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Abstract

Although numerous algorithms have been developed to identify structural variations (SVs) in genomic sequences, there is a
dearth of approaches that can be used to evaluate their results. This is significant as the accurate identification of structural
variation is still an outstanding but important problem in genomics. The emergence of new sequencing technologies that
generate longer sequence reads can, in theory, provide direct evidence for all types of SVs regardless of the length of the
region through which it spans. However, current efforts to use these data in this manner require the use of large
computational resources to assemble these sequences as well as visual inspection of each region. Here we present VaPoR, a
highly efficient algorithm that autonomously validates large SV sets using long-read sequencing data. We assessed the
performance of VaPoR on SVs in both simulated and real genomes and report a high-fidelity rate for overall accuracy across
different levels of sequence depths. We show that VaPoR can interrogate a much larger range of SVs while still matching
existing methods in terms of false positive validations and providing additional features considering breakpoint precision
and predicted genotype. We further show that VaPoR can run quickly and efficiency without requiring a large processing or
assembly pipeline. VaPoR provides a long read–based validation approach for genomic SVs that requires relatively low read
depth and computing resources and thus will provide utility with targeted or low-pass sequencing coverage for accurate SV
assessment. The VaPoR Software is available at: https://github.com/mills-lab/vapor.
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Background

Structural variants (SVs) are 1 of themajor forms of genetic vari-
ation in humans and have been revealed to play important roles
in numerous diseases including cancers and neurological dis-
orders [1, 2]. Various approaches have been developed and ap-
plied to paired-end sequencing to detect SVs in whole genomes
[3–6]; however, individual algorithms often exhibit complemen-
tary strengths that sometimes lead to disagreements as to the

precise structure of the underlying variant. The emergence of
long-read sequencing technology, such as Single Molecule Real-
Time (SMRT) sequencing from Pacific Biosciences (PacBio) [7, 8],
can deliver reads ranging from several to hundreds of kilobases
and provide direct evidence for the presence of an SV. Current
strategies make use of de novo assembly to create long contigs
with minimized error rate [9–11] and then predict SVs, typically
with single base resolution, through direct comparison of the
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assembly against the reference. Though such approaches are
powerful, they require both a very high sequencing depth and
significant computing power and are currently impracticable for
many ongoing research studies.

The additional information obtained from using long reads
can still be leveraged to improve variant calling, however. In-
deed, such approaches have already been implemented to com-
bine high-depth Illumina sequencing with lower-depth PacBio
reads to improve error correction and variant calling in the con-
text of de novo genome assembly [12]. With structural variation,
the current state of the art is to use long reads to manually
assess potential SVs using subsequent recurrence (dot) plots
[13], where the sequences are compared against the reference
through a fixed size sliding window (k-mer) and thematches are
plotted for visual inspection. The k-mer method is of higher ro-
bustness compared to direct sequences comparison [14], which
is why these types of dot plots have been used for decades to
examine the specific features of sequence alignments [15]. How-
ever, they require manual curation and, coupled with the com-
putational costs of sequence assembly, are time-consuming and
inefficient at scale for the high-throughput validation of large
sets of SVs.

Here, we present a high-speed long read–based assessment
tool, VaPoR, that investigates and scores each provided SV pre-
diction by autonomously analyzing the recurrence of k-mers
within a local read against both an unmodified reference se-
quence at that loci as well as a rearranged reference pertaining
to the predicted SV structure. A positive score of each read on the
altered reference, normalized against the score of the read on
the original reference, supports the predicted structure. A base-
line model is constructed as well by interrogating the reference
sequence against itself at the query location. We show that our
approach can quickly and accurately distinguish true from false
positive predictions of both simple and complex SVs as well as
their underlying genotypes and that it is also able to assess the
breakpoint accuracy of individual algorithms.

Data Description
Simulated data

Non-overlapping simple deletions, inversions, insertions, and
duplications, as well as complex structural variants, as pre-
viously categorized [5], were independently incorporated into
GRCh38 in both heterozygous and homozygous states, exclud-
ing regions of the genome that are known to be difficult to
assess, as described by the ENCODE project [16]. Detailed de-
scriptions of each simulated SV type simulated are summarized
in Supplementary Tables S1 and S2. We applied PBSIM (PBSIM,
RRID:SCR 002512) [17] to simulate the modified reference se-
quences to different read depths, ranging from ×2 to ×70, with
a parameters difference-ratio of 5:75:20, length-mean of 12 000,
accuracy-mean of 0.85, andmodel qc model qc clr. Simulated data
can be obtained from the author’s institution [18] and via the
GigaScience repository, GigaDB [19].

Real data

We applied VaPoR to a set of diverse samples (HG00513 from
CHS, HG00731 and HG00732 from PUR, NA19238 and NA19239
from YRI) that were initially sequenced by the 1000 Genomes
Project and for which a high-quality set of SVs were reported in
the final phase of the project [20]. These samples were recently
re-sequenced using PacBio to ×20 coverage, and they therefore

provide a platform for assessing VaPoR on known data. The 1000
Genomes Project (1KGP) Phase 3 data were obtained from 1KGP’s
Integrated SV Map [21] and lifted over to GRCh38. PacBio se-
quence data were obtained from 1KGP’s HGSV SV Discovery [22].

We have also compared VaPoR against the long-read valida-
tion approach developed by Layer et al. [3], which requires both
PacBio and Moleculo long sequences for full evaluation of SVs.
These comparisons made use of NA12878, 1 of few samples that
have been sequenced with various technologies including Illu-
mina NGS, PacBio, and Moleculo with a truth SV set included in
the 1KGP Phase 3 report. The software for the long-read valida-
tion approach was obtained from github’s Long-Read Validation
page [23]. The PacBio and the Moleculo sequences of this indi-
vidual were obtained from 1KGP’s SI [24] and Alignment pages
[25], respectively.

Results

We assessed the performance of VaPoR on both simulated se-
quences and real genomes from the 1000 Genomes Project to
assess the following characteristics: sensitivity and false discov-
ery rate on validating structural variants in simple and complex
structures; sensitivity of VaPoR on validating different levels of
predicted breakpoint efficacy; stratification of VaPoR scores by
genotype; and time and computational cost of VaPoR.

VaPoR on simulated data

We applied VaPoR to simulated simple deletions, inversions, in-
sertions, and duplications as well as complex structural variants
and first assessed the proportion of SVs that VaPoR is capable
of interrogating (i.e., passed VaPoR QC). We found that VaPoR
can successfully evaluate >80% of insertions, >85% of deletion-
duplications, and >90% of SVs in all other categories when the
read depth is ×10 or higher. We then assessed the sensitivity
and false discovery rate (FDR) at different VaPoR score cutoffs
and found that a sensitivity >90% is achieved for most SV types
across awide range of read depthswhilemaintaining a false dis-
covery rate <10% at a VaPoR score cutoff of 0.15 (Fig. 2; Supple-
mentary Figs S1 and S2). We further observed that there were no
significant changes of sensitivity or false discovery rate once the
read depth was at or above ×20 and consistent across different
SV types (Fig. 3; Supplementary Table S3).

VaPoR on 1000 Genomes Project samples

We next examined SVs reported on chr1 of 5 diverse individu-
als from the 1000 Genomes Project [26] to assess the sensitivity
of VaPoR on real genomes (Table 1), with 197–258 SVs reported
per individual in Phase 3 of the project. We first observed that
>95% of deletions and insertions could be successfully evalu-
ated by VaPoR. For inversions, there were a limited number of
events reported but at maximum only 1 event failed the VaPoR
quality control per individual. Moreover, we observed 3–8% of
deletions and insertions that are 10 Kb or larger in size across
the individuals. Such events were rarely fully covered by long
sequences according their length distribution (Supplementary
Fig. S3) and were assessed through the “large variants assess-
ment”module implemented in VaPoR (Methods, Supplementary
Fig. S4), out of which 100% were successfully evaluated. A sensi-
tivity of >90% was achieved for deletions (Fig. 4a) and >80% for
insertions (Fig. 4b) at the recommended cutoff of 0.15.

To examine the false validation rate of VaPoR, we modified
reported events on chr2 to appear at the same coordinates on
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Figure 1: Flowchart describing the VaPoR algorithm. As input, the algorithm requires a set of structural variants in either VCF or BED format, a series of long reads

and/or sequence contigs in BAM format, and the corresponding reference sequence. VaPoR then interrogates each variant individually at its corresponding reference
location, assesses the quality of the region, and assigns a score.

chr1 and assessed them as though they were real events using
the same sequence data set. VaPoR validated very few deletions
or inversions and <10% of insertions. We further compared Va-
PoR against a long-read validation approach developed in con-
junction with Lumpy (Lumpy, RRID:SCR 003253) [3] using SVs on
chr1 of NA12878 reported by the 1kGP Phase 3. VaPoR achieved a
sensitivity of 72% for deletions and 86% for insertions, while the
Lumpy-associated approachwas only able to assess 11% and 0%,
respectively. Both approaches exhibited a very low false valida-
tion rate when synthetically assigning the variants to chr2, with
0 for all SV types by the Layer et al. approach and varying be-
tween 0% and 2.5% for VaPoR (Supplementary Table S4).

SV breakpoint validation and accuracy

One of the outstanding challenges of SV discovery is the pre-
cise determination of its location at nucleotide resolution. Many
short-read algorithms can correctly identify the presence of an
SV but report uncertainty at the breakpoints, as can be ob-
served by the reported median confidence intervals of +/−85
bp across all events in the 1KGP Phase 3 set [20]. We therefore
assessed the performance of VaPoR to validate SVs with vary-
ing degrees of breakpoint accuracy by artificially shifting the
coordinates of simulated SVs (Supplementary Figs S5 and S6)
and the Phase 3 SVs from the 1000 Genomes samples (Fig. 4c

https://scicrunch.org/resolver/RRID:SCR_003253
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Figure 2: Accuracy of VaPoR on simulated heterozygous and homozygous SVs at varying degrees of sequence coverage and VaPoR score cutoffs. The validation success

rate is shown for simulated true positive (red) and false positive (blue) variants in both (a) heterozygous and (b) homozygous states from ×2 to ×50 genome coverage.

and d) by –1000 to 1000 base pairs and re-assessing the new
positions with VaPoR. Using default parameters, VaPoR exhib-
ited a robust validation score, up to approximately 200 bp over-
all, with some slight differences observed between different SV
types. We note that this delineation is partially dependent on
the length of the flanking sequence selected as larger flanking
sequences would allow for larger breakpoint offsets depend-
ing on user preference. SVs with confidence intervals bound-
ing expected breakpoint locations can be also be systemati-
cally assessed using subsequent VaPoR application with offset
breakpoints to identify the positions that exhibit the highest
score.

Discrimination of SV types and genotypes

We identified a small number of SVs in the high-quality 1000
Genomes set that did not validate with VaPoR. Previous studies
have shown that complex rearrangements are often misclassi-
fied as simple structural changes [5, 13], and indeed, upon man-
ual inspection, these appeared to consist of multiple connected
rearrangements. For example, we observed a reported inversion
in HG00513 and NA19239 on chromosome 1 (chr1:239952707–
239953529) that was invalidated by VaPoR; an investigation into
the long reads aligned in the region showed the signature of
an inverted duplication (Fig. 5a) that, when incorporated into a
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Figure 3: Accuracy of VaPoR on simulated heterozygous and homozygous SVs across different SV types. Receiver operator curves are shown for simple deletions,

duplications, and inversions (a, b) as well as complex rearrangements including inverted duplications and deletion-inversion rearrangements (c, d). AUC: area under
the curve; RD: read depth.

Table 1: Sensitivity and false discovery rate of different SV types

Deletion Insertion Inversion

Sample Sens/FDR Sens/FDR Sens/FDR
HG00513 0.96/0.00 (0.94a) 0.80/0.05 (0.93) 0.50/0.00 (0.71)
HG00731 0.94/0.00 (0.96) 0.85/0.07 (0.97) 0.60/0.00 (1.00)
HG00732 0.92/0.00 (0.98) 0.92/0.08 (0.96) 0.33/0.00 (0.86)
NA19238 0.90/0.00 (0.93) 0.88/0.10 (0.96) 1.00/0.00 (1.00)
NA19239 0.87/0.02 (0.95) 0.73/0.09 (0.96) 0.33/0.00 (1.00)

aThe proportion of SVs that passed VaPoR QC, as listed in brackets, are counted for events on chr1 and chr2 together.

modified reference location, matched almost exactly with the
read sequence (Fig. 5b).

We further explored the distribution of VaPoR scores for this
region and others across the sample set and observed clear de-
lineations between allelic copy number when fitted with a Gaus-
sian mixture model, allowing for the generation of genotype

likelihoods for each site (Fig. 5c). These tracked with our ex-
pected genotypes for the inverted duplication on chr1 across the
5 individuals queriedwhile showing no support for the originally
predicted inversion (Fig. 5d). This shows that VaPoR is not only
able to accurately genotype variants but can also distinguish be-
tween similar but distinct SV predictions in the same region.
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Figure 4: Validation rate and breakpoint accuracy of VaPoR on the 1000 Genomes Project phase 3 calls. VaPoR was applied on 5 individuals with reported SVs as a truth

set: HG00513, HG00731, HG00732, NA19238, NA19239. The validation rates of deletions (a) and insertions (b) are shown here across different cutoff scores for VaPoR.
Robustness to breakpoint accuracy was assessed by deviating breakpoints from their actual positions across varying distances for deletions (c) and insertions (d).

Using these data, we implemented a genotyping module as
an option for users to assess predicted genotypes with those de-
rived using long reads. We compared the genotype of deletions
and inversions reported by the 1000 Genomes Phase 3 to the Va-
PoR genotypes at those loci and observed a non-reference geno-
type concordance of 0.83 (Supplementary Table S5). The man-
ual visual inspection of regions with discordant genotypes using
both the Illumina WGS and PacBio sequence alignments in IGV
[27] showed the VaPoR genotypes to be consistently correct in
such cases. An updated non-reference genotype concordance of
0.95 was achieved after we integrated these manual inspections
into the 1000 Genomes set.

Runtime and efficiency

The computation runtime of VaPoR was assessed using 2 Intel
Xeon Intel Xeon E7–4860 processors with 4 GB of RAM each on
both simulated and real genomes. The runtime of the simulated
event was observed to increase linearly with read depth (Supple-
mentary Fig. S7). For events sequenced up to ×20, VaPoR takes
∼3 seconds to assess a simple SV and ∼5 seconds for a com-

plex event. The assessment of real samples sequenced at ×20
required ∼1.4 seconds to assess a simple deletion or insertion
and ∼6 seconds for an inversion (Supplementary Table S6), with
a full genome analysis consisting of ∼3000 SVs larger than 50 bp,
taking 2 CPU hours on average.

Discussion

Here we present an automated assessment approach, named
VaPoR, for exploring various features of predicted genomic
structural variants using long-read sequencing data. VaPoR di-
rectly compares the input reads with the reference sequences
with relatively straightforward computational metrics, thus
achieving high efficiency in both run time and computing cost.
VaPoR exhibits high sensitivity and specificity in both simulated
and real genomes, with the capability of discriminating partially
resolved SVs either consisting of similar but incorrect SV types
at the same location or correct SVs with offset breakpoints. Fur-
thermore, we show that VaPoR performs well at low read depths
(×5–10), thus providing the option of systematically assessing
large-scale SVs at a lower sequencing cost.
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Figure 5: Validation and genotyping of assessed regions using VaPoR. (a) Dot plot of reference genome (GRCh38) to an aligned long read in NA19239
(m150208 160301 42225 c100732022550000001823141405141504 s1 p0/3831/0 12148) for a reported inversion at position chr1:239952707–239953529. The signature is
consistent with an inverted duplication structure. (b) Dot plot of a different read (m150216 212941 42225 c100729442550000001823151505141565 s1 p0/106403/0 13205)

against the same location, consistentwith a non-variant (reference) structure. (c) Distribution of VaPoR scores on all reported SVs on chr1 in samples HG00513, HG00731,
HG00732, NA19238, NA19239, stratified by color (solid) and modeled with a Gaussian mixture model (dashed). (d) VaPoR scores of SV above now stratified by color as
indicated in (c) for both reported inversion (red) and predicted inverted duplication (blue).

Methods
VaPoR workflow

VaPoR takes in aligned sequence reads in BAM format and pre-
dicted SVs (>50 bp) in various formats including VCF and BED.
SVs are evaluated by comparing long reads that traverse the re-
ported position of the event against reference sequences in 2
formats: (i) the original human reference to which the sample is
aligned and (ii) a modified reference sequence altered to match
the predicted structural rearrangement. A recurrence matrix is
then derived by sliding a fixed-size window (k-mer) with a 1-
bp step through each read to mark positions where the read
sequence and reference are identical. The matching patterns
are then assessed as to the validity of the SV, and a validation
score is reported. Given the large variance of SV lengths, each
SV is stratified into 1 of 2 groups: smaller SVs that can be com-
pletely encompassed within multiple (>10 by default) long se-
quences and larger events that are too big to fall within individ-
ual reads but for which the breakpoint regions can be assessed.
Each class of SV is interrogated with different statistical models,

as described below. The VaPoR workflow is briefly summarized
in Fig. 1.

Small variants assessment
For an SV k in a sample s that is covered by n reads, the recur-
rence matrix between each read and the reference sequences in
original (Ro) and altered (Ra) format is calculated in the form of a
dot plot. For each record i that corresponds to the fixed-size se-
quencewindowposition and each format Rx ε (Ro, Ra), we define
a distance di,k,s,Rx as the vertical distance between each record
(X = xi,k,s,Rx, Y = yi,k,s,Rx) in matrix x and the diagonal (X = xi,k,s,Rx,
Y = xi,k,s,Rx) such that di,k,s,Rx = abs(xi,k,s,Rx—yi,k,s,Rx), and the aver-
age distance of all recordswould be assigned as the score of each
matrix:

Scorek,s,Rx =
m∑
i=1

di,k,s,Rx/m,

where m is the total number of records in the matrix. Se-
quences that share higher identity with the read will have a



8 Zhao et al.

lower Scorek,s,Rx, such that the score of each read is normalized as:

Scorek,s,R = Scorek,s,Ro/Scorek,s,Ra − 1,

where a positive Scorek,s,R represents the superiority of the pre-
dicted structure versus the original and vice versa for negative
Scorek,s,R. There exists 1 exceptional case where a duplicated
structure resides within the predicted SV such that the pre-
dicted structure would show higher Scorek,s,R due to the multi-
alignment of duplicated segments. To correct for these intrin-
sic duplications, VaPoR adopts the directed distance di,k,s,Rx =
xi,k,s,Rx—yi,k,s,Rx instead, and take the absolute value of their aggre-
gation, such that the distances contributed by centrosymmetric
duplicated segments would offset each other:

Scorek,s,Rx
′ = abs

(
m∑
i=1

xi,k,s,Rx−yi,k,s,Rx

)
/m

Large variants assessment
For larger SVs where there are few, if any, long reads that can
transverse the predicted SV, VaPoR assesses the quality of each
predicted junction instead using:

Scorek,s,Rx =

∑m
i=1 I =

{
1, if abs (xi,k,s,Rx − yi,k,s,Rx) < 0.15∗xi,k,s,Rx
0, otherwise

m
,

where a larger Scorek,s,Rx represents higher similarity between
the read and the reference sequence. The normalized scores of
each read are then defined as:

Scorek,s,R = Scorek,s,Ra / Scorek,s,Ro − 1

VaPoR score calculation
With a score assigned to each read spanning through the pre-

dicted structural variants, the VaPoR score is summarized as:

Scorek,s =

∑n
R=1 I =

{
1, if Scorek,s,R > 0
0, otherwise

n

to represent the proportion of long reads supporting predicted
structure.

The highest supportive score (max (Scorek,s,R)) is also reported
as a reference for users to meet the specific requirement of their
study design, for which we recommend 0.1 as the cutoff.

Genotype assessment
The genotype and corresponding likelihood of a predicted SV are
assessed by VaPoR using a method previously described for sin-
gle nucleotide polymorphism genotyping [28]. Based on the as-
sumption of 2 alleles per genomic site and k long reads adopted
for the assessment, out of which j ( j ≤ k) reads were assigned
with a non-positive score, the log likelihood of a particular geno-
type g can be estimated as:

l g = −k ∗ log(2) +
j∑

i=1

log ((2 − g) εi + g (1 − εi ))

+
k∑

i= j+1

log ((2 − g) (1 − εi ) + gεi )

The error rate (εi ) was estimated as the proportion of negative
reads across the homozygous alternative events and the posi-
tives across the homozygous reference, which are estimated to
be 5% across the 1000 Genomes samples. The genotype with the
highest likelihood is reported as the estimated genotype, with
the second largest likelihood in –log10 normalized scale reported
as the genotype quality score.

Flexible window size
By default, VaPoR uses awindow size of 10 bp and requires an ex-
act match between sequences, though these can be changed to
user-defined parameters. However, many regions of the genome
contain repetitive sequences, resulting in an abundance of spu-
rious matches in the recurrence matrix, thus introducing bias
to the assessment. To address this, VaPoR adopts a quality con-
trol step by iteratively assessing the reference sequence against
itself and tabulating the proportion of matches along the diago-
nal. The window size initially starts at 10 bp and iteratively in-
creases by 10 bp until either (i) the proportion of matches on the
diagonal exceeds 40% and the current window size is kept or (ii)
thewindow size exceeds 40 bp, whereby the eventwill be labeled
non-assessable and excluded from the evaluation.

Availability and requirements

Project name: VaPoR
Project home page: https://github.com/millslab/vapor
Operating systems: Linux, OS X
Programming languages: Python, R
Other requirements: Python v2.7.8+, rpy2, HTSeq, samtools

v0.19+, pyfasta v0.5.2+, and pysam 0.9.1.4+.
An archival copy of the code on github, alignments, structural

variants records, and other supplemental data are also available
via the GigaScience repository, GigaDB [19].

Additional files

Supplementary Figure 1: Sensitivity and FDR of validating het-
erozygously simulated structural variantswere calculated at dif-
ferent cutoffs set for VaPoR score. Sensitivity and FDR both de-
crease with the cutoff increasing, with >90% sensitivity and
<10% FDR achieved at cutoff = 0.1.

Supplementary Figure 2: Sensitivity and FDR of validating
homozygously simulated structural variants were calculated at
different cutoffs set for VaPoR score. Sensitivity and FDR both
decrease with the cutoff increasing, with >90% sensitivity and
<10% FDR achieved at cutoff = 0.1 – 0.25.

Supplementary Figure 3: Length distribution of PacBio reads
in HG00513 (red), and the corresponding distribution of SVs re-
ported in the same sample (blue). The median length of aligned
PacBio long reads is 15.6 Kb, and ∼5% of the 1 KGP phase 3 pre-
dictions in HG00513 have lengths over the median.

Supplementary Figure 4: An example of VaPoR on large
SVs predictions that have few long sequences fully transverse.
(a) The IGV screenshot of the region on chr1: 72300660-
72346132, which indicates a homozygous deletion of 45.5
Kb. (b) The recurrence plots of pacbio read (read name:
m150923˙001907 42216 c100828312550000001823180911251591
s1 p0/81227/27314 30304) versus reference sequence in the
original and altered format.

Supplementary Figure 5: Plot of validation rate when vali-
dating the simulated SVs with fake breakpoints deviated from
the real ones by different bases. Validation rates are averaged

https://github.com/millslab/vapor
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from simulated deletion, insertion, inversion, and tandem du-
plication at ×30 coverage.

Supplementary Figure 6: Plot of validation rate when validat-
ing the simulated SVs with fake breakpoints deviated from the
real ones by different bases. Validation rates are shown for sim-
ulated deletion, insertion, inversion, and tandem duplication at
×30 coverage.

Supplementary Figure 7: Averaged run time (seconds) of each
simulated SV summarized and plotted at different read depths.
Simple and complex SVs are estimated separately, shown in red
and blue lines, respectively.

Competing interests

None declared.

Funding

This work was supported by the National Institutes of Health
(R01HG007068). A.M.W. was supported by the Genome Science
Training Program at the University of Michigan (5T32HG000040).

Author contributions

X.Z. designed the algorithm, wrote the program, compara-
tively benchmarked the different algorithms, and wrote the
manuscript. A.M.W. generated simulated data, aided in assess-
ment testing, and revised the manuscript. R.E.M. conceived the
study, modified the algorithm, and revised the manuscript. All
authors read and approved the final manuscript.

Acknowledgements

We thank the Human Genome Structural Variation Consortium
(HGSVC) for generating and providing the deep PacBio sequenc-
ing. We also thank Yuanfang Guan and Kerby Shedden for dis-
cussions about specific statistical considerations.

References

1. Brand H, Pillalamarri V, Collins RL et al. Cryptic and com-
plex chromosomal aberrations in early-onset neuropsychi-
atric disorders. Am J Hum Genet 2014;95(4):454–61.

2. Chiang C, Jacobsen JC, Ernst C et al. Complex reor-
ganization and predominant non-homologous repair fol-
lowing chromosomal breakage in karyotypically balanced
germline rearrangements and transgenic integration. Nat
Genet 2012;44(4):390–7.

3. Layer RM, Chiang C, Quinlan AR et al. LUMPY: a probabilis-
tic framework for structural variant discovery. Genome Biol
2014;15(6):R84.

4. Rausch T, Zichner T, Schlattl A et al. DELLY: structural variant
discovery by integrated paired-end and split-read analysis.
Bioinformatics 2012;28(18):i333–9.

5. Zhao X, Emery SB, Myers B et al. Resolving complex
structural genomic rearrangements using a randomized
approach. Genome Biol 2016; doi:10.1186/s13059-016-
0993-1.

6. Chong Z, Ruan J, Gao M et al. novoBreak: local assem-
bly for breakpoint detection in cancer genomes. Nat Meth
2017;14(1):65–67.

7. Rhoads A, Au KF. PacBio sequencing and its applications. Ge-
nomics Proteomics Bioinformatics 2015;13(5):278–89.

8. Travers KJ, Chin C-S, Rank DR et al. A flexible and efficient
template format for circular consensus sequencing and SNP
detection. Nucleic Acids Res 2010;38(15):e159.

9. Chaisson MJP, Huddleston J, Dennis MY et al. Resolving the
complexity of the human genome using single-molecule se-
quencing. Nature 2015;517(7536):608–11.

10. Pendleton M, Sebra R, Pang AWC et al. Assembly and
diploid architecture of an individual human genome
via single-molecule technologies. Nat Methods 2015;
doi:10.1038/nmeth.3454.

11. Shi L, Guo Y, Dong C et al. Long-read sequencing and de novo
assembly of a Chinese genome. Nat Commun 2016;7:12065.

12. Koren S, Schatz MC, Walenz BP et al. Hybrid error correction
and de novo assembly of single-molecule sequencing reads.
Nat Biotechnol 2012;30(7):693–700.

13. Huddleston J, Chaisson MJ, Meltz Steinberg K et al. Dis-
covery and genotyping of structural variation from long-
read haploid genome sequence data. Genome Res 2016;
doi:10.1101/gr.214007.116.

14. Carvalho AB, Dupim EG, Goldstein G. Improved assem-
bly of noisy long reads by k-mer validation. Genome Res
2016;26(12):1710–20.

15. Gibbs AJ, Mcintyre GA. The diagram, a method for compar-
ing sequences. Its use with amino acid and nucleotide se-
quences. Eur J Biochem 1970;16(1):1–11.

16. Dunham I, Kundaje A, Aldred SF et al. An integrated ency-
clopedia of DNA elements in the human genome. Nature
2012;489(7414):57–74.

17. Ono Y, Asai K, Hamada M. PBSIM: PacBio reads simulator—
toward accurate genome assembly. Bioinformatics
2013;29(1):119–21.

18. University of Michigan. https://umich.box.com/v/vapor
(8 July 2017, date last accessed).

19. Zhao X, Weber AM, Mills RE. Supporting data for “A recur-
rence based approach for validating structural variation us-
ing long-read sequencing technology.” GigaScience Database
2017. http://dx.doi.org/10.5524/100325.

20. Sudmant PH, Rausch T, Gardner EJ et al. An integrated map
of structural variation in 2,504 human genomes. Nature
2015;526(7571):75–81.

21. NCBI, 1000 Genomes Project. ftp://ftp-trace.ncbi.nih.gov/
1000genomes/ftp/phase3/integrated sv map/ (8 July 2017,
date last accessed).

22. EBI, 1000Genomes Project. http://ftp.1000genomes.ebi.ac.uk/
vol1/ftp/data collections/hgsv sv discovery/ (8 July 2017,
date last accessed).

23. Hall Lab GitHub Repository. https://github.com/hall-lab/
long-read-validation (8 July 2017, date last accessed).

24. EBI, 1000Genomes Project. http://ftp.1000genomes.ebi.ac.uk/
vol1/ftp/technical/working/20131209 na12878 pacbio/si/ (8
July 2017, date last accessed).

25. EBI, 1000Genomes Project. http://ftp.1000genomes.ebi.ac.uk/
vol1/ftp/phase3/integrated sv map/supporting/NA12878/
moleculo/alignment/ (8 July 2017, date last accessed).

26. Auton A, Abecasis GR, Altshuler DM et al. A global refer-
ence for human genetic variation. Nature 2015;526(7571):
68–74.

27. Robinson JT, Thorvaldsdottir H, WincklerW et al. Integrative
genomics viewer. Nat Biotechnol 2011;29(1):24–26.

28. Li H. A statistical framework for SNP calling, mutation dis-
covery, association mapping and population genetical pa-
rameter estimation from sequencing data. Bioinformatics
2011;27(21):2987–93.

https://umich.box.com/v/vapor
http://dx.doi.org/10.5524/100325
ftp://ftp-trace.ncbi.nih.gov/1000genomes/ftp/phase3/integrated_sv_map/
ftp://ftp-trace.ncbi.nih.gov/1000genomes/ftp/phase3/integrated_sv_map/
http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/data_collections/hgsv_sv_discovery/
http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/data_collections/hgsv_sv_discovery/
https://github.com/hall-lab/long-read-validation
https://github.com/hall-lab/long-read-validation
http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/technical/working/20131209_na12878_pacbio/si/
http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/technical/working/20131209_na12878_pacbio/si/
http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/phase3/integrated_sv_map/supporting/NA12878/moleculo/alignment/
http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/phase3/integrated_sv_map/supporting/NA12878/moleculo/alignment/
http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/phase3/integrated_sv_map/supporting/NA12878/moleculo/alignment/

