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Abstract

Spinal cord injury (SCI) induced changes in neurological function have significant impact on the 

metabolism and subsequent metabolic-related disease risk in injured individuals. This metabolic-

related disease risk relationship is differential depending on the anatomic level and severity of the 

injury, with high level anatomic injuries contributing a greater risk of glucose and lipid 

dysregulation resulting in type 2 diabetes and cardiovascular disease risk elevation. Although 

alterations in body composition, particularly excess adiposity and its anatomical distribution in the 

visceral depot or ectopic location in non-adipose organs, is known to significantly contribute to 

metabolic disease risk, changes in fat mass and fat-free mass do not fully account for this elevated 

disease risk in subjects with SCI. There are other negative adaptations in body composition 

including reductions in skeletal muscle mass and alterations in muscle fiber type, in addition to 

significant reduction in physical activity, that contribute to a decline in metabolic rate and 

increased metabolic disease risk following SCI. Recent studies in adult humans suggest cold- and 

diet-induced thermogenesis through brown adipose tissue metabolism may be important for energy 
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balance and substrate metabolism, and particularly sensitive to sympathetic nervous signaling. 

Considering the alterations that occur in the autonomic nervous system (SNS) (sympathetic and 

parasympathetic) following a SCI, significant dysfunction of brown adipose function is expected. 

This review will highlight metabolic alterations following SCI and integrate findings from brown 

adipose tissue studies as potential new areas of research to pursue.
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Introduction

Spinal Cord Injury and Metabolic Disease Risk

Sixty percent of individuals with spinal cord injury (SCI) are younger than 45 years, 

meaning that more than half of individuals with newly acquired SCI have the potential to 

live long and healthy lives [1]. While life expectancy is increasing among individuals with 

SCI who survive the first year after injury, it is still lower than that observed for the able-

bodied (AB) population [2]. Lower life expectancy in SCI is thought to result from 

secondary health conditions associated with neurological impairment as individuals with 

(SCI) are at increased risk of developing obesity, type 2 diabetes (T2D) and cardiometabolic 

disease relative to the general population [3–8]. This association has been observed in 

multiple population cohorts across gender and age groups. A large body of evidence 

supports an accelerated trajectory of metabolic disorders in the SCI population, such that 

these health conditions occur at an earlier age vs. AB individuals [3;7–9]. Across studies, a 

relatively consistent metabolic profile of elevated circulating glucose, insulin resistance and 

hyperlipidemia is present in subjects with SCI [4;6;10–13]. Explanatory variables including 

a loss of lean mass (particularly skeletal muscle), reduced physical activity, excess energy 

intake relative to need, and systemic compensatory responses related to impaired autonomic 

function, mediated through the above mentioned variables, have been previously studied 

[14;15]. Although data show reduced energy expenditure in SCI subjects relative to 

uninjured controls [14;16;17], controlling for the difference in lean body mass and decreased 

physical activity does not fully account for the decline in energy expenditure and increased 

disease risk [17], particularly for those individuals with injuries to higher anatomic levels of 

the spine [5;15;17–20]. While multiple factors may contribute to this differential metabolic-

related disease risk in subjects with SCI, this review highlights observations related to the 

anatomic level of injury, alterations in body composition, skeletal muscle biology, energy 

expenditure, metabolic substrate metabolism, sympathetic nervous system function, and a 

potential role for brown adipose tissue in these metabolic-disease risk relationships.

Level of Injury Effects

The site of anatomic injury to the spinal column is variable between individuals with injuries 

occurring in the upper regions of the spine (high-level injuries - cervical) resulting in greater 

overall neurologic impairment compared with low level injuries (thoracic and lumbar level). 

Metabolic impairment and disease risk are greater in individuals with high-level injuries 
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[15;18;21]. Individuals with high-level injuries who have greater neurologic impairment 

present with significantly lower glucose tolerance, greater insulin resistance and impaired 

lipid profiles when compared with both uninjured controls and low-level injury cases 

[4;6;11;16]. Furthermore, individuals with high-level injuries have greater metabolic rate 

deficits, with thermoregulatory imbalance resulting in periods of hypothermia [22–24]. In 

addition to the spinal column, the ascending and descending sympathetic chain of ganglia 

coordinate a sensory/effector response in maintaining general physiologic homeostasis 

mediated in part through the catecholamine signaling, in particular norepinephrine [25]. 

Considering its anatomic arrangement, it is not surprising that impairment of SNS relative to 

the level of injury is observed, with greater impairment and resulting physiologic disruption 

accompanying a high-level injury [16–18;21;22;26–37]. These physiologic and metabolic 

alterations with high-level injuries (particularly the deficits in SNS function, metabolic rate 

and thermogenesis, and glucose-lipid metabolism resulting in glucose-intolerance and 

ultimately insulin resistance) suggest the presence of an unidentified tissue/organ integrating 

these phenotypes and mediating the metabolic-related disease risk – which we hypothesize 

as brown adipose tissue and discuss in the subsequent sections.

Metabolism-Related Alterations Following Spinal Cord Injury

Body Composition

Due to significant neurological impairment, body composition drastically deteriorates, as 

early as 6 months after SCI with an excessive loss of lean mass below the level of injury and 

an increased total fat mass [38–40]. Lower metabolic rates as a result of reduced lean mass 

further accelerate the development of excess adipose tissue (obesity) in individuals with SCI. 

Obesity is associated with a broad range of metabolic abnormalities that affect several 

different organ systems in the body via atherogenic, neuro-humoral, and hemodynamic 

mechanisms in the able-bodied (AB) as well as SCI populations [41–43]. Methods for 

determining in vivo body composition, lean mass and fat mass, have expanded significantly 

over the last 30 years. This includes the use of whole body estimates of fat mass and fat free 

mass or lean mass from anthropometry (e.g. body mass index, waist circumference) and 

biophysical means (e.g. under water weighing or air displacement plesthymography) to more 

detailed tissue and regional assessments of fast mass and distribution using in vivo imaging 

technologies like dual x-ray absorptiometry, computed tomography and magnetic resonance 

imaging. Despite these advances and the numerous studies in able body populations, detailed 

and accurate descriptions of the amount and distribution of fat mass and adipose tissue 

following spinal cord injury remains limited, particularly across population variables like 

sex, anatomical level and severity of injury, time since injury. Whole body relative fat mass 

is underestimated by body mass index (BMI) with SCI populations [44–46], indicating BMI 

categories and disease risk relationships should be carefully considered and possibly revised 

to lower category values or include additional indices (e.g. waist circumference) in subjects 

with SCI [46–48]. More recent advances in in vivo imaging modalities open new 

possibilities for determining organ specific masses, fat infiltration in non-adipose depots and 

regional distributions of body fat (subcutaneous versus visceral) which have been shown to 

differentially influence disease risk and will be important for understanding the changes that 

occur in subjects following SCI [49–51].
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Skeletal Muscle Adaptations

In individuals with American Spinal Cord Injury Association Impairment Scale (AIS) 

category A SCI, the activation and loading levels of the skeletal muscles below the level of 

the lesion are markedly reduced or absent. Without preventive measures, these muscles 

rapidly atrophy and show a decline in functional capacity. As soon as 6 weeks after injury, 

lower limb muscles are 25–45% smaller than in non-injured controls [52]. Muscle protein 

changes may occur more slowly than fiber atrophy; nevertheless, several months post-SCI, 

fatigue-resistant and oxidative muscle fibers transform into highly fatigable and glycolytic 

muscle fibers with impaired oxidative capacity and mitochondrial function and poor fatigue 

resistance [53–55]. The maintenance of normal glucose homeostasis depends on a finely 

balanced interaction between muscle sensitivity to insulin and insulin secretion, as up to 

70% of glucose utilization occurs at the muscle level [56;57]. Changes in skeletal muscle 

insulin sensitivity and glucose metabolism are considered to be the initiating defect in type 2 

diabetes, evident decades before beta-cell failure. The transformation of muscles from a 

slow oxidative to a fast glycolytic phenotype following SCI yields a muscle tissue that is 

insulin resistant and metabolically inflexible. Recent research [58] confirmed that human 

SCI muscle has histochemical and biochemical properties that are very similar to that of 

human diabetic muscle, including fewer Type I fibers and a predominance of Type IIax+IIx 

fibers. These fibers have significantly reduced glucose handling capacity under insulin-

stimulated conditions due to lower levels of the insulin receptor, glucose transporter 4 

(GLUT 4), hexokinase II, glycogen synthase, and pyruvate dehydrogenase-E1α.

Sympathetic Nervous System & Energy Expenditure

Energy expenditure in the homeothermic organism (e.g. mammals) is related to overall body 

composition, with energy balance requiring a complex integration of central and peripheral 

affectors and effectors to balance the processes of metabolism against energy acquisition, 

dissipation and storage[60]. Each of these metabolic components is variable depending on 

environmental inputs and is mediated through the CNS and autonomic nervous system, 

including the parasympathetic and sympathetic nervous systems [25] (see [61–64]). The 

three main components of daily energy expenditure in the absence of thermal stress include 

resting metabolic rate (including the basal metabolic rate), activity-related energy 

expenditure, and the thermic effect of food (including diet-induced thermogenesis). Basal 

metabolic rate (BMR), referring to the minimal amount of energy expenditure in an unfed, 

non-active, awake state for a non-reproductive organism within the thermoneutral zone 

(absence of cold or heat stress), has been measured multiple ways, with most currently 

technologies relying on the calculation of energy expenditure based on respiratory gas 

analysis referred to as indirect calorimetry [65;66]. Above the range of ambient 

temperatures, where core body temperature can be defended by involuntary changes in 

vascular control and sweating for heat dissipation, energy expenditure rises [64]. Below the 

lower critical temperature where vascular and behavioral controls are no longer sufficient to 

preserve core temperature, thermogenesis is required [25]. This includes both shivering 

(involuntary muscle contractions) and non-shivering thermogenesis. Although not as 

commonly discussed in the context of daily energy expenditure, in the context of modern 

society where thermal exposures are modified by controlling ambient temperatures, clothing, 

environmental surroundings and other factors, there is increasing awareness of the “cold-
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induced thermogenesis” component including both shivering and non-shivering 

thermogenesis, that may at times significantly contribute to energy balance and body 

temperature maintenance [67–71]. This adaptive, facultative cold-induced thermogenesis has 

been clearly demonstrated in small mammals to be sympathetically controlled and mediated 

through brown adipose tissue (BAT) [72;73], discussed below in more detail. Basal and 

resting metabolic rate are generally lower following SCI when compared with non-injured 

controls, with high-level injuries having a larger metabolic rate deficit, although adjustment 

for changes in body composition and appropriate covariates may obviate these metabolic 

deficits at times [65;74–78]. Concomitant with these potential energy expenditure 

reductions, metabolic substrate utilization based on the respiratory exchange ratio (or 

respiratory quotient) suggest reduced carbohydrate utilization, particularly after a meal 

[78;79], in agreement with elevated blood glucose during this same period[80] and the 

observed glucose intolerance following SCI [5;6;9]. Although making up a smaller overall 

percentage of daily energy expenditure, diet-induced thermogenesis (or the thermic effect of 

feeding) and cold-induced thermogenesis have been inconsistently reported as lower in 

subjects with SCI, with higher level injuries having greater deficits [79;81;82]. Differences 

between study methodologies including the duration and type of metabolic rate measure, 

time since injury, standardized conditions (time of day if not whole day, composition of 

meals used for feeding tests, temperature monitoring of room and clothing utilized, 

medication usage, SNS function and anatomic level of SCI, etc.) may contribute to some of 

these discrepancies and should be carefully considered in performing comprehensive energy 

expenditure measurements [82].

Body Temperature

Given the metabolic rate deficits often observed with SCI, as well as the SNS alterations that 

contribute to thermal regulation, defense of core body temperature under normal ambient 

temperature exposures in addition to mild cold challenge might be expected to deviate from 

normative values of non-injured subjects. Subjects with high-level injury and greater 

neurologic impairment generally have significantly lower core body temperatures than low-

level injuries or high-level SCI with less neurologic impairment under basal conditions 

[23;24;79;83–85] as well as cold thermal challenges [86–88]. This data agrees with previous 

observations of a “poikilothermy” phenotype in subjects following SCI [22;24;89], further 

suggesting alterations in SNS function in thermal regulation which may reflect increased 

heat loss to the environment as well as possible thermogenesis defects. Whether varying 

core body temperature and altered thermal balance contributes to differences in metabolic 

efficiency and propensity to excess weight and adipose gains following SCI remains to be 

fully elucidated.

Brown Adipose Tissue and Metabolism

Brown Adipose Tissue Anatomical Distribution and Function

As described above, core body temperature is defended by a balance of energy intake, 

expenditure and dissipation. Adipose tissue plays an important role in energy balance as an 

energy storage tissue, paracrine/endocrine organ and for physical thermal regulation. While 

the majority of research in humans over the past half century has focused on the importance 
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of excess white adipose tissue (WAT) in obesity and related metabolic disease, the 

rediscovery of the presence of metabolically active brown adipose tissue (BAT) in adult 

humans has reopened questions related to energy balance and thermogenesis [90]. BAT is a 

type of adipose tissue with high metabolic activity named for its unique color derived from 

increased mitochondrial content, vascular/blood flow and reduced lipid content relative to 

the more abundant, storage form of adipose - white adipose tissue [72;91;92]. BAT contains 

a unique mitochondrial protein called uncoupling protein 1 (UCP1) [72]. As the name 

implies, this protein dissipates the intermembrane H+ gradient thereby “uncoupling” the 

process of substrate utilization through the electron transport chain from ATP synthesis, 

resulting in heat generation – a.k.a. thermogenesis [72]. SNS stimulation via release of 

norepinephrine is essential for BAT activation, with UCP1 levels increasing under chronic or 

sustained SNS signaling [73;93–96].

Over the last 7 years the presence of metabolically active BAT in humans has been 

reconsidered thanks in part to advances in medical imaging [90;97;98]. Positron emission 

tomography (PET) scans are used to identify ‘hypermetabolic’ tissues based on the uptake of 

a radio-labelled glucose analog. In adult human subjects, cold exposure prior to and/or 

during the PET scans was found to induce a symmetrical pattern of hypermetabolic tissues 

anatomically localized to the cervical and upper thoracic regions, particularly in lean 

subjects and during cold weather months [99;100]. Further investigation revealed the 

composition of these symmetrical depots to be similar to that of adipose tissue based on 

computed tomography (CT) densities and containing UCP1 and sympathetic innervation, 

verifying the presence of metabolically active BAT in at least a portion of healthy, adult 

humans [101–107]. These sites of metabolically active BAT (particularly the paravertebral 

depots), as well as other BAT depots in the upper thoracic/cervical regions, anatomically 

coincide with the SNS anatomic ganglia distribution.

Prior to the “re-discovery” of metabolically active BAT in humans by medical imaging 

methods (previously described by anatomical dissection in adult humans in the 1970s [108]), 

animals models had suggested a potential role of defects in BAT function associated with 

both obesity and glucose/insulin disorders [90;97;109–111]. Since 2009, multiple studies 

using PET-CT and cold challenges, where the subjects are exposed to a cold room to 

stimulate non-shivering thermogenesis, have been published showing an inverse association 

between metabolically active BAT and body fat/BMI in humans [103;112–130]. 

Furthermore, in line with animal studies which show responsiveness to insulin, leptin, 

thyroid hormone, beta-3 adrenergic stimulation (norepinephrine), fatty acid uptake and 

protection from T2D in BAT activated states [90;131;132], human BAT activity is positively 

associated with lower circulating glucose and improved insulin sensitivity, and inversely 

associated with T2D [101;112;120;133–137].

Obesity and Sympathetic Alterations

Dysregulation of autonomic nervous function in obese animals is frequently observed in 

metabolism and obesity research. The primary mediator of this autonomic dysregulation has 

generally been considered a defect in SNS function, so much so that the acronym MONA 

LISA (Most Obesities kNown Are Low In Sympathetic Activity) is used to describe it [138–
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143]. Two common deficits of SNS-mediated metabolism reported in the individuals who 

are obese is a deficit of diet-induced thermogenesis and non-shivering thermogenesis [144–

150]. However, a cause-effect relationship has been difficult to determine given the deficits 

have most often been measured in the obese state or post-weight loss subsequent to 

overweight/obese status. Alternatively, patients with adrenal tumors (pheochromocytoma) 

overproduce epinephrine and norepinephrine with accompanying hypermetabolic status 

including increased energy expenditure, body leanness and brown adipose tissue hyperplasia 

[119;151–157]. Considering the necessity of SNS function for BAT stimulation of 

thermogenesis [93], important and unanswered questions of human, clinical relevance 

remain to be answered in understanding the relationship between SNS function, BAT 

function and metabolic-related disease risk.

Intersection of SCI, SNS and BAT

Observations from individuals with SCI demonstrate a decreased SNS activity and obesity 

development post-injury [13;76;158;159]. Although a HLI model of SCI carries additional 

neurologic insults outside a singular SNS disruption (reduced physical activity, sensory 

perception, etc.), the clinical parallel and incomplete understanding of this increased 

disposition to develop obesity and metabolic dysregulation/disease support a need for 

additional clarity in this area. Thus, comparisons with LLI and non-injured, able-bodied 

individuals will aid in assessing the contribution of SNS control of BAT in human 

metabolism and physiology. Human SCI research involving impaired SNS function (high 

level injury) has focused on multiple metabolic tissues to the relative exclusion of BAT. This 

may be in part because of the previously disputed presence of metabolically active brown 

adipose tissue in adult humans [160], as well as controversy regarding the amount of daily 

energy expenditure contributed by BAT through diet induced thermogenesis (DIT) and non-

shivering thermogenesis (NST) with estimated ranges from 5–15% [161;162] in adult 

humans. However, in animal models it is well established that sympathetic nervous control is 

essential for BAT thermogenesis, and that molecular, cellular and tissue level changes in 

BAT accompany chronic SNS activation as we demonstrated in mice with environmental 

temperature housing conditions [163]. While pre-clinical research is suggestive of a SNS-

mediated BAT deficit [164], significant physiological differences between the rodent 

research model and humans stress the importance of additional research focused on the 

contribution (or lack thereof) of BAT to aspects of thermal regulation, metabolic rate, 

substrate utilization and ultimately metabolic-related disease risk in the SCI population. 

Given the anatomical distribution of BAT and the SNS, we hypothesize that individuals with 

high-level SCI (tetraplegia) will have decreased BAT amount and function, relative to the 

impairment of SNS input.

Conclusions

Metabolic alterations following SCI indicate an increased disease risk for metabolic-related 

diseases like type 2 diabetes and cardiovascular disease. While reduced energy expenditure 

reflecting changes in activity and body composition contribute to metabolic and physiologic 

deficits relative to non-injured subjects, these do not fully account for metabolic 

dysregulation between subjects with SCI, particularly at higher versus lower anatomic levels 

Smith and Yarar-Fisher Page 7

Curr Phys Med Rehabil Rep. Author manuscript; available in PMC 2017 December 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



of injury. The SNS plays a critical role in metabolic rate and energy balance, and with 

impaired SNS coincident with the level and severity of SCI. While SNS alterations have 

previously been observed in multiple models of obesity, the cause-effect relationship has 

been difficult to ascertain. With the rediscovery of BAT in adult humans, a renewed interest 

in BAT as a mediator of SNS metabolic activity and metabolic-related disease risk has 

occurred. Considering the physiologic and metabolic phenotypes observed with SCI, 

particularly across varying anatomic levels, understanding BAT function and impairment 

with SCI may help improve clinical practice for subjects with SCI while bringing clarity to a 

broader understanding of the metabolic significance of BAT in adult humans.
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