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Rare Genetic Variants in PARN Are Associated with
Pulmonary Fibrosis in Families

To the Editor:

Rare genetic variation in genes related to telomere biology has
been implicated in 10–20% of familial interstitial pneumonia (FIP), the
inherited form of idiopathic interstitial pneumonia (1). Recently,
heterozygous rare variants (RVs) in the gene encoding polyadenylation-
specific RNase deadenylation nuclease (PARN) were reported in six

unrelated families with pulmonary fibrosis (2), consistent with reports
of biallelic PARN RVs in children with dyskeratosis congenita (3–5).
Subsequently, heterozygous PARN RVs were identified in five patients
with sporadic idiopathic pulmonary fibrosis (IPF) among 262 patients
who underwent whole-exome sequencing (6).

We queried whole-exome sequencing data from genomic
DNA obtained from 188 unrelated FIP kindreds (7) for RVs in PARN,
identified variants with a minor allele frequency ,0.001 among
Caucasian patients in the Exome Aggregation Consortium database,
and confirmed these RVs by Sanger sequencing. Using this approach,
we found 13 unique PARN RVs in 12/188 (6.4%) unrelated families
(Figure 1); seven families (3.7%) had variants predicted to be protein-
altering (frameshift, nonsense, splicing, missense; Table 1). In five of
these families (2.6% of the cohort), PARN RVs identified as likely to be
damaging fully cosegregated with disease in individual family
members. These PARN RVs included one nonsense, one frameshift,
one splicing, and two missense variants. The two missense variants,
Asn7His and Lys56Ans, are conserved and predicted to affect protein
function. For the c.62015G.A splicing variant, we generated
immortalized lymphocytes and performed complementary DNA
sequencing; this confirmed that this variant results in alternative
splicing, which is likely to affect PARN structure and function.

Surprisingly, in three families, intronic PARN variants that did
not appear to affect mRNA splicing cosegregated with disease.
Complementary DNA sequencing demonstrated that c.17823C.T
does not affect splicing, indicating this is likely benign. Another
intronic variant, c.703-11_703-10delAT, is located in an intron
near a splice site but is not predicted to alter the canonical splice
site or create a cryptic splice site. A third intronic PARN variant
c.1006211G.A cosegregated with disease in one family but is not
predicted to alter splicing. In this family, however, affected subjects
share a novel cosegregating RV in the gene telomerase reverse
transcriptase (Thr839Lys). Although available evidence suggests
these intronic RVs are benign, their cosegregation with disease and
association with otherwise unexplained short telomeres in affected
individuals raises the possibility that these intronic variants have
effects on PARN expression or other regulatory mechanisms.

In the remaining four families, PARN RVs did not fully segregate
with disease. In two of these families, there was a family history of IPF
through both parental lineages, making it possible that affected
individuals inherited a different genetic risk factor through each
parental line. In one family, an intronic PARN RV that could affect
splicing (c.245175_245177delCCC) was identified in a patient with
IPF, whereas the other affected individuals shared a frameshift variant
(Phe418PhefsX6). In a different family, an affected individual with short
peripheral blood mononuclear cell telomeres carried a missense RV
(Ser498Asn) that is predicted to be deleterious (PolyPhen2 0.996) (8),
but the RV was not identified in the other family member with disease.

We measured peripheral blood mononuclear cell telomere length
in all affected individuals from these families from whom sufficient
DNAwas available and found that all had telomere shortening adjusted
for age (Table 1). Thirteen of the 18 subjects tested (72%) had telomere
length below the 10th percentile, whereas the others ranged from the
12th to the 22nd percentile. All these families were of Caucasian
ancestry, and 62% of affected subjects were men. The median age at
diagnosis was 60 years (range, 42–82 years), slightly younger than
the median age of onset in our entire cohort of patients with FIP
(66 years) (7). Forty-three percent of affected subjects had a history of
cigarette smoking. Baseline FVC was 68.5% (617.7%, SD) predicted,
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and diffusing capacity for carbon monoxide was 66.5% (624.0%).
Among individuals for whom high-resolution computed tomography
was available for review, all had possible or definite usual interstitial
pneumonia based on American Thoracic Society guidelines (9).

Recent work has indicated that PARN polyadenylates the
39 end of telomerase RNA component (known as TERC or hTR),
which serves as the template for telomerase reverse transcriptase–
mediated telomere replication. Presumably, PARN mutations
destabilize hTR levels (10) and lead to reduced telomerase activity
through a haploinsufficiency mechanism similar to dyskerin
(DKC1) mutations (11); further investigation will be needed to
determine whether PARN plays other roles in telomere biology.

Exciting recent work suggests inhibiting RNA-decay mechanisms
may reverse these cellular phenotypes, suggesting a possible novel
approach to personalizing therapy in pulmonary fibrosis (12, 13).

Our data provide independent confirmation of genetic variation
in PARN as an important influence on FIP risk. In addition, these
findings underscore the genetic complexity and heterogeneity of FIP.
Given this complexity and the difficulty in assigning causality to
variants of uncertain significance in affected individuals, our
current practice is, after genetic counseling, to perform clinical
genetic testing for PARN or other telomere pathway genes along
with telomere length measurement, which provides some
evidence regarding the functional importance of telomerase

T296SfsX14
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WT

T296SfsX14 T296SfsX14

T296SfsX14

T296SfsX14 T296SfsX14

c.620+5G>A

3
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Figure 1. Pedigrees of familial interstitial pneumonia kindreds with polyadenylation-specific RNase deadenylation nuclease (PARN) variants. Variant
information is denoted below individuals who had DNA available for sequencing. Numbers inside pedigree symbols indicate the number of other siblings of
the same sex and affected status. ILD = interstitial lung disease; WT =wild type.
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pathway genetic variants (1). However, as illustrated by the
families reported here, even with the combination of telomere
length measurement and genetic testing, assignment of disease
risk to individual RVs may be difficult. As the spectrum
of genetic risk for familial and sporadic IPF is expanded, we
anticipate that enhanced understanding of the complex genetic
influences underlying this disease will improve our ability to use
genetic information in the care of these patients. n
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Cardiac Morphometry on Computed Tomography and
Exacerbation Reduction with b-Blocker Therapy
in Chronic Obstructive Pulmonary Disease

To the Editor:

Chronic obstructive pulmonary disease (COPD) is associated with
cardiovascular disease (1), and a subset of COPD exacerbations
may be the result of overt or subclinical cardiovascular disease (1).
We, and others, have shown that the use of cardiac function
modulating b-blockers is associated with substantially lower rates of
exacerbations (2). COPD is associated with functional and structural
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