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ABSTRACT Controlled human malaria infection (CHMI) entails deliberate infec-
tion with malaria parasites either by mosquito bite or by direct injection of
sporozoites or parasitized erythrocytes. When required, the resulting blood-stage
infection is curtailed by the administration of antimalarial drugs. Inducing a ma-
laria infection via inoculation with infected blood was first used as a treatment
(malariotherapy) for neurosyphilis in Europe and the United States in the early
1900s. More recently, CHMI has been applied to the fields of malaria vaccine and
drug development, where it is used to evaluate products in well-controlled early-
phase proof-of-concept clinical studies, thus facilitating progression of only the
most promising candidates for further evaluation in areas where malaria is en-
demic. Controlled infections have also been used to immunize against malaria
infection. Historically, CHMI studies have been restricted by the need for access
to insectaries housing infected mosquitoes or suitable malaria-infected individu-
als. Evaluation of vaccine and drug candidates has been constrained in these
studies by the availability of a limited number of Plasmodium falciparum isolates.
Recent advances have included cryopreservation of sporozoites, the manufacture
of well-characterized and genetically distinct cultured malaria cell banks for
blood-stage infection, and the availability of Plasmodium vivax-specific reagents.
These advances will help to accelerate malaria vaccine and drug development by
making the reagents for CHMI more widely accessible and also enabling a more
rigorous evaluation with multiple parasite strains and species. Here we discuss
the different applications of CHMI, recent advances in the use of CHMI, and on-
going challenges for consideration.
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Controlled human malaria infection (CHMI) can be undertaken either by inocu-
lation of sporozoites via mosquito bite or by direct injection of sporozoites or

Plasmodium-infected blood. The inoculation of sporozoites allows both liver- and
blood-stage infection to develop, while induced blood-stage infection with para-
sitized erythrocytes results in blood-stage infection only. Blood-stage infection is
truncated by antimalarial drug treatment that is initiated according to predefined
study-specific criteria. Studies utilizing induced blood-stage infection typically treat
infections at a predefined blood-stage parasite density (as determined by PCR) or at
the onset of microscopic patency. CHMI studies involving sporozoite-initiated
infections have also relied on microscopic patency as the trigger for treatment,
although more recently, quantitative PCR (qPCR) has been explored as the primary
test for initiating treatment in sporozoite-initiated CHMI studies (1).
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Deliberate human malaria infection with malaria parasites was initially used as a
treatment (malariotherapy), for neurosyphilis in the early 1900s (reviewed in references
2 and 3). It was also used in the 1990s in limited and contentious studies as a potential
treatment for HIV infection (4). From the 1940s, its utility as a tool to evaluate candidate
antimalarial drugs was recognized when it was employed to assess their efficacy in
healthy, nonimmune males by inoculation of Plasmodium-infected blood or mosquitoes
(5). Since then, it has been increasingly recognized that CHMI offers a well-controlled
and safe framework to undertake in vivo assessment of the efficacy of malaria vaccine
candidates and drugs (Table 1). Researchers are also investigating the use of CHMI to
immunize against malaria infection, with protection observed following multiple cycles
of infection (sporozoite or blood-stage initiated) and drug treatment (see, e.g., refer-
ences 6 to 8) (Table 1). Cumulative experience with CHMI over the past decades, as well
as recent advances in methodologies and reagents, has resulted in the development of
well-characterized experimental systems that are becoming more widely accessible to
researchers working in malaria vaccine and drug development. Below, we describe the
primary applications of CHMI and recent advances and highlight some of the chal-
lenges to be considered.

USES OF CONTROLLED HUMAN MALARIA INFECTION

CHMI is a valuable tool that can be used to evaluate novel antimalarial drugs (see,
e.g., references 9 to 12) (Table 1), malaria vaccine candidates (see, e.g., references 7 and
13 to 20) (Table 1), and diagnostic tools (see, e.g., references 21 and 22) (Table 1).
Substudies undertaken within the framework of CHMI studies for drug or vaccine
evaluation have also enabled an examination of parasite biology, e.g., factors influenc-
ing virulence/disease processes (see, e.g., references 23 to 26) (Table 1) and malaria-
specific human immune responses (see, e.g., references 27 to 31) (Table 1), including
identification of possible immune correlates of protection (19, 31, 32). Recently, vaccine
development efforts have focused on using CHMI to induce protective immunity by

TABLE 1 Applications of controlled human malaria infection

Application Reference(s)

Drug evaluation
Sporozoite challenge 12, 92–106
Blood-stage challenge 9–11, 95, 96, 98–103, 105–114a

Vaccine evaluation
P. falciparum preerythrocytic vaccine candidate

Sporozoite challenge 18, 20, 36–38, 40, 42, 79, 80,
115–151

Blood-stage challenge 115
P. falciparum blood-stage vaccine candidate

Sporozoite challenge 14, 20 36, 42, 125, 126, 131,
145, 146, 151

Blood-stage challenge 13, 16, 19
P. vivax preerythrocytic vaccine candidate

Sporozoite challenge 15, 17, 37, 149
Blood-stage challenge Not applicable

Immunization strategy
Chemoprophylaxis and sporozoites 7, 8, 49–51, 81, 152
Blood-stage infection and drug treatment 6

Parasite diagnostics 21, 22

Parasite biology 153
Factors influencing virulence 23–25, 154–156
Disease processes 26, 157–159

Human immune response 27–32, 84, 86, 160–209
aStudies registered on the Australian New Zealand Clinical Trials Registry but not yet published:
ACTRN12617000244303 and ACTRN12614000781640.

Minireview Infection and Immunity

January 2018 Volume 86 Issue 1 e00479-17 iai.asm.org 2

http://iai.asm.org


truncating malaria infection at low parasitemia with drug treatment (see, e.g., refer-
ences 6 to 8) (Table 1). Following multiple cycles of infection and drug treatment,
protection against malaria infection has been demonstrated (6–8). Below, we discuss
the main applications of CHMI: its role in drug and vaccine evaluation and as an
immunization strategy against malaria infection.

Drug evaluation. Increasing levels of antimalarial drug resistance, including resis-
tance against artemisinin-containing drugs, emphasize the urgent need for the devel-
opment of new antimalarials. Following preclinical and phase I studies, phase II clinical
studies are required to identify the correct dosing regimen to enable cure. CHMI in
malaria-naive individuals offers a well-controlled environment to rapidly assess the
efficacy of drugs with unknown therapeutic activity and to obtain pharmacokinetic and
pharmacodynamics data (9–11). An additional advantage of this approach is that,
providing study participants are screened appropriately, antimalarial immunity will not
affect parasite clearance rates, which could lead to an overestimation of drug efficacy
(33). The use of rapid and sensitive qPCR assays for parasite quantification ensures that
rescue treatment with fast-acting antimalarial drugs can be administered promptly (11).
Both mosquito bite- and blood-stage-initiated infections have been used in this way to
evaluate antimalarial drugs (see, e.g., references 9, 12, and 34) (Table 1). While
sporozoite-initiated infection is obviously required to assess the causal prophylactic
activity of drugs (12, 34), one of the major advantages of induced blood-stage malaria
infection for assessing parasite clearance by blood schizonticidal drugs is the standard-
ization and precise quantification of the number of parasites initiating the blood-stage
infection in each study participant.

Vaccine evaluation. Following the demonstration of safety and immunogenicity in
a phase I study, undertaking phase IIa studies in areas where malaria is not endemic
using CHMI enables the generation of proof-of-concept efficacy data prior to transi-
tioning a vaccine candidate into costly phase IIb field trials in areas of endemicity (35).
The efficacy of malaria vaccine candidates has been assessed using sporozoite or
induced blood-stage malaria infection prior to field testing (see, e.g., references 8, 13,
18, 36, and 37) (Table 1) and for further optimization of the immunization regimen
following suboptimal efficacy of a vaccine candidate in the field (38). For the former, if
good efficacy is not demonstrated in phase IIa trials, this may halt progression of the
vaccine candidate. For some candidates, however, one might predict an improvement
in vaccine-induced protection in areas of endemicity where boosting of the vaccine-
specific immune response may occur following natural exposure, or alternatively, the
vaccine may augment preexisting naturally acquired immune responses. This has not
yet been observed for any malaria vaccine candidate that has progressed into trials in
areas where malaria is endemic, including the licensed malaria vaccine RTS,S/AS01 (39).
In CHMI studies in malaria-naive humans, the endpoints for evaluation of vaccine
efficacy are life cycle stage specific. For preerythrocytic vaccine candidates, the tradi-
tional study endpoint is detection of a patent blood-stage infection by microscopy.
Where blood-stage infection does develop and with the use of sensitive qPCR methods,
the resulting blood-stage parasitemia data can also be analyzed to obtain information
on additional parasite parameters, e.g., reduction in liver load (40, 41). For blood-stage
vaccine candidates, the primary assessment is the parasite multiplication rate (PMR).
This can be derived from analysis of qPCR-based parasitemia data from an adequate
number of time points and is used to detect differences between vaccinees and control
subjects.

Historically, experimental sporozoite-initiated infection has been more widely used
to evaluate vaccines in phase IIa trials and has been used predominantly for testing
preerythrocytic vaccine candidates (see, e.g., references 8, 18, and 37) (Table 1),
although it has been used for a small number of studies involving blood-stage vaccine
candidates (14, 42). The obvious benefit of using the sporozoite-initiated infection
model is that it mimics the natural route of infection; however, as it is not possible to
control the number of sporozoites being inoculated by a mosquito, the challenge dose
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can be highly variable (43, 44). While the use of cryopreserved, purified sporozoites
delivered by needle and syringe may result in a more reproducible inoculum, further
work is required to optimize this system (45).

Induced blood-stage malaria infection has also been used for evaluation of blood-
stage vaccine candidates in phase IIa studies (13, 16, 19), and although a direct
comparison of both CHMI models to test blood-stage vaccine efficacy has not yet been
undertaken, it offers a number of advantages in malaria-naive individuals compared
with sporozoite-initiated infections (46). First, being able to precisely enumerate the
number of parasites initiating the blood-stage infection allows modeling of the PMR
with greater accuracy, thus providing greater power to detect partial efficacy of
blood-stage vaccines (19). Second, initiating a blood-stage infection with fewer para-
sites in the inoculum than the theoretical number of merozoites released from an
infected hepatocyte can result in a prolongation of the period when submicroscopic
parasitemia can be observed and measured before drug treatment is required (46, 47).
Not only does this increase the number of time points at which to collect parasitemia
data and thus enable a more accurate modeling of PMR, it also increases the time over
which a vaccine-induced immune response can operate (and thus prevents the pre-
mature abandonment of a partially effective vaccine that could be further optimized).
Similarly to the case for the sporozoite-initiated infection model, there are a number of
potential shortcomings that should be considered. Viability of the injected parasites can
be determined only retrospectively, making it difficult to standardize the number of
viable parasites in the inoculum. Parasite viability has been shown to vary across
different studies and sites (47), and this can be influenced by storage conditions and
the time between thawing of the parasites and inoculation of the volunteers (46).
Additionally, by circumventing the liver, induced blood-stage challenge will not detect
effects on preerythrocytic parasite stages and thus may underestimate the efficacy of
vaccines containing antigens that are shared between liver and blood stages.

CHMI: an immunization strategy. The use of whole parasites as a vaccine ap-
proach is advantageous, due to the broad array of antigens presented to the immune
system. A number of research groups are focused on developing whole-parasite
vaccines utilizing the CHMI model, which involves either sporozoite-induced malaria
infection or induced blood-stage malaria infection. Different variations of CHMI are
being examined, with the regimen consisting of multiple rounds of infection and drug
treatment (see, e.g., references 6 to 8) (Table 1). The protective efficacy of a strategy
using blood-stage CHMI has been examined in humans (6). Multiple low doses of
Plasmodium falciparum-parasitized red blood cells were administered intravenously to
malaria-naive volunteers, with each infection truncated with Malarone (atovaquone-
proguanil) prior to patency (6). While parasite-specific antibodies were not detected,
robust cellular immune responses were induced and protection was observed in 3 out
of 4 volunteers, although it could not be excluded that residual antimalarial drug may
have contributed to this protection (48). Preerythrocytic vaccine approaches utilizing
live sporozoites are more advanced than blood-stage vaccine approaches, and multiple
studies have examined the protective efficacy of this approach (see, e.g., references 7
and 8) (Table 1). The chemoprophylaxis and sporozoite (CPS) approach involves ad-
ministering multiple mosquito-bite induced infections under chemoprophylaxis. Induc-
tion of long-lived sterile protection against homologous challenge has been demon-
strated (7, 49). Drugs targeting blood stages are used in this approach to enable full
liver-stage development. Although low levels of blood-stage parasitemia are observed
following each infection, the protection is dependent on immune responses against the
preerythrocytic stage (50). Only chloroquine and mefloquine have been utilized in
humans in this model so far (51). To further advance this immunization strategy,
inoculation of sporozoites by needle and syringe (discussed below) and a regimen that
enables drug treatment to be administered concurrently with the parasite inoculum
(sporozoite or blood stage) are critical to being able to successfully deploy this in areas
where malaria is endemic. Recently, direct venous inoculation of aseptic, purified,
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nonirradiated P. falciparum sporozoites under chloroquine cover (PfSPZ-CVac) was
shown to induce sterile protective immunity against homologous challenge (8). Further
approaches for vaccination include the administration of genetically attenuated sporo-
zoites that arrest in the liver and do not progress to a blood-stage infection (52) or of
blood-stage parasites which have reduced ability to replicate in the blood (53). An
immunization regimen using these genetically attenuated parasites may not need
administration of antimalarial drugs.

RECENT ADVANCES IN CONTROLLED HUMAN MALARIA INFECTION
Development of cryopreserved, purified sporozoites for CHMI. The traditional

CHMI model involved administering bites of Plasmodium-infected insectary-raised mos-
quitoes to study participants and was standardized over decades (54), with the bites of
three aseptically reared or five laboratory-reared mosquitoes consistently infecting
malaria-naive individuals (55). Mosquito bite-initiated CHMI requires insectary access,
entomological expertise, secure transportation of infected mosquitoes to the clinical
trial site, and precise timing of mosquito rearing and infection in relation to the
vaccination and challenge regimen (55). The number of sporozoites injected into each
participant in mosquito bite-initiated CHMI is highly variable, and it has been shown
that the number of sporozoites counted in each salivary gland/number of mosquito
bites is a poor predictor of the number of sporozoites actually injected (44). A
methodology has been developed by Sanaria Inc. to produce aseptic, purified, cryo-
preserved P. falciparum sporozoites that are manufactured in compliance with regula-
tory standards and are infective in vivo (56). These sporozoites are injected with a
needle and syringe, and different routes of inoculation have been examined and
optimized (45, 56–58). Although this artificial method of administration is clearly
different from a mosquito bite and bypasses the “skin-stage,” it enables a consistent
sporozoite inoculum for this CHMI model to be utilized in numerous research centers
around the world both for challenge and potentially for the preerythrocytic vaccine
approach described above. Being able to standardize and define the number of
sporozoites injected is advantageous in terms of sporozoite dose estimation for vaccine
studies and enabling direct comparisons of CHMI sporozoite challenge studies between
and within different clinical sites (59).

Access to P. falciparum material for CHMI. An important constraint to the ability
to conduct CHMI is access to well-characterized malaria parasites with a known drug
sensitivity profile to ensure that the most appropriate antimalarial drug treatment can
be initiated when required. These parasites must also meet relevant region-specific
regulatory standards so that they are suitable for administration to humans in clinical
studies.

Historically, CHMI via mosquito bite or injection of sporozoites has been restricted
to institutions with the capacity to rear and maintain Plasmodium-infected mosquitoes
(36, 60–63). As outlined above, the manufacture of aseptic, purified, cryopreserved P.
falciparum sporozoites enables this model to now be employed in numerous centers
around the world (see, e.g., references 57, 59, and 64).

Blood-stage CHMI was originally developed in Australia at the Queensland Insti-
tute of Medical Research, using cryopreserved stocks of erythrocytes from two
parasitemic donors who were deliberately infected with P. falciparum 3D7 via
mosquito bite (65). This material has now been administered intravenously to �300
volunteers in numerous studies with diverse endpoints. Until recently, the use of
material suitable for induced blood-stage malaria infection relied entirely upon
obtaining ethical approval to collect, cryopreserve, and store a large volume of
blood from suitable malaria-infected donors (either deliberately infected individuals
or malaria-infected returned travelers). Following rigorous testing and ethical ap-
proval, these ex vivo banks could be used in clinical trials. They are, however, a finite
resource, and if the donor is not of the “universal” blood group O Rh D-negative
blood type, then this limits potential recipients to those with a compatible blood
type. Recently, we developed an alternative approach to generating suitable blood-
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stage parasites for CHMI studies (66). It involves culturing large volumes of defined
P. falciparum isolates in blood group O Rh D-negative blood followed by cryo-
preservation, characterization, and rigorous testing to ensure suitability for use in
clinical studies. Parasites from the different cultured P. falciparum blood-stage cell
banks have been used to successfully infect malaria-naive human volunteers (23).
The availability of CHMI reagents to multiple research centers introduces new
challenges, and these are discussed further below.

Plasmodium vivax and CHMI. While this review has focused largely on the use of
P. falciparum CHMI, the recent development of P. vivax-specific material will accelerate
the progress of vaccines and drugs specifically targeting this parasite (67, 68).

For sporozoite-initiated CHMI, published studies have utilized P. vivax sporozoites
that were generated by feeding gametocyte-infected blood from residents of areas in
Colombia and Thailand where malaria is endemic to laboratory-reared mosquitoes (15,
17, 68–70). Due to the research facilities and capacity established in Colombia, the
infected mosquitoes were used in studies at the same site, whereas the mosquitoes
infected in Thailand were transported in secure containers to the United States and
maintained in the insectary at WRAIR until required for challenge. These P. vivax-
infected mosquitoes were used to successfully infect malaria-naive and semi-immune
individuals (68–70) and in CHMI trials evaluating P. vivax preerythrocytic vaccine
candidates (15, 17). Due to inherent issues with long-term in vitro culture of P. vivax,
there is a requirement for fresh gametocytes from infected patients to infect mosqui-
toes. Currently, gametocyte infection of mosquitoes is undertaken in an area where
malaria is endemic, although the mosquitoes can subsequently be shipped to other
centers for the challenge component of a vaccine/drug evaluation study as described
above (15). The use of a different P. vivax isolate for each study will be reflected in
parasite parameters, e.g., differential drug sensitivities, parasite multiplication rates, and
prepatent periods, and this will limit comparisons between different studies (71). Until
cryopreserved sporozoites are developed for P. vivax, this will be an ongoing limitation.
A further complication of P. vivax sporozoite-initiated CHMI studies is the possibility of
hypnozoite formation and infection relapse. Primaquine should be administered at the
conclusion of the study to clear any latent liver stages. However, participants in these
studies must be assessed prior to enrollment for possible exclusion based on glucose-
6-phosphate dehydrogenase (G6PD) deficiency (to avoid primaquine-induced hemoly-
sis) and for CYPD26 polymorphisms which may affect the conversion of primaquine to
its active metabolite (72, 73).

There have been four P. vivax blood-stage CHMI studies to date, two of which have
been published (67, 71, 74). These studies were undertaken using cryopreserved blood
from returned travelers (67, 71), and due to the current unavailability of a long-term in
vitro P. vivax culture, it is conceivable that ex vivo banks from returned travelers or
deliberately infected individuals will be the only source of material for P. vivax blood-
stage CHMI for the foreseeable future.

CHALLENGES FOR CONTROLLED HUMAN MALARIA INFECTION STUDIES
Availability of diverse parasite strains to evaluate heterologous protection.

Ultimately, a malaria vaccine must induce significant strain-transcending protective
efficacy. This has proven to be a challenging proposition both in the field and in CHMI
studies. When evaluated in phase III trials, the licensed malaria vaccine RTS,S/AS01
demonstrated only partial protection in the field (75). Protective efficacy was shown to
be greater against P. falciparum infections where the parasite circumsporozoite protein
genotype matched that of the vaccine strain, due to the allele-specific nature of the
vaccine-induced protective immune response (76). The use of defined, genetically
distinct P. falciparum strains in CHMI studies can therefore be seen as advantageous, as
they can be used to evaluate the protective efficacy of malaria vaccine candidates
against a range of diverse parasite strains prior to deployment in the field. Insight into
the strain-specific nature of the protective efficacy of a vaccine candidate could also
inform further optimization of the vaccine formulation prior to costly field studies (77,
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78). It was only recently that a P. falciparum vaccine candidate, PfSPZ (a radiation-
attenuated sporozoite vaccine), demonstrated significant protection against challenge
with both homologous and heterologous P. falciparum strains in a CHMI study, albeit
in a small number of volunteers (79, 80). The protective efficacy of this vaccine
candidate is currently being tested in field sites in Africa where malaria is endemic. The
CPS immunization strategy has also been shown to induce limited strain-transcending
immunity (81).

Currently, only a limited number of defined P. falciparum strains are available
for/have been used in CHMI: P. falciparum NF54 (an isolate of West African origin) (82),
3D7 (a clonal line derived from NF54) (65), 7G8 (a cloned line of the Brazilian IMTM22
isolate) (83), NF135.C10 (a clone derived from a Cambodian isolate) (84), and HMP02 (an
isolate from Ghana) (23), with the latter available only for blood-stage challenge.
Although they originate from different geographical areas, it is unknown how repre-
sentative these strains are of the antigenically diverse circulating strains in all areas of
malaria endemicity. For non-P. falciparum species, limited work has been undertaken
with P. vivax (as indicated above). The ability to access suitable Plasmodium malariae,
Plasmodium ovale, and Plasmodium knowlesi isolates would also increase the value and
utility of the CHMI model.

A recent perspectives paper from the U.S. Food and Drug Administration (FDA)
discussed the possibility of using efficacy results from CHMI studies to support licensure
of a malaria vaccine for use in travelers (85). Demonstrating breadth of protection
against diverse strains would be critical for this, thus emphasizing the importance of
further developing and characterizing different parasite strains for CHMI studies. This is
not a straightforward undertaking. Initial considerations include having the necessary
ethical approvals and the logistics of identifying suitable individuals for collection of
Plasmodium-infected blood. The development process for the P. falciparum NF135.C10
clone involved four qualification criteria (84). They were that the strain (i) must
consistently produce gametocytes and sporozoites (this is not relevant to isolates being
developed for blood-stage CHMI), (ii) should be cloned to create a genetically homo-
geneous parasite population, (iii) must have sensitivity to commonly used antimalarials,
and (iv) should be geographically and genetically distinct from the NF54 strain.
Screening of �70 strains was required to eventually identify the NF135.C10 clone (86).
For isolates being developed for blood-stage CHMI, cryopreserved ex vivo blood-stage
parasite banks are finite resources. While cultured blood-stage parasite banks are
therefore advantageous, not all P. falciparum isolates are easily culture adapted, and
some of the non-P. falciparum species are not amenable to the large-scale culture that
is required to manufacture blood-stage parasite banks.

Standardization of methodologies between different research centers. The
standardization of methodologies and sharing of reagents are essential to enable a
direct comparison of data generated across multiple study centers (63). This encom-
passes processes for the manufacturing and handling of the CHMI product, as well as
assays that are used to determine initiation of rescue drug treatment and evaluate
study efficacy endpoints, e.g., parasite detection methods and immunogenicity assays.

For parasite detection, Giemsa-stained thick blood smear microscopy has tradition-
ally been the “gold standard” for CHMI studies, and in sporozoite-initiated CHMI, drug
treatment is initiated as soon as parasites are detected to minimize adverse events and
potential complications. Standardized reading of blood smears is essential for compar-
ison of trial endpoints across different research centers (54). Nucleic acid tests (NATs)
such as quantitative PCR (qPCR) and quantitative reverse transcriptase PCR (qRT-PCR)
are also being increasingly used in both vaccine and drug evaluation CHMI studies (87).
DNA-based NATs can also detect transiently circulating, dead parasites in the peripheral
blood, resulting in a short period of false-positive results, while RNA-based NATs can
have greater sensitivity. For many of the sporozoite-initiated CHMI studies, qPCR is only
used for retrospective analysis to estimate PMR and liver load through statistical
modeling (88, 89). For mosquito-bite initiated CHMI studies, it has been shown that the
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use of PCR assays allows for quantitative measurement of parasitemia on average 3.5
days earlier than microscopy and increases the statistical power of CHMI to evaluate
vaccine and drug efficacy (1). It has been suggested that using qPCR as a primary
endpoint in the sporozoite-initiated CHMI has a number of advantages, including
shortening the duration of parasitemia (prepatent period), which has the potential to
reduce the number of clinical symptoms in the volunteers (1). It has been shown that
this can be implemented without negatively impacting the evaluation of the protective
efficacy of preerythrocytic vaccines (1). Studies involving induced blood-stage malaria
infection have used qPCR as the primary outcome variable (90) or in combination with
microscopy (13). For a NAT to be used to define efficacy outcomes in CHMI, the assay
requires validation prior to use in challenge studies (85). A standardized and validated
NAT, including the blood collection schedule, should also be employed across multiple
study sites to facilitate comparison of study results, and this is particularly pertinent to
modeling of the PMR (87).

Establishment of the CHMI models in areas where malaria is endemic. It has
been suggested that early-phase and challenge studies utilizing CHMI models should
be established in multiple sites in areas of malaria endemicity to increase the interna-
tional capacity to conduct studies that would eventually support product licensure (91).
There are a number of advantages to conducting these studies in areas of endemicity,
including the following: capacity building in developing countries, study participants
having the same genetic background as the eventual target population, and the
possibility of examining the effect of prior malaria exposure and immunity on vaccine
efficacy and thus potentially having a longer time period in which to observe vaccine
efficacy before initiation of drug treatment due to the presence of preexisting immu-
nity.

As outlined above, mosquito bite-initiated CHMI for P. vivax has been established in
Colombia (69), for practical and logistical reasons. More recently, CHMI using P. falci-
parum cryopreserved sporozoites has been established in different sites in Africa (57,
64). The advantages of using cryopreserved parasites (sporozoites or blood-stage
parasites) are pertinent to establishing this research capacity in areas of endemicity
(and to CHMI generally): they can be transported and stored in a liquid nitrogen vapor
phase, and the administration of a predefined number of parasites would be associated
with a reduction in site-to-site and trial-to-trial variation if standardized procedures are
used.

There are many additional factors that must be considered when conducting CHMI
studies in malaria-exposed individuals in areas of malaria endemicity. These include the
following: ensuring that there are adequate clinical and laboratory resources with
appropriately trained staff, dealing with a multitiered system of ethical review, defining
appropriate levels of monetary compensation for study participation, ensuring com-
prehension of the research by participants, accounting for possible confounding of
efficacy data by hemoglobinopathies, and grouping participants according to prior
exposure (there are no validated assays for this), as naturally acquired immunity may
impact PMR (57). Considerable research will be required to characterize the interaction
between injected parasites (sporozoites and blood-stage parasites) and preexisting
naturally acquired immune responses, as this will need to be factored into CHMI study
design in areas of endemicity. The possibility of natural transmission of the challenge
parasite strain to local areas also needs to be considered in relation to gametocyte
appearance in the blood and drug treatment initiation time points.

CONCLUSION

CHMI is a versatile clinical tool which can be employed in different ways: as an
immunization strategy, to assess antimalarial drug and vaccine efficacy, and to eluci-
date aspects of the human immune response to the malaria parasite, disease processes,
and malaria parasite biology. Recent advances and development of CHMI-specific
reagents that are easily transferable between different research centers highlight the
potential of this model to accelerate malaria vaccine and drug development as well as
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a greater understanding of host-parasite interactions. There are a number of key
scientific gaps which need to be addressed to enable a more comprehensive use of this
model, including development and validation of non-P. falciparum human malaria
parasite species for sporozoite and blood-stage CHMI and a greater availability of
geographically and genetically distinct Plasmodium species and strains for vaccine and
drug evaluation. The development of aseptic, purified cryopreserved sporozoites for
different Plasmodium species and strains would increase the international capability to
use the CHMI model for vaccine and drug efficacy testing. The establishment and
greater utilization of this model in multiple research centers worldwide introduces new
challenges and emphasizes the need for greater harmonization and standardization of
CHMI-specific processes to enable direct comparison of data across these sites.
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