performed. With the use of optimization algorithms,
the model parameters are adapted in a way, that the previous
defined descriptor is optimized (see chapter 2.3). Typically,
this is a minimization of a model deviation, which can be

described by different characteristics such as the sum of square
errors (SSE), a normalized root mean square error (NRMSE),
a profile likelihood or other descriptors. A comparison of the
achieved descriptor with a previously defined acceptance cri-
terion is the first analysis of each model. If this fails, the model
structure is not suitable for the present issue. If the model
passes, the model structure could be suitable to describe the
relation. The next analysis is focused on the model parameters
θ̂ and their deviations. Therefore, typically, an identifiability
analysis is performed which follows two aims: The first aim is
the structural identifiability of model parameters, which is
necessary for process models with the aim of monitoring and
control. If structural identifiability is not given, model param-
eters can compensate each other due to cross correlation. This
results in multiple solutions and can lead to spurious results.
There are several methods in order to evaluate structural
identifiability (23,24). If structural identifiability is given, prac-
tical identifiability should be investigated in order to fulfil the
second goal, which is a statement about confidence intervals of
model parameters based on existing data (24,25). This is nec-
essary in order to decide if parameters can be estimated with
the data available. If practical identifiability is given, the mod-
el parameters are significant. If not, two statements can be
made: i) the available data allows no determination of the
model parameter or ii) the model structure allows cross
correlations between model parameters and is therefore
not as simple as possible.

In addition to the analysis of model and model parameter
deviations, there is a variety of methods to characterize models
with their focus on robustness. The first check should be a
global behavior test with the goal of ensuring the right imple-
mentation of a model: here the model is tested with extreme
input values. Additionally, if possible, certain redundancy
should be implemented in the model (see chapter 2.2).
Typical approaches are material balances, as they are typical-
ly used for yeast or microbial processes (13,26). Another fre-
quently used method is a sensitivity analysis with the aim of

Fig. 2 Systematic overview of a
model-development including in-
terlinks between data, database and
datamining, information and neces-
sary experiments and knowledge.
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showing the impact of deviations of model parameters, pro-
cess parameters and model inputs on model outputs (27,28).
The information obtained in this sensitivity analysis can be
used to improve the model within the process lifecycle. With
respect to the further usage of models certain causes for devi-
ations must be considered. Deviations can be mainly obtained
from two sources. The first source of deviations is the model
structure in itself. Based on the principle that a model is always
a sum of assumptions, there is always an accepted model
deviation with a predefined validity space. In addition,
models can always only explain a part of the process
variance. Disturbances that are not considered in the
model cannot be explained by it. Within the concept
of process lifecycle this implies a continuous model im-
provement (see chapter 2.4). The second source of var-
iance is the deviation of the model parameters θ̂ caused
by changing and not explained sources of variance. This
can be improved by adapting the model structure or
parameters. For both additional information is neces-
sary. It can be provided by additional data or addition-
al hypotheses from data mining methodologies (see chap-
ter 2.4) leading to new model structures (Fig. 2). With respect
to real-time application, several methodologies for model
adaption are shown in chapter 2.2.

Generation of Information

During the process development certain experiments must be
performed in order to identify CPPs and an adequate design
space and to verify process models. The most widely used
strategy is the standard design of experiments (DoE) (29),
which is given as an example in the guidelines ICH
Q8(R2) (2). However, the applicability of standard
DoEs for bioprocesses comprising a huge number of
potential CPPs is not given to the full extent. The rea-
son for this is mainly the model-based data evaluation,
which typically only assumes linear or quadratic effects
between process parameters and quality/product attri-
butes. Known relationships describing physiological in-
teractions are usually not taken into account in standard
DoEs. Therefore other model-based methods are avail-
able which are based on information.

In order to verify certain process models, information is
necessary. Within this context, information is defined as the
possibility of estimating the model parameters θ of a model f
with collected data. Mathematical statistics call this the Fisher
information, which is described by the Fisher information ma-
trix (Hθ). Hθ depends, besides the static model structure, on
the model parameters θ and the design vector φ and can be
estimated by Eq. [2] (30,31). The design vector includes all
possible process parameters, which are considered in themod-
el, and sampling points (tk) where additional data are collect-
ed. H0

θ describes the initial fisher information matrix, nsp the

number of sampling points, Ny the number of model states y
and Nθ the number of model parameters θ.

H θ θ; φð Þ ¼ H0
θ þ ∑

k¼1

nsp

∑
i¼1

N y

∑
j¼1

N y

sij
∂ŷi tkð ÞT
∂θl

∂ŷ j tkð Þ
∂θm

2
4

3
5
l;m¼1…N θ

ð2Þ

Applications for Hθ are mainly found in the model-based
design of experiments (MB-DoE). An experiment has per def-
inition the aim to prove, refute or confirm a hypothesis. In the
case of MB-DoE the hypothesis is the process model in itself.
Therefore, the information content of a planned experiment is
maximized depending on φ. This information content should
be a criterion extracted fromHθ. The D-optimal design which
indicates a maximization of the determinant ofHθ is frequent-
ly used. Other descriptors include the maximization of the
trace of Hθ (A-optimal) or the maximization of the smallest
eigenvalue (E-optimal) (32). Telen et al. investigated additional
criteria and showed the applicability of MB-DoE in order to
estimate model parameters from a simulated fed-batch study
(33). In addition, drawbacks of the single criteria are discussed
and a novel multi-objective approach is investigated. This
implies that MB-DoE strongly depends on the chosen infor-
mation criteria. This must be transparent in order to ensure
systematic and sound decisions. Table I shows some applica-
tions of MB-DoE and a summary of novel approaches to
design criteria.

However, information is strongly coupled with the
identifiability analysis of modelling workflows (see chapter
2.1.1) (44,47–49). As described there, available data are nec-
essary in order to estimate identifiable parameters. MB-DoE
is the model-based method solving this issue. Several publica-
tions show the application of MB-DoE in order to reduce the
experimental effort with the goal of verifying process models.
An issue for MB-DoE is the handling with uncertainties based
on model and experimental deviations (50). One possibility is
the real-time adaption of the experimental design, which is
called continuous model-based experimental design (CMB-
DoE) (39,40) or online optimal experimental re-design
(41,42). This is finally a control issue and strongly related to
process monitoring (see chapter 2.2) and optimization
(see chapter 2.4).

Process Monitoring

Process monitoring is the description of the actual state of the
process system in order to detect deflections of CPPs or key
process parameters in time. With regard to the definition of
PAT, monitoring without a feedback for process control is
only measurement (51). Process monitoring can be seen in
the context of measurement, monitoring, modeling and con-
trol (M3C) (52). After describing the first tasks of monitoring
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and the real-time data collection, model based methods for
the subsequent data processing are presented, followed by the
description of implemented examples in the field of biotech-
nology, which are also collected in Table II.

Measurements are a central part of monitoring as they
provide the time resolved raw information of the ongoing
process. Measurement methodologies and devices should
be simple, robust and as accurate as necessary. Besides
well-established measurements such as pH, dissolved ox-
ygen and gas analysis, a vast amount of process ana-
lyzers is available nowadays; however the development

of measurement techniques is still a field for extensive
research in Biotechnology (53,54). These include - but
are not limited to - chemical /biological measurements,
which are characterized by a high sensitivity and by
physical sensors mainly represented by spectroscopic
technologies (UV/VIS-, IR-; dielectric-, RAMAN-spec-
troscopy) (55–58). In order to include process analyzers
into monitoring it is not important whether measurements are
performed in-line, on-line, at-line or off-line, but it is impor-
tant that the data are available in time to detect deflections
and to perform control actions.

Table I Summary of Applications and Novel Publications with Respect to Model-Based Experimental Design

Method Criteria Application Real-time Reference

Application paper
Signal to noise ratio SNR = const estimation of sampling points with respect to deviations

on specific rates
at-line/ off-line (34)

Sequential experimental design D-criteria experimental design within a model discrimination workflow at-line/ off-line (35,36)
Optimal dynamic experiments – MB-DoE in microbioreactor systems under use of FTIR

spectroscopy as monitoring tool
at-line/ real-time (37)

Simultaneous solution Approach
for MB-DoE

A, D & E - criteria design of feed rates and adaptive optimal sampling strategy at-line/ off-line (38)

CMB-DoE A, D & E - criteria adaption of a dynamic experiment under usage of real-time
data control on information criteria

real-time (39,40)

Online optimal experimental
re-design

A-criteria adaption of a dynamic experiment under usage of real-time
data control on information criteria

real-time (41,42)

Model discriminating experimental
design

– Model descrimination within an sequential workflow at-line/ real-time (43)

Design criteria paper
D-optimal design

DMOO design (multi objective
optimization)

reduction of parameter interactions with MB-DoE under
usage of a multi objective optimization criteria

at-line/ off-line (44)

Multi objective approach Multi-objective MB-DoE to descriminate between models
and estimate kinetic parameters

at-line/ off-line (45)

Anticorrelation criteria anticorrelation criteria to estimate model parameters at-line/ off-line (46)

Table II Monitoring Solutions within Biotechnology

Monitoring goal Model scenario Measurement
scenario

Process system Algorithm Highlights Ref.

Biomass growth mass-balance with
fixed stoichiometry

carbon in and outflow P. chrysogenum SQP (sequential quadratic
programming)

(64)

Biomass growth mass-balance with
variable stoichiometry

carbon and electron in
and outflow

P. pastoris and
E. coli

– use of system redundancy (65)

Oxygen consumption mass balance offgas CHO – simple and robust (66)
CO2 production mass balance offgas CHO – carbonate buffered media (67,68)
Biomass concentration kinetic model sugar measurements Daucus carota extended kalman filter field of plant cells (69)
Substrates & biomass kinetic model CO2, sugars, product S. cerevisiae extended kalman filter NIR based online

measurement
(70)

Product & biomass kinetic flux model offgas analysis, product P. chrysogenum particle filter Raman based online
measurements

(58)

Biomass growth kinetic model offline & online offgas S. clavuligerus extended kalman filter account for measurement
delay

(71)

Biomass growth kinetic model with
energy balance

calorimetry E. coli – robust growth
determination

(72)
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After data collection, the measured raw information needs
to be converted into the desired monitoring outputs. This
conversion is to be performed in real-time and includes data
preprocessing e.g. outlier detection, data conversion and state
and parameter estimation. For these purposes, mathematical
models and model-based methods can be used. Hereby mea-
surements provide real-time data of the ongoing process,
whereas the deployed model contains prior knowledge, tech-
nical and biological relationships and boundaries of the system
(16). This combination of measurements and mathematical
models is referred to as soft-sensor (software sensor).

In Fig. 3 the working principle of a software sensor is
shown: The process states are described by x and the moni-
toring outputs by y. In addition to measurements, the de-
signed inputs (u) are included as time dependent variables.
The software-implemented models and estimation algorithms
can hereby be of any format and structure. As a result the soft-
sensor provides an estimate (̂x ) of the current state.

Critical to the implementation of models in monitoring is
the prediction and estimation ability of the model. Apart from
the determination of reliable and significant model parame-
ters (see chapter 2.1) the observability is important. An observ-
ability analysis can assess the structure of models in order to
test whether the information contained in a set of measure-
ments is sufficient for estimating model states (59). A simple
approach is the numerical determination of initial values with
a subset of known state trajectories, which fails in the unob-
servable and succeeds in the observable case. This can also be
used to define the needed measurement accuracy and fre-
quency in order to fulfil the monitoring goal. To guarantee
observability the methodology can also be used to define suit-
able measurement combinations for specific model
implementations, which has exemplarily been shown by our
group for P. pastoris and P. chrysogenum processes (58).

Once the measurement scenario is defined, it needs to be
interlinked with the model. Therefore, several algorithms are
available, which can be summarized as observers or filters
(60). The goal of the observer is to reconstruct current states
of interest by real-time collected information and the given

process model. Although the appropriate observer type is
strongly dependent on the monitoring goal and the process
model, the underlying principle is always similar. An addition-
al model and state error ϵ(t) is added to the model represen-
tation of the previous chapter 2.1 eq. [3]). In a second relation,
the so-called monitoring scenario, the monitoring outputs y
with error v(t) are represented as a function of x (eq. [4]).
Under the condition of observability, which means that the
provided information in y is enough to reconstruct x, the cur-
rent states can be estimated. Additionally, the measurement
errors as well as process noise are considered as weightings
(61,62).

x tð Þ ¼ f t; x; φ; θð Þ þ ϵ tð Þ ð3Þ

y tð Þ ¼ h t; x; θð Þ þ v tð Þ ð4Þ

Using this approach, multiple measurements can be com-
bined or unmeasured states can be reconstructed.
Additionally, this methodology can be used to provide a
real-time estimate based on infrequent or very noisy measure-
ments, which can exemplarily be seen in (63). Hereby Goffaux
and Wouwer (2005) implemented different observer algo-
rithms in a cell culture process and changed measurement
noise and model uncertainty. In order to cope with non-
linearities and the complexity of biological systems suitable
filtering algorithms need to be implemented, such as extended
and unscented Kalman and particle filters (62). Kalman filters
are especially suitable when the model is well-suited and only
measurement and process noise occur. Particle filters allow a
certain degree of model uncertainty and non-Gaussian noise
distributions. In Table II examples of different monitoring
implementations in biotechnology can be found.

Simple examples of successful model based monitoring are
based on mass balancing (64,65,73). Thus elemental in- and
out- fluxes of the reactor are measured. Considering the law of
the conservation of mass, conversion rates can be determined.
By applying multiple material balances, system redundancy
can hereby increase the robustness of the methodology.

Fig. 3 Principle of model based
monitoring with multiple
measurements. Through the
reconciliation of measured model
outputs with current model
simulations actual process states can
be estimated by considering
measurement and process
uncertainty.
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Kinetic models, which are more detailed and enable the
description of cell internal behavior, are also well suited as
soft-sensors. The limiting factor is often the system observabil-
ity of complex kinetic models. Therefore, these models have to
be simplified according to the monitoring goal. Aehle et al., for
example, showed that offgas-measurement in combination
with a simple model can be used to increase the reproducibil-
ity and robustness of a mammalian cell culture process (66,74).

Recent implementations by Krämer et al. and Golabgir
et al. have extended the monitoring scenario by spectroscopic
NIR and RAMAN measurements in order to obtain system
observability of more complex models (58,70). For this pur-
pose, the spectral data were transformed by partial least
square regression (PLS) into product and substrate concentra-
tions, which were then used as observer input. Other ap-
proaches deal with the incorporation of delayed offline mea-
surements for real time monitoring (75–77). The additional
information can help to bring the observer on the right track
until the next measurement is available.

In order to provide reliable and robust monitoring as a
basis for control, the inclusion of all available process infor-
mation and knowledge is needed. With this regard the pre-
sented model based methods enable i) the determination of
neededmeasurements to guarantee system observability ii) the
inclusion of process knowledge in form of a model iii) possible
system redundancy with multiple measurements iv) the
evaluation of process and measurement noise, which fi-
nally leads to v) most probable estimates of the current
state of interest.

Process Optimization

Industrial processes aim to find process inputs (also denoted as
design vector) to achieve the process goal (e.g. produce a cer-
tain product with defined specifications) and simultaneously
an optimal process performance with respect to criteria like
maximal profit. Additionally, those inputs have to respect
physiological and technical constraints as well as product
and system rationales. Optimal means getting to the best
achievable results with respect to specified (might
counteracting) objectives and conditions. If a reliable process
model exists, it can be used to determine the optimal process
inputs. In addition, the process should ideally be controlled to
achieve an optimal process performance. Table III summa-
rizes a selection of examples for model-based optimization
and control from literature. In the following, typical optimi-
zation goals, variables and optimization spaces according to
literature are described. Afterwards, an overview on methods
and software of how to perform optimizations is presented.
Finally, following a description of aspects of model based op-
timal control, typical challenges are presented.

Mathematically, optimization problems are typically
interpreted as minimization problems of an objective

function. In general, three types of optimization objectives
typically arising in different stages of the process lifecycle can
be distinguished. These are optimizing (i) information content,
(ii) productivity and (iii) robustness and reproducibility: (i)
Especially but not only during process development optimiza-
tion algorithms are used to find the parameters of a process
model by minimizing the model deviation from the given data
(see chapter 2.1.1) or to maximize the information content of
planned experiments (see chapter 2.1.2) to obtain adequate
process models. (ii) When having a reliable process model, the
optimization of the productivity of the process is typically
aimed at, e.g. to achieve highest amounts of biomass or prod-
uct at the end of the process (78–80). (iii) Finally, robustness
and reproducibility of an optimized process are typical goals.
In this case the objective is usually a minimal deviation from
identified (optimal) set points during the whole process.
Examples are dissolved oxygen or pH, but also variables like
metabolite concentration (81), growth rate or a process vari-
able related to it like the oxygen consumption rate (74). In
these cases a dynamic model is needed (see chapter 2.1.1).

A fact to be considered during model development is that
only inputs that are included in the process model can be
optimized (see chapter 2.1.1). For bioprocesses those are usu-
ally feed-rates or initial values. The optimization space is fre-
quently constrained, as shown in Fig. 4: on the one hand,
physiological and technical constraints like maximal volume,
feed rates or culture time (78,79) have to be considered - on
the other hand, the optimization space has to be restricted to
an area where the model can be trusted, a region the exact
location of which is typically hard to define (see chapter 2.1.1).
Because product quality is the priority aim of pharmaceutical
production processes, the design space is limited by certain
product rationales (e.g. pH and temperature area) too. In
addition to that, reducing the size of the optimization space
also can speed up the computation time which is needed for
time-sensitive optimization tasks. The optimization space is
strongly dependent on the process lifecycle. New models,
monitoring methods, control strategies, regulatory require-
ments and changed costs can lead to an expansion of the
optimization space and therefore to new optimal design
vectors.

There are various methods to solve optimization problems.
In some cases the optimization problem can be solved analyt-
ically, whichmeans a solution function (for example in integral
form) can be obtained. However, frequently (nonlinear) nu-
merical algorithms have to be applied. Various optimization
algorithms exist, detailed descriptions can be found in text-
books like (85) or the review of (86). For bioprocesses, frequent
implementations of the Nelder-Mead simplex algorithm
(fminsearch and its derivates) (87) or differential evolution
(88) in MATLAB are used (74,78,83). Another powerful
method for large-scale nonlinear optimization is the software
package IPOPT (89) e.g. used by (79) for optimizing
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biohydrogen production. More applied algorithms are listed
in Table III. When choosing the optimization algorithm, one
has to ponder aspects like the number of variables to be opti-
mized, the complexity of the model, the implementation en-
vironment or the acceptable duration of the optimization.
The last point is of major importance when performing opti-
mizations during the process. In case the optimal design vector
is time-dependent it might has to be parametrized. This is
frequently done by discretizing the input signal via partially
constant, linear or parabolic functions (also termed as zero,
first or second order hold). Simulations are a valuable tool to
investigate configuration details e.g. how to parameterize the
design vector. This can also help to ensure a fast computation
(80).

When the optimal values of the process inputs are found,
various possibilities for controlling the process to achieve the
desired optimal performance exist: a simple method is to de-
termine the optimal design vector once and control the pro-
cess on those predefined set points. This approach is state of
the art in most production processes.

However, this control method possibly fails when process
deviations occur due to model uncertainties or unknown or
neglected process disturbances which are not considered pre-
viously. The reason is that this strategy does not consider the
real values of the process outputs (the controlled variables)
during manipulating the inputs (the manipulated variables).
This can lead to unwanted process behavior: (80) computed
optimal profiles for three feeds (ammonium, phosphate, glu-
cose) based on a mechanistic model. They studied the effect of
model uncertainties by varying the model parameters and
applying those feed profiles determined with the initial param-
eters. The results revealed a high dependency of end product
(the optimization goal) on the model parameters: in 60% of
the simulations less product than in the original case was
achieved. They concluded that this can be avoided by apply-
ing closed-loop control. In this case the manipulated variables

are adjusted based on the values of the controlled variables.
Besides classic closed-loop controllers like PID controllers, a
well-known and powerful representative method is model pre-
dictive control (MPC) (80–85): a dynamicmodel is used to find
the optimal inputs with respect to a defined objective function
as described above. However, instead of performing the com-
putation only once in the beginning, the optimization is re-
peated after a defined control horizon to react towards process
deviations. Therefore, the optimization problem has to be
solved in real-time, which demands robust and fast optimiza-
tion algorithms. In order to be able to discover process devi-
ations information about the current process state is needed.
Depending on the measurement environment monitoring
strategies as described in chapter 2.2 have to be applied.

Dynamic optimization of bioprocesses is linked with several
challenges. E.g., in case of multiple objectives it is difficult to
choose an optimal solution: typically, there can be counter-
acting objectives in such that one objective can only be im-
proved by worsening the other, which implies a trade-off is
needed. This set of solutions is known as Pareto front. More
theory on this topic can e.g. be found in the textbook by (90).
Another aspect is robustness towards process deviations and
model uncertainties. One way to deal with this is presented by
(91), who investigated robust multi-objective optimal control
in case of model uncertainties by interpreting robustness as
additional objective. Another typically occurring phenome-
non is, that the optimal design vector lies at the boundaries
of the optimization space. One the one hand, this can be
critical if the optimization space is not defined properly, for
example due to limited knowledge about the validity space of
the model. On the other hand this implies that the process
might be optimized by increasing the optimization space e.g.
by deriving more knowledge to increase the model validity
space and improve the model or by technical innovations.

Summing up, optimization tasks occur during different
stages of the process lifecycle, with the highly diverse goals of

a)

c)

b)

d)

a) technically feasible space

c) product rationales

b) physiologically feasible space

d) optimization space

e) model-validity space

e)

Fig. 4 Optimization space limited
by technically and physiologically
feasible space as well as by product
and system rationales. The potential
innovation space is the space where
it can be increased e.g. by more
knowledge about the system.
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maximal information content, productivity and robustness
and reproducibility, respectively. Methods for optimization
and control are limited by the quality and the inputs of the
model. In addition to that, closed loop optimal control is also
limited by issues like process noise or uncertainties of the mod-
el and the system. Therefore a suitable monitoring strategy
has to be established and suitable observers have to be ap-
plied. In addition to that, if optimization has to be performed
online and probably unsupervised, fast and trustworthy algo-
rithms are demanded. However, in those cases, where this is
fulfilled, MPC is a valuable tool to achieve optimal processes.

Data Mining for Detection of Disturbance Variables

Although sophisticated control strategies are applied to mod-
ern processes (achieved using the above described methods
with respect to determination, monitoring and optimization
of CPPs), fluctuations in process performance inevitably oc-
cur. For that reason, continuous process improvement is nec-
essary, which can be achieved by data mining techniques in
order to detect disturbance variables.

Generally, every bioprocess includes known but neglected
or tolerated disturbances, such as the control ranges of process
parameters like pH, dissolved oxygen, feeding profiles etc. On
the other side, there are unknown disturbances that might
undermine process robustness and that should be identified
in later stages of the process development or during process
improvement. In the following, we want to focus on the up-
stream of biopharmaceutical processes as this is the major
source of disturbances. According to the exemplification of
the bioreactor as a dispersemultiphase-system, these unknown
disturbances can be grouped in the following classes as follows:

1) Biomass as disturbance variable, either due the genotype
(e.g. repression or induction of certain genes) or pheno-
type (e.g. morphological changes)

2) The composition of or single substances in the fluid phases
as disturbance variable (e.g. raw material variability, me-
tabolites, process additives)

3) Physical and local characteristics such as inhomogeneities
as disturbance variable (e.g. improper dispersal of base/
acid or feeds, inhomogeneities in dissolved oxygen etc.)

The detection of disturbance variables aims at enhancing
the understanding of process fluctuations, thereby increasing
process robustness or process performance and can finally even
lead to improvement of control strategies (see chapters 1 and
2.3). The ability of process intervention according to knowledge
gained via an analysis of disturbance variables is strongly
coupled to the optimization and especially to the innovation
space. This means that a possible intervention is limited by
the biological system itself, e.g. physiological parameters like
maximal specific uptake rates, but also by external factors such
as technical feasibility or logistical and organizational factors,
e.g. time line for upstream to downstream processing, shift work
etc. One the one hand, the development or implementation of
new analytical methods or probes for the characterization of
the system and its disturbances can lead to an extension of the
innovation space of the investigated bioprocess and thereby
enhance process control strategies. On the other hand, techni-
cal or organizational constraints can restrict process interven-
tion – within the borders of the innovation space - although a
disturbance was successfully detected (Fig. 4).

Generally, the detection of important disturbance variables
follows a data-driven knowledge discovery approach, mainly
focusing on data mining methods (Fig. 5), i.e. statistical
methods to extract information from large data sets. Risk as-
sessment tools are commonly used for process development (2)
and can also facilitate the identification of possible disturbance
classes (see definition above) within the design space of the
process. A prominent example of these tools is the Ishikawa
(or fishbone) diagram, which illustrates that this form of

Fig. 5 Workflow showing the data-driven knowledge discovery approach for the detection and minimization of disturbance variables. After selection of the
targeted disturbance class via risk assessment tools, data has to be generated and/or accumulated. Indications about disturbing variables/ descriptors can be
generated by correlation analysis or – if possible – via mechanistic modelling. Obtained knowledge/ information has to be implemented in the design space to
allow minimization of the identified disturbances.
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process improvement is done at later stages of the process
development as some prior knowledge about the process is
necessary (i.e. QbD approach). According to the outcome of
the risk assessment, data has to be generated or compiled.
Every modern biotechnology production plant is equipped
with systems that record and archive continuous and intermit-
tent data of every process. These historical data can be used
for data mining and the identification of disturbance variables
- even including known but neglected disturbances. Examples
of the assessment of historical data are given in (96–98). (99),
for instance, used a three-step approach previously introduced
by (100,101) in order to optimize an E.coli process for green
fluorescent protein production.

Often, historical data do not represent the probable distur-
bance class well enough, which is why additional data are
needed. These data are commonly generated via analytical
measurements of specific components (e.g. HPLC, IC or
ICP analysis), for instance of the raw material for media pro-
duction. Examples of this approach are given by (102) and by
our group (103), who focused on the detailed characterization
of complex raw material. As this approach is very laborious
and analytically challenging fingerprinting methods such as
near infrared (NIR), mid infrared (MIR) or (2D)-fluorescence
spectroscopy can be applied to complex matrices. These
methods generate an overall but still specific description of
the composition of a complex material or media (e.g. a spec-
tra) without the identification of certain substances, i.e. a fin-
gerprint of the material. Spectroscopic fingerprintingmethods
were applied by (104–108) in order to determine the variabil-
ity and disturbances of applied raw material.

Before data mining techniques can be applied, it should be
noted that the characteristics of bioprocess data is its hetero-
geneity with respect to time scale. As already mentioned in
chapter 2.2, bioprocess data can be continuous measure-
ments, intermittent measurements or even one-time measure-
ments at the beginning or the end of the process, such as raw
material attributes or process titer, respectively. Hence, before
data analysis can be started, preprocessing techniques, feature
selection or even dimensionality reduction has to be per-
formed. Examples of these techniques applied for historical
datasets are described in (96), such as filter and wrapper
methods or principle component analysis (PCA) for dimen-
sionality reduction. If additional analytical data are generated
at one point of time, e.g. measurements of specific compo-
nents or fingerprinting data of the used raw material, other
preprocessing methods have to be applied. For fingerprinting
spectra, first, second or third order derivatives are commonly
used in order to reduce noise from the spectral data.
Additionally, data can be mean-centered or normalized, de-
pending on the statistical method that is used for further anal-
ysis (109–113). In the following step the actual data mining
starts, which can be categorized in descriptive or predictive
approaches (96) (Table IV).

In the descriptive approach methods for discriminant anal-
ysis are applied in order to identify patterns or clusters in the
dataset. Commonmethods are PCA, e.g. applied by (102,103)
and cluster analysis (98). For the predictive approach methods
are applied that allow correlation analysis, i.e. the
preprocessed data or selected features are correlated with pro-
cess outcomes (i.e. CQAs and productivity) in order to identify
possible relationships. Typical methods are multiple linear
regression (MLR), partial least squares (PLS) regression and
artificial neural networks (ANN). There are also modifications
of these methods available that overcome certain drawbacks
of the original method as well as relatively new methods such
as support vector machines (SVM).

Jose et al. analyzed two raw materials via two fingerprinting
techniques (105). In order to combine the spectra of these two
materials PCA models for both raw materials were generated
and the scores of these models were used for the generation of
an interval partial least squares (iPLS) regression model which
allowed a correlation between raw material quality and prod-
uct yield and titer. iPLS is a graphical extension of regular PLS
models. It divides spectral data into equidistant subintervals of
which validated calibration models are developed. Hence, this
method allows to depict relevant information in different spec-
tral subdivisions and is able to remove interferences from other
regions (114). Another method proposed by Gao et al. for the
identification of raw material and process performance is the
orthogonal partial least squares – discriminant analysis (OPLS-
DA) (104). This method equals partial least squares – discrim-
inant analysis (PLS-DA) which is a combination of canonical
correlation analysis and linear discriminant analysis Thus, pro-
viding descriptive as well as predictive information (115,116).
The integration of an orthogonal signal correction (OSC)-filter,
which should allow the separation between predictive and non-
predictive variation, should improve the interpretation of the
model (117,118). Nevertheless, the superiority of OPLS-DA
over PLS-DA is critically discussed among experts. Balabin et al.
introduced an extension of ANN, namely support vector ma-
chines (SVM), for spectroscopic calibration and as data mining
technique (119). It has the advantage of providing global
models that are often unique, which is a benefit compared to
normal ANN.

Descriptive as well as predictive methods result in the gen-
eration of hypotheses about disturbances, crucial parameters
or interactions. These hypotheses have to be evaluated or
experimentally verified by experts (e.g. via experimental de-
sign as mentioned in chapter 2.1.2) before they can be imple-
mented in the control strategy. At this stage the control loop
(Fig. 1) can be restarted by the integration of gained knowl-
edge in the model or even by the introduction of new CPPs or
kPPs. This approach can additionally result in the improve-
ment of product quality and productivity.

In general there are three major challenges in process im-
provement via detection of disturbance variables: The

Model-Based Methods in the Biopharmaceutical Process Lifecycle 2607
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identification of an adequate analytical method for in-depth
investigation of disturbance variables, such as cell morpholo-
gy, raw material or scale-up effects (e.g. inhomogeneties, bio-
mass segregation), is demanding, especially with increasing
complexity of the process. The knowledge about method er-
rors and general deviations during the process is necessary in
order to allow adequate conclusions from data mining.
Additionally, the choice of the appropriate statistical method
that is applied to the data compilation is crucial to achieving
meaningful patterns, clusters and correlations and has also an
impact on the interpretability of the results.

Summing up, for continuous process improvement, the
evaluation of both historical data as well as the generation of
new data with respect to probable disturbance variables is
necessary. Data mining of these huge datasets allows the gen-
eration of hypotheses which can be verified by experiments.
Gained knowledge can further on be implemented in existing
models in order to improve process robustness and perfor-
mance (Fig. 2).

CONCLUSIONS

During the biopharmaceutical process lifecycle, countless
challenges arise: uncontrollable external conditions, fluc-
tuations in raw material, inaccuracies in process control
and continuous innovations - and they all affect the
process performance over time. The trend of the last
few years has clearly pointed towards a model approach
in order to ensure knowledge transfer during the entire
process lifecycle and, additionally, during different pro-
cesses. Model-based methods allow the applicability of
the stored knowledge. In the presented review the ap-
plicability of model-based methods in order to ensure
control has been shown. To reach the goal of control
four challenges were investigated: I) generation of process
knowledge, II) process monitoring, III) process optimization
and IV) continuous improvement of the process (Fig. 1).

The first challenge includes the identification of CPPs
and kPPs, hence, the generation of process knowledge. If
relations and interactions within the process are under-
stood, the main challenge is the setup and the verification
of process models in order to predict a target value (CPP,
kPP or CQA). This is a critical step because the model
quality has an impact on accuracy, precision, applicabil-
ity and the validity area of all model-based methods.
Main issues in the field of modelling are a lack of experts
and tools for the model setup in biopharmaceutical pro-
duction processes. In addition, process-models should be
extended or adapted during the whole process lifecycle.
Therefore, modelling is a typical bottleneck for the ap-
plication of model-based methods in industrial processes.
In order to overcome this problem, we presented

mode l l i ng work f l ows fo r the se tup o f mode l s .
Additionally, methods for the generation of information
during experiments by model-based experimental design
are presented.

The second challenge is an adequate process monitoring.
The combination of real-time measurements and model-
based methods like observers allow an optimal usage of mon-
itoring capacities. Model-based methods are already wide-
spread and accepted in the area of process monitoring since
they allow the estimation of hard or not measureable
parameters and variables, which are necessary for sub-
sequent control tasks. The bottleneck of monitoring
methods is mainly the transferability between different
processes and scales concerning measurement methods
and software environment. During the process lifecycle
new real-time measurement sensors, changing process
models and new control tasks should be considered in
the process monitoring concept.

The third challenge is process optimization and pro-
cess control. First of all, a proper definition of the op-
timization objective is needed. Especially in case of mul-
tiple objectives an adequate weighting of the different
goals is not easy but important. The second task is to
find an optimal design vector for the process. Model-
based methods are valuable tools to declare the opti-
mum. Nevertheless, multidimensional optimization tasks
are generally hard to implement as well as computation-
ally demanding. Furthermore, successful optimization
highly depends on the model quality as well as knowl-
edge about the validity space of the model.

The fourth challenge is the continuous improvement
of the process based on additional research and histor-
ical data assessment. Therefore, datamining tools are
widespread and accepted as model-based methods in
order to generate hypotheses, which can be experimen-
tally evaluated and furthermore gained knowledge can
be included in the process model. Bottleneck of these
datamining tools are mainly the availability of adequate
measurement methods for the generation of additional
data and the interpretability of descriptive as well as
predictive model-based methods.

Irrespective of the availability of model-based
methods, a certain acceptance of these methods in the
biotechnological community has to be generated.
Hence, the benefits of the application of model-based
methods on process development and production have
to be demonstrated. Additionally, the training of the
users is of great importance as well as the presentation
of all methods in more user-friendly tools. In combina-
tion with continuous support and further development
of the process model, model-based methods are power-
ful tools to ensure the overall goal of biopharmaceutical
processes, i.e. the guarantee of high product quality.
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