
Proposal for the reclassification of obligately purine-fermenting
bacteria Clostridium acidurici (Barker 1938) and Clostridium
purinilyticum (Dürre et al. 1981) as Gottschalkia acidurici gen.
nov. comb. nov. and Gottschalkia purinilytica comb. nov. and of
Eubacterium angustum (Beuscher and Andreesen 1985) as
Andreesenia angusta gen. nov. comb. nov. in the family
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Abstract

Several strictly anaerobic bacteria that are Gram-stain-positive have the ability to use uric acid as the sole source of carbon

and energy. The phylogeny of three such species, Clostridium acidurici, Clostridium purinilyticum, and Eubacterium angustum,

members of the Clostridium cluster XII that ferment purines, but not most amino acids or carbohydrates, has been re-

examined, taking advantage of their recently sequenced genomes. Phylogenetic analyses, based on 16S rRNA gene

sequences, protein sequences of RpoB and GyrB, and on a concatenated alignment of 50 ribosomal proteins, revealed tight

clustering of C. acidurici and C. purinilyticum. Eubacterium angustum showed consistent association with C. acidurici and C.

purinilyticum, but differed from these two in terms of the genome size, G+C content of its chromosomal DNA and its inability

to form spores. We propose reassigning C. acidurici and C. purinilyticum to the novel genus Gottschalkia as Gottschalkia

acidurici gen. nov. comb. nov. (the type species of the genus) and Gottschalkia purinilytica comb. nov., respectively.

Eubacterium angustum is proposed to be reclassified as Andreesenia angusta gen. nov. comb. nov. Furthermore, based on the

phylogenetic data and similar metabolic properties, we propose assigning genera Gottschalkia and Andreesenia to the novel

family Gottschalkiaceae. Metagenomic sequencing data indicate the widespread distibution of organisms falling within the

radiation of the proposed family Gottschalkiaceae in terrestrial and aquatic habitats from upstate New York to Antarctica,

most likely due to their ability to metabolize avian-produced uric acid.

For historical reasons, the genus Clostridium includes a
large number of diverse bacteria whose only common fea-
tures are obligately anaerobic growth, a Gram-positive type
cell wall, the absence of sulfate reduction and the ability to
form endospores [1–3]. In 1994, based on the studies of
clostridial 16S rRNA gene sequences, Collins and colleagues
divided it into 19 clusters that roughly represented family-
level taxa; each cluster included several proposed genera [4].
Over the past 20 years, many former Clostridium spp. have
been reassigned to new genera, some have been moved to
novel families, orders and even to the novel classes, Erysipe-
lotrichia and Negativicutes [1, 5]. An important step
towards streamlining clostridial classification has been

made in the latest edition of Bergey’s Manual of Systematic
Bacteriology [1, 6], which reclassified a large number of
Clostridium spp. based on phylogenetic criteria, along the
lines of the work of Collins et al. [4].

In 2016, Lawson and Rainey [7] proposed limiting the genus

Clostridium to the members of Clostridium sensu stricto

(Clostridium cluster I [4]), which includes approximately

70 species that are sufficiently close to the type species Clos-

tridium butyricum. Adoption of this proposal means that

species of the genus Clostridium that do not belong to clus-

ter I need to be reclassified. Here, we propose such a reclas-

sification for three species of bacteria with validly published
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names, Clostridium acidurici, Clostridium purinilyticum and
Eubacterium angustum, members of the Clostridium cluster
XII [4, 8]. Based on the phylogenetic analyses presented
here and in a previous work [9], we propose re-assigning
these three organisms to two novel genera, Gottschalkia and
Andreesenia, within the novel family Gottschalkiaceae.

In their original description of Clostridium cluster XII,
Collins et al. [4] identified two loosely connected branches.
One of them included a tight cluster of C. acidurici and C.
purinilyticum, which shared approximately 94% similarity
with respect to 16S rRNA gene sequences and were put into
the same genus. A subsequent paper from the same authors
added E. angustum to the same genus [8]. The other branch
included Clostridium hastiforme, Clostridium sp. strain
BN11, and ‘Clostridium filamentosum’. The first two were
later reclassified as Tissierella praeacuta and Tissierella crea-
tinini, respectively [8, 10]. ‘Clostridium filamentosum’ has
not been validly named but is available under this name in
some culture collections (e.g., ATCC 25785 = JCM 6585).
Based on its 16S rRNA gene sequence, it probably belongs to
the genus Anaerosalibacter and is listed as Anaerosalibacter
sp. in the DSMZ catalog (https://www.dsmz.de/catalogues/
details/culture/DSM-6645.html). Because of the ambiguous
phylogeny of Tissierella-related organisms, in the 2009 edi-
tion of Bergey’s Manual of Systematic Bacteriology these
organisms, along with the members of Clostridium cluster
XIII, were assigned to Clostridiales Family XI Incertae Sedis
[6]. More recently, members of cluster XIII have been
assigned to the family Peptoniphilaceae [11], whereas the
genera Tissierella and Soehngenia (and potentially also Spor-
anaerobacter and Tepidimicrobium) have been proposed to
form the novel family Tissierellaceae in the order Tissierel-
lales [12]. These changes still left three members of the origi-
nal Clostridium cluster XII without a correct assignment: C.
acidurici, C. purinilyticum and E. angustum [4, 8], and these
are the subjects of the present study.

Phylogenetic analyses, based upon the 16S rRNA gene
sequences of C. acidurici, C. purinilyticum and E. angustum
and their neighbours from clusters I, XI, XII, and XIII were
performed using the neighbour-joining (Fig. 1) and maxi-
mum likelihood methods (Fig. S1, available in the online
Supplementary Material). The 16S rRNA gene sequences of
the type strains were obtained either from GenBank or from
the NCBI RefSeq Targeted Loci project [13] (see the online
Supplementary Material for details). Sequences were aligned
with ClustalW [14], as implemented in the MEGA7 software
suite [15], and the neighbour-joining and maximum likeli-
hood trees were reconstructed using MEGA7.

The 16S rRNA gene-based phylogenetic trees (Figs 1 and S1)
showed that C. acidurici, C. purinilyticum and E. angustum
form a distinct cluster, separate from other species of cluster
XII (members of Tissierellaceae), as well as from representa-
tives of clusters I, XI, and XIII (members of Clostridiaceae,
Peptostreptococcaceae and Peptoniphilaceae, respectively). As
noted previously, C. acidurici and C. purinilyticum are par-
ticularly closely related [4, 16–18]. E. angustum forms a

separate branch in the same cluster, as it did in the trees pre-
sented in several earlier reports [2, 8, 19–21].

To further evaluate the phylogenetic relationships of C.
acidurici, C. purinilyticum and E. angustum, we have ana-
lyzed protein trees reconstructed from ribosomal proteins
(Fig. 2) and from sequences of the DNA-directed RNA
polymerase beta subunit (RpoB) and DNA gyrase subunit B
(GyrB) of various members of clostridial clusters I, XI, XII,
and XII, using sequences from selected organisms with
completely or partially sequenced genomes, where available
(Table S1). The ribosomal proteins-based phylogenetic tree
was reconstructed from a concatenated alignment of 50
widespread ribosomal proteins, as described earlier [9, 22],
(see online Supplementary Material for details). On this
tree, C. acidurici, C. purinilyticum and E. angustum again
formed a tight cluster with well-supported branches (Fig. 2).
Clustering of these organisms was also seen in the phyloge-
netic trees for RpoB and GyrB subunits (Fig. S2a, b). The
assignment of C. acidurici and C. purinilyticum to a single
genus satisfies both rRNA similarity-based [23] and protein
overlap-based [24] criteria. Based on these data, we formally
propose reassigning C. acidurici and C. purinilyticum to the
novel genus Gottschalkia.

While unification of C. acidurici and C. purinilyticum has
already been proposed by Collins et al. [4] and appears quite
straightforward, E. angustum differs from them in having a
much higher DNA G+C content, a smaller genome size,
and an inability to form spores (Table 1). While the ability
to sporulate is not necessarily a reliable taxonomic character
[8, 25], as it can be easily lost through a deletion of a single
core sporulation gene [12, 26], the smaller genome size of E.
angustum compared to its relatives (Table 1) indicates sub-
stantial loss of genes in its particular lineage. However, E.
angustum still encodes certain sporulation proteins,
although far fewer than C. acidurici and C. purinilyticum
(Table S2). E. angustum has been reported to be non-motile,
but formed flagella [27] and its genome carries more than
30 flagellar genes [28]. Based on the differences listed above,
and the lower level of similarity in its 16S rRNA gene
sequence (91%) than that recommended for a single genus
[23], E. angustum does not fit into the genus Gottschalkia.
Further, the percentages of conserved proteins between E.
angustum and C. acidurici and C. purinilyticum, calculated
as described by Qin and colleagues [24] (49.2 and 47.7%,
respectively) were lower than the suggested genus boundary
of 50%. Accordingly, we propose placing E. angustum in a
separate genus, Andreesenia.

Despite certain differences, the high degree of 16S rRNA
gene sequence similarity, consistent clustering on 16S rRNA
gene-based and protein-based trees (Figs 1, 2 and S2), and
the similar metabolic properties justify unification of C.
acidurici, C. purinilyticum and E. angustum into a higher-
level taxon. It is important to note that Tissierella- and Pep-
toniphilus-containing clusters on both 16S rRNA gene-
based and protein-based trees (Figs 1 and 2) correspond to
family-level groupings, Tissierellaceae and Peptoniphilaceae,
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respectively [11, 12]. Thus, based on the available pheno-

typic, chemotaxonomic, and phylogenetic information, we

propose the designation of Gottschalkiaceae fam. nov., to

accommodate the genera Gottschalkia and Andreesenia.

The novel family is easily distinguished by the ability of its

members to use uric acid as the sole carbon and energy

source and the predominance of myristic acid among the

fatty acids. As a sister group of Tissierellaceae and Peptoni-

philaceae, the proposed family Gottschalkiaceae could be

tentatively assigned to the order Tissierellales within the

class Tissierellia [12], although the high-order taxonomy of

these organisms probably merits further study.

While the proposed family Gottschalkiaceae includes just
three species with validly published names, representatives
of this family appear to be widespread in nature. In their
original description of C. acidurici, Barker and Beck [29]
mentioned isolating very similar uric acid-degrading anaer-
obic bacteria from ten different soil samples from various
places in California. They also isolated similar organisms
from San Francisco bay mud and from sandy soil collected
near Provo, Utah, and stated ‘No soil tested has ever failed
to harbour the organisms’ [29]. Further, they found anaero-
bic uric acid-degrading bacteria in fecal material of the yel-
low-shafted flicker (Colaptes auratus auratus), an
observation in line with uric acid being ‘the main
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Fig. 1. 16S rRNA gene-based phylogenetic tree of Clostridium acidurici and related organisms and metagenomic samples. The names

of the characterized members of the proposed genera Gottschalkia and Andreesenia are shown in bold in square brackets. The sequen-

ces from type strains (indicated with T) were used and listed under their DSM accession numbers; where available. GenBank accession

numbers are listed in parentheses. Roman numerals on the right indicate the clostridial cluster assignments of Collins et al. [4]. Clos-

tridioides difficile, Acetoanaerobium sticklandii and Peptoclostridium litorale are the recently assigned names of formerly misclassified

Clostridium spp. [45, 46]. The tree was inferred using the neighborhood-joining method, based on the Tamura-Nei model [47] as imple-

mented in MEGA7 [15]. The evolutionary distances were computed using the Jukes-Cantor method and are in the units of the number of

base substitutions per site. The tree was rooted using sequences from C. butyricum and C. cylindrosporum, which are members of Clos-

tridium sensu stricto (cluster I).
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nitrogenous end product of avian metabolism, which may
be decomposed mainly by bacteria of this type’ [29].

Accordingly, a search of metagenomic sequence data identi-

fied C. acidurici-related 16S rRNA gene sequences in sam-

ples taken from a variety of habitats all over the world.

These include, among others, the uncultured clones

SBXY_753 and MAT-CR-P2-F02, collected from hypersa-

line microbial mats in the Guerrero Negro lagoon in Mexico

[30] and in the Candeleria lagoon in Cabo Rojo, Puerto

Rico [31], respectively; clone FGL12_B55 from an anoxy-

genic phototrophic community in Fayetteville Green Lake

in upstate New York [32], and clone Q31013 from an inter-

tidal sediment along the coast of Qinhuangdao in PR China

[33] (Fig. 1). Metagenomic sequencing also revealed the
presence of the uncultured clones, closely related to C. acid-
urici, C. purinilyticum and/or E. angustum, in ornithogenic
soils of the Ross Sea region and King George Island in
Antarctica, which form on land under the rookeries of
Ad�elie penguins (e.g. clone 9/1/8C on Fig. 1) and Chinstrap
and Gentoo penguins [34, 35]. This correlates with the find-
ing of a closely related clone 1219A (GenBank accession no.
FJ393497) in the fecal flora of Ad�elie penguins [36]. Finally,
although not shown on Fig 1, 16S rRNA gene sequences
falling within the radiation of the proposed family Gott-
schalkiaceae have been amplified from the samples taken
from Artemia-associated microbiota in the solar salterns of
Eilat, Israel [37], bovine mastitis milk [38], and anaerobic
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Fig. 2. Ribosomal protein-based phylogenetic tree of Clostridium acidurici and related species. Members of the proposed genera Gott-

schalkia and Andreesenia are shown in bold. Roman numerals on the right indicate the clostridial cluster assignments of Collins et al.

[4]. The tree was reconstructed essentially as described previously [9, 22]. Fifty sets of ribosomal proteins (L1–L7, L9–L11, L13–L24,

L27–L29, L31–L36 and S2–S20) were extracted from the respective genomic entries (listed in Table S1) and aligned using MUSCLE [48];

gapped columns (with more than 30% of gaps) and columns with low information content were removed from the alignments. Individ-

ual ribosomal protein alignments were concatenated, giving a total of 6238 positions, and a maximum-likelihood tree was recon-

structed using the PhyML program [49], the latest version of which (http://www.atgc-montpellier.fr/phyml-sms/) includes automatic

selection of the best-fit substitution model for a given alignment and calculation of branch support values using aBayes algorithm [50].

The tree was rooted using the sequences from C. butyricum and C. cylindrosporum.
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Table 1. Characteristics of Clostridium acidiurici, Clostridium purinilyticum and Eubacterium angustum, members of the proposed novel genera

Gottschalkia and Andreesenia

1, Clostridium acidurici 9aT=DSM 604T [16, 29]; 2, Clostridium purinilyticum WA-1T=DSM 1384T [16, 43]; 3, Eubacterium angustum MK-1T=DSM 1989T

[27, 28]; 4, Tissierella praeacuta ATCC 25539T or Tissierella creatinophila KRE 4T=DSM 69113T [8, 12, 19, 51]; 5, Soehngenia saccharolytica BOR-YT

=DSM 12858T=ATCC BAA-502T [20]; 6, Anaerosalibacter bizertensis C5BELT=DSM 23801T or Anaerosalibacter sp. ND1=DSM 27308 [21, 52]; 7, Clostrid-

ium ultunense DSM 10521T [53, 54]; 8, Clostridium cylindrosporum HC1T=DSM 605T [16, 29, 55–57]. ± , weak or variable reaction; ND, no

available data.

Property Organisms

1 2 3 4 5 6 7 8

Genome size (kb) 3108 3397 2405 3116 ND 3198 3217 2720

Proteins encoded 2774 3135 2397 2957 ND 3054 2863 1879

DNA G+C (mol%) 29.9 28.8 43.7 30.1 43 29.7 32.8 27.9

Cell width (µm) 0.5–0.7 1.1–1.6 1.0–1.5 0.6–0.9 0.5–0.7 0.5–1.0 0.5–0.7 0.8

Cell length (µm) 2.5–4.0 2.7–9.6 3.0–6.5 2–8 2–11 3–20 0.5–7.0 3.3

Gram staining + + + ± + + – ±

Flagella + + + ± + + + +

Spore formation + + – ± + + + +

Optimal temperature for

growth (
�

C)

31–37 36 37 37 30–37 40 37 40–45

Optimal pH for growth 7.6–8.1 7.3–7.8 8.0–8.2 7.5 7.0 7.5 7.0 7.0–8.0

Hydrolysis of

Gelatin – – – ± – + – –

Starch – – – – + – ND –

Utilization of purines

Adenine – + – – ND ND ND –

Adenosine – + –* ND ND ND ND –

Guanine + + + ND ND ND ND +

2-Hydroxypurine + + –* ND ND ND ND –

Hypoxanthine + + –† ND ND ND ND +

Purine + + –* ND ND ND ND –

Uric acid + + + – ND ND ND +

Xanthine + + + – ND ND ND +

Xanthosine – + –* ND ND ND ND –

Utilization of sugars

L-Arabinose – – –* – + – – –

Cellobiose – – –* – + – – –

D-Fructose – – –* – + – – –

D-Galactose – – –* – + – – –

D-Glucose – – –* – + + + –

Lactose – – –* – + + – –

Maltose – – –* – + – – –

D-Mannitol – – –* – + + – –

D-Mannose – – –* – + – – –

D-Ribose – – –* – + – – –

D-Sorbitol – – –* – + ND – –

Sucrose – – –* – + – – –

D-Xylose – – –* – + ND – –

Enzymes

Catalase – – – – – – – –

Lecithinase – – – – ND ND ND –

Lipase – – – – ND ND ND –

Urease – – – – – – ND –

Production of

Acetate + + + + + + + +

Butyrate – – – + ND + – –
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digesters treating poultry litter [39, 40], and other

sources (see the https://www.arb-silva.de/browser/ssu-128/

HE582772/ entry in the SILVA database [41] for more exam-

ples). These findings indicate the widespread distribution of

Gottschalkiaceae-related organisms in both terrestrial and

aquatic habitats, most likely due to their ability to metabo-

lize avian-produced uric acid, as originally proposed by

Barker and Beck [29].

DESCRIPTION OF GOTTSCHALKIA GEN. NOV.

Gottschalkia (Gott.schal¢ki.a. N.L. fem. dim. n. Gottschalkia
named after Professor Dr Gerhard Gottschalk in recogni-
tion of his important contributions to the studies of
Clostridia).

Gram-stain-positive, obligately anaerobic, straight or
slightly curved rods, 0.5–1.5�2.5–10 µm. Motile by means
of lateral flagella. Growth occurs from 18–19

�

C and up to
37–42

�

C. The optimum temperature for growth is 30–
37

�

C. The pH range for growth is from 6.5 to 7.0 and up to
9.0; the optimum pH for growth is between 7.5 and 8.1.
Form spores that are round to oval and terminal or subter-
minal. Chemoorganotrophs that require purines for growth,
but do not utilize carbohydrates and most amino acids. In
the presence of 0.1% (w/v) yeast extract, can grow using
uric acid as the sole carbon and energy source. Can also uti-
lize guanine, purine, 2-hydroxypurine, xanthine and hypo-
xanthine. Major products of metabolism are acetate,
formate, CO2 and NH3. Oxidase-, catalase-, lipase- and ure-
ase-negative. Nitrate and sulfate are not reduced. Cell walls
contain meso-diaminopimelate. Isolated from soil, marine
and freshwater sources and avian droppings.

The type species is Gottschalkia acidurici [basonym Clostrid-
ium acidurici (Barker 1938) Approved List 1980]. The G+C
content of the chromosomal DNA ranges from 28 to 30mol%.

DESCRIPTION OF GOTTSCHALKIA ACIDURICI

COMB. NOV.

A.ci.du¢ri.ci. N.L. gen. n. adj. acidurici of uric acid, referring
to the preferred carbon source.

Basonym: Clostridium acidurici (Liebert 1909)
[29] (Approved List 1980).

The description of Gottschalkia acidurici is identical to that
proposed for Clostridium acidurici [2, 29, 42]. In addition to
those described for the genus, has the following properties.
Capable of growing in a salt medium containing 0.3% (w/v)
uric acid as the sole source of carbon, energy and nitrogen
[42]. On an enrichment medium containing uric acid, forms
whitish colonies 1–2mm in diameter with irregular edges.
Forms terminally located oval spores (0.9�1.1 µm in size)
that cause a swelling of the cell.

The type strain G. acidurici 9aT(=ATCC 7906T=DSM
604T) was isolated from garden soil in California [29].
Its complete genome sequence [18] is available in Gen-
Bank under the accession no. CP003326. The G+C con-
tent of the genome is 29.9mol% (27.8% by the thermal
denaturation method).

DESCRIPTION OF GOTTSCHALKIA

PURINILYTICA COMB. NOV.

Pu.ri.ni.ly¢ti.ca. N.L. fem. adj. purinilytica lysing the
purine ring.

Table 1. cont.

Property Organisms

1 2 3 4 5 6 7 8

Formate + + + – + – + +

CO2 + + + + + ND + +

NH3 + + + + ± ND ND +

H2 – – – ND + – + –

H2S ND – – + + – ND –

Reduction of

Nitrate – – – ± – ± – –

Sulfate – – – – – – – –

Sulfite – – ND ND ± – – –

Thiosulfate – – ND – ± – – –

Major fatty acids‡ C14 : 0, C16 : 0, C16:1!7c C14 : 0, C16 : 0, C16:1!7c C14 : 0, C16:1!7c iso-C15 : 0, C16 : 0 ND iso-C15 : 0, C16 : 0 ND ND

*Beuscher and Andreesen [27] mention the inability of E. angustum to utilize any carbohydrates or purines from the list of compounds tested by

Dürre et al. [16] but do not list their names.

†Hypoxanthine was utilized by E. angustum only in the presence of uric acid [27].

‡Fatty acid analyses of C. acidurici, C. purinilyticum, and E. angustum were carried out by the Identification Service of the DSMZ, Braunschweig, Ger-

many, using Sherlock Microbial Identification System [58] of MIDI Inc. (Newark, DE, USA). Myristic acid C14 : 0 clearly predominated, making up at least

32%, 25%, and 36%, respectively, of the total fatty acid content in these organisms.
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Basonym: Clostridium purinilyticum Dürre, Andersch and
Andreesen 1981.

The description of Gottschalkia purinilytica is identical to
that for Clostridium purinilyticum [2, 16]. In addition to
those described for the genus, has the following properties.
Forms spherical terminally located endospores (0.8 to
1.2 µm in size) that result in swollen cells. Requires selenium
compounds and thiamine for growth. Can use adenine,
adenosine, inosine, or xanthosine as the sole source of car-
bon and energy. In the presence of purines, is able to utilize
glycine, formiminoglycine, benzoylglycine, glycyl-glycine,
glycyl-glycyl-glycine and glycyl-leucine.

The type strain WA-1T(=ATCC 33906T=DSM 1384T) was
isolated from farm soil containing chicken manure in
Bovenden-Eddigehausen, Germany [16]. 43The G+C con-
tent of the genome is 28.8% [43].

DESCRIPTION OF ANDREESENIA GEN. NOV.

Andreesenia (An.dree.se¢ni.a. N.L. fem. n. Andreesenia
named after Professor Dr Jan Andreesen in recognition of
his contributions to the studies of Clostridia).

Strictly anaerobic obligately purinolytic, Gram-stain-
positive, non-spore-forming straight rods, 1.0–1.5�3–7 µm.
Growth occurs from 18 to 45

�

C (optimum temperature is
30–37

�

C). The pH range for growth is from 6.5 to 10.0 (the
optimum pH is between 7.5 and 8.5). In the presence of
0.1% (w/v) yeast extract, can grow using uric acid as the
sole carbon and energy source. Do not utilize carbohydrates,
alcohols, amino acids, or organic acids. Do not grow on
milk or chopped meat medium. The major products of
metabolism are acetate, formate, CO2 and NH3. Oxidase-,
catalase-, lipase- and urease-negative. Nitrate and sulfate are
not reduced. Cell walls contain meso-diaminopimelate. Can
be isolated from sewage, hypersaline microbial mats and
avian droppings.

The type species is Andreesenia angusta (basonym Eubacte-
rium angustum Beuscher and Andreesen 1985).

DESCRIPTION OF ANDREESENIA ANGUSTA

COMB. NOV.

An.gus¢ta. L. fem. adj. angusta, restricted, referring to the
narrow substrate range.

Basonym: Eubacterium angustum Beuscher and
Andreesen 1985.

The description of Andreesenia angusta is identical to that
for Eubacterium angustum [27, 44]. In addition to those
described for the genus, has the following properties. Non-
motile but produces lateral flagella. Requires thiamine for
growth, but does not require selenium, tungstate or molyb-
date. Nutritionally restricted to grow only on uric acid, gua-
nine, or xanthine; in the presence of uric acid, can utilize
hypoxanthine. Cells can grow in the presence of 2%
(w/v) bile extract. Colonies are nonpigmented, flat, circular,

and 0.5–1.5mm in diameter. Myristic (tetradecanoic) acid
C14 : 0 makes up more than 36mol% of all fatty acids. A draft
genome sequence of the type strain has been deposited in
the GenBank with the accession no. MKIE00000000 [28].

The type strain MK-1T(=ATCC 43737T=DSM 1989T) was
isolated from sewage plant sludge in Göttingen, Germany
[27]. The G+C content of the genome is 43.6% (40.3 mol%
by the thermal denaturation method).

DESCRIPTION OF GOTTSCHALKIACEAE FAM.

NOV.

Gottschalkiaceae (Gott.schal.ki.a.ce¢ae. N.L. fem. dim. n.
Gottschalkia type genus of the family; L. suff. –aceae ending
to denote a family; N.L. fem. pl. n. Gottschalkiaceae the fam-
ily of the genus Gottschalkia).

Strictly anaerobic bacteria that can only grow by metaboliz-
ing purines. Gram-stain-positive, straight or slightly curved
rods, 0.5–1.5�2–10 µm. Produces lateral and subterminal
flagella. Growth occurs from 18–19

�

C to 37–42
�

C, the opti-
mum growth temperature is 30–37

�

C. The pH range is
from 6.5 to 7.0 to 9.0, with the optimum pH between 7.5
and 8.2. May be spore-forming or asporogenous. In the
presence of 0.1% (w/v) yeast extract, can grow using uric
acid, guanine, or xanthine as the sole carbon and energy
sources; some representatives may also utilize other purines.
Do not utilize carbohydrates and most amino acids; in the
presence of purines, may use glycine, serine, or glycine-
containing peptides. Major products of metabolism are ace-
tate, formate, CO2 and NH3. Oxidase-, catalase-, lipase- and
urease-negative. Nitrate and sulfate are not reduced. Cell
walls contain meso-diaminopimelate. Predominant fatty
acids are C14 : 0 and C16 : 1. Often associated with avian drop-
pings and can be isolated from soil, and aquatic marine and
freshwater sources.

The family includes the genera Gottschalkia and Andreesenia.
The type genus is the genus Gottschalkia. The G+C content of
the chromosomal DNA ranges from 28 to 44mol%.
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