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ABSTRACT

Pluripotency, the ability of embryonic stem cells to
differentiate into specialized cell types, is determined
by ESC-specific gene regulators such as transcrip-
tion factors and chromatin modification factors. It is
not well understood how ESCs are poised for dif-
ferentiation, however, and methods are needed for
prognosis of the molecular changes in the differen-
tiation of ESCs into specific organs. We describe a
new approach to infer cell-type specific gene reg-
ulatory programs based on gene regulatory inter-
actions in ESCs. Our method infers the molecular
logic of gene regulatory mechanisms by mapping
the position-specific combinatory patterns of numer-
ous regulators in ESCs into cell-type specific gene
regulations. We validate the proposed approach by
recapitulating the RNA-seq and microarray data of
neuronal progenitor cells, adult liver cells, and ESCs
from the integrated patterns of diverse gene regula-
tors in ESCs. We find that the collective functions of
diverse gene regulators in ESCs represent distinct
gene regulatory programs in specialized cell types.
Our new approach expands our understanding of the
differential gene regulatory information in develop-
ments encoded in regulatory networks of ESCs.

INTRODUCTION

Embryonic stem cells are distinguished by their ability to
differentiate into any cell type and by their ability to propa-
gate (1). The pluripotency and the totipotency of embryonic
stem cells are determined by ESC-specific gene-regulators
(2). Therefore, understanding the pluripotency of ESCs re-
quires us to understand the gene regulatory mechanisms in
ESCs. The aim of this study is to understand how embryonic
stem cells poise for differentiation into specialized cell types.
Gene regulatory networks are composed of gene regulating
protein factors and target genes. The gene expression pro-
gram encoded in the genome is executed by transcription

factors that bind to cis-regulatory sequences and modulate
gene expression in response to environmental and devel-
opmental cues. Chromatin modifications, chromatin mod-
ification factors, and transcription factors are simultane-
ously involved in gene regulation. Inside a nucleus, genomic
DNAs are packed into 3D structures. Chromatin modifica-
tions (3), transcription regulating protein factors (3), and
RNA Pol II complexes (4) mediate the configurations of
the chromatin 3D structures that bring regulatory elements,
even in distant DNA segments, to the target genes for tran-
scription regulation (5-8). Chromatin modification factors
reversibly change chromatin modification status (9,10).

The integrative effects of the diverse gene regulators have
not been well investigated, although the gene regulatory
functions of individual factors continue to be studied in-
tensively. Various gene regulating factors have been shown
to play crucial roles in gene regulation and developmental
processes. For example, previous studies find that the loss of
function mutations of individual genes encoding gene regu-
lators, such as DNA methyltransferases (11), histone modi-
fication factors (12), chromatin remodeling factors (13) and
transcription factors (14), result in developmental defects.
In other words, the collective action of numerous gene reg-
ulators is essential for normal development from ESCs. The
complex interactions among genes and gene-regulating fac-
tors imply that only by understanding the combinatory and
sequential logic of gene regulators can we acquire full regu-
latory information about the genes.

Inside a cell, a gene interacts with diverse factors simul-
taneously, and the interactions among multiple gene regu-
lating factors produce differential gene regulation. So far,
gene expression in ESCs is inferred using only a single factor
(15), or a subset of factors, such as restricting factors into
chromatin modifications (16), or transcription factors (17).
Inference models considering only a single gene regulator or
subsets of gene regulators, however, do not suffice to explain
gene regulation, even in ESCs. Therefore, to integrate prior
studies of the functions of individual gene regulating factors
into regulatory mechanisms, we propose a new approach to
infer cell-type specific gene regulation. We study computa-
tional models to predict differential gene expression in spe-
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cialized cell types based on the integrative patterns of the
known gene regulators in embryonic stem cells. The gene
regulators we consider include transcription factors, chro-
matin modifications, DNA methylations, chromatin modi-
fication enzymes, and DNA-binding factors associated with
chromatin domains. We develop and apply a more realistic
model to explain the experimental measurements of gene
regulation in diverse cell types. When position specific en-
richments of comprehensive gene regulators in ESCs are in-
tegrated into patterns, the integrative interaction patterns
are efficiently mapped to distinct gene regulatory programs
in diverse cell types. We validate the model by explaining the
experimental measurements of differential gene regulation
in diverse cell types. The results show that position-specific
and combinatory operations of diverse gene regulators in
ESCs poise for differential gene regulation in specialized
cell types as well as encoding gene expression information
in ESCs.

MATERIALS AND METHODS

ChIP-seq data sources and mapping to the mouse genome

Chromatin modification ChIP-seq data for H3K4mel,
H3K27ac, H3, H3K4me3, p300 for mESCs, and mouse
adult liver cells are obtained from Creyghton et al. (GSE
24165) (18). DNA methylations ChIP-seq data for mC,
ShmC, 5caC, 5fC in mESCs are obtained from Shen et al.
(GSE42250) (19). H3.3 ChIP-seq data in mESCs are ob-
tained from a previous study (10). H2AZ and acetylated
H2HAZ ChIP-seq data in mESCs are obtained from Hu
et al. (GSE34483) (20). Transcription factor ChIP-seq data
for Nanog, Oct4, Sox2, Smadl, E2F1, Tcfcp2ll, CTCEF,
Zfx, STAT3, KLF4, Esrrb, n-Myc and p300 in mESCs
are obtained from Chen et al. (GSE11431) (21). H3,
H4K20me3 H3K9me3, and H3K36me3 ChIP-seq data in
mES are obtained from Mikkelsen ez al. (GSE12241) (22).
KDM?2A ChIP-seq data in mESCs are obtained from Neil
P. Blackledge et al. (GSE21202) (23). SUZ12, EZH2 and
RINGI1B ChIP-seq data in mESCs are obtained from Ku
etal. (GSE13084) (24). Med12, Smc1/2/3 Med1, Nipbl and
CTCF ChIP-seq data in mESCs are obtained from Kagey
et al. (25). HDAC1, HDAC2, LSD1, REST (transcription
repressor of neuronal genes in non-neuronal cells), COR-
EST and Mi2b ChIP-seq data are obtained from Whyte
et al. (GSE27844) (26).

The raw ChIP-seq data in SRA format are transformed
into fastq files and mapped to the reference genome (mm9).
The 30-50 bp sequences from the ChIP-seq data are
mapped to the mouse reference genome (mm9) by perfect
and unique matching without allowing any mismatch or
gap. The reads are then extended to 150 bp from their 5
end.

Analysis of RNNA-seq data

The raw RNA-seq data of mESCs are obtained from a pre-
vious study (10). The RNA-seq analysis is performed using
the Tuxedo software package with default settings. RNA-
seq reads are mapped to the mouse genome (NCBI37/mm9)
using Bowtie2. Tophat with default settings is used to de-
tect splice sites. The Cufflinks software package is used
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to assemble transcripts based on the Refseq mRNA se-
quence database (mm9). A total of 48 228 transcripts are
detected from two RNA-seq replicate experiments and their
mean values are used for further analysis. log, values of the
FPKM are used as the target transcription levels of the pre-
diction models. Silenced transcripts are defined as having
expression levels between 0 and 1 FPKM. The processed
ChIP-seq and RNA-seq data are in the supplementary ma-
terial.

Binary encoding of ChIP-seq signals of gene regulators

For each ChIP-seq experiment for a factor, the number of
ChIP-seq reads mapped to a 200bp window is counted and
then a P-value <107 is used as a cutoff to statistically de-
tect significant enrichment of a factor at a locus in the whole
genome. The P-value, 10~ indicates that the false posi-
tive rate is 107>. Then for each position around the genes,
the ChIP-seq signals are position-specifically normalized to
consider the position-specific effects. For each 200bp re-
gion, the distributions of the ChIP-seq reads from ~26 500
genes are normalized to z-scores so that the mean is zero
and the standard deviation is 1. The loci with position-
specific z-scores greater than 1 are considered to interact
with a factor.

Therefore, the loci considered to interact with a factor
satisfy two criteria: (i) the locus at a position from a gene
start site specifically interacts with a factor with a position-
specific z-score > 1 and (ii) the locus is significantly enriched
with ChIP-seq reads with a genome-wide P-value <1073,

The enrichment patterns of 52 gene regulators at individ-
ual positions are transformed to a binary code of 0Os and 1s,
where 1 denotes each enrichment signal and 0 denotes no
significant enrichment.

Gaussian process models

By using Gaussian process models and Jaccard coeffi-
cients as kernel functions, binary codes of arrangements
of gene regulators are mapped to gene expression lev-
els. We infer the distribution of the gene expression levels
(f(X,), Y. of gene regulator patterns which are not used
for model training, X, as the test data, based on the ex-
perimental measurements, and Y for gene regulator inter-
actions X as the training data, which can be represented as
p(f( X)) f(X), X, X,)withmeans and standard deviations.
We calculate the conditional distribution
p(f( XY, X, X,) based on the experimental data.
With the assumption of a Gaussian distribution, the
distribution of target gene expression levels follows:

p(f(X)IY, X, X,) ~ N(K, K'Y, K, — K.K 'K
The best estimate for Y, is the mean of this distribution,
the expected value:
mean (f,) = K. K~'Y.

The uncertainty or variance is estimated by its variance:
var (f*) = K — K*K_IK*T

We evaluate the performance of the GP models using the
correlation coefficients between the predicted and measured
values of the test data. We conduct 1000 runs and calculate
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Figure 1. Unified models predicting gene regulation based on landscapes of gene-regulating factors. For each gene, position specific combinatorial patterns
of 52 gene regulators in promoter regions in ESCs are used to predict cell type specific gene regulation using Gaussian process models.

1000 correlation coefficients per round of model training
and test. The R code and the data implementing this study
are in the supplementary material.

RESULTS
Generating gene-regulator codes from ChIP-seq data

To understand the integrative effects of diverse gene regu-
lators associated with genomic DNAs, we investigate pre-
dictive models as a function of the patterns of gene regu-
lators around genes. Clearly, the performance of any prob-
abilistic inference models depends on the features chosen.
Previous studies have identified factors which play crucial
roles in gene regulation and have measured genome-wide
interactions between genomic DNAs and individual gene
regulating factors by ChIP-seq experiments in high resolu-
tion. Based on the previous studies on gene regulatory func-
tions in ESCs of protein factors, we use the binding patterns
of 52 protein factors as the explanatory variables of gene
expression levels, measured by RNA-seq and microarrays.
The gene regulators include 21 chromatin modifications and
DNA methylations, 15 transcription factors, 10 chromatin
modifiers and 6 chromatin conformation regulators.

An array of position-specific enrichment signals of di-
verse gene regulators is converted to a binary bitmap code
and the interaction patterns are used as a 1D input vari-
able of the Gaussian process models (27), which are non-
parametric and non-linear Bayesian probabilistic models
(Figure 1). The models infer gene regulation levels based
on the integrative interaction patterns of gene regulators in
ESCs.

The interaction patterns are generated from the enrich-
ment signals of ChIP-seq reads of 52 factors at 21 positions
spanning the 2 kb region around the transcription start sites
in a 200 bp window. The enrichment levels of 52 gene reg-
ulators at individual positions are transformed to a simple
binary code of 0s and 1s, where 1 denotes an enrichment
signal and 0 denotes no significant enrichment. By approx-
imating continuous enrichment values into binary values, 0
and 1, the binary vectors encode large dimensional logical
operations of cells, i.e. complex combinations of AND, OR,
NOT, NAND, NOR and XOR logic are approximated to
bitmap vectors. The binary patterns represent the complex
relationships among diverse factors at individual positions,
such as the complementary, co-operative, competitive, and
antagonistic interactions affecting gene regulation.

The binary patterns are used to build circuits of any com-
plexity from the building blocks. The patterns of gene regu-
lators in individual genes are used as explanatory variables
of gene regulation. Gaussian process models are used to es-
timate the summation of the logical operations in cells and
generate distributions of target gene expression levels based
on the integrative gene regulator patterns, and to map indi-
vidual gene regulator patterns to gene expression levels. The
Gaussian process models consider statistical variations of
experimental data and uncertainty of specific models. The
models are validated by using patterns of gene regulators of
unseen genes.



Integrative interaction patterns of gene regulators at a pro-
moter region in mESCs significantly explain the gene expres-
sion level in mESCs

We first examine the coordinated effects of arrangements of
the gene regulators on gene regulation in embryonic stem
cells. Using the patterns of the 52 factors and 21 binding site
combinations around the transcription start sites, we infer
mRNA levels of the genes in mESCs. We find that the pat-
terns of gene regulating factors in mESCs efficiently predict
the mRNA levels in mESCs (Figure 2A). The result vali-
dates that the coordinated interactions among gene regula-
tors are indicators of gene expression of the genes (Figure
2A). Because of experimental variations, however, it is not
possible to match the predicted values and experimentally
measured levels perfectly, but the predictive model based on
integrative gene regulator patterns significantly explains the
gene expression levels measured by RNA-seq experiments.

Next, we examine the efficiency of predictive models by
arrangements of a single gene regulator around transcrip-
tion start sites. For each gene regulator, we build models
inferring gene expression levels from the arrangements of a
single gene regulator around promoter regions and validate
them by using independent sets of genes. The correlation
coefficients between the predicted and measured values are
low, less than 0.2 for the entire gene regulator examined, i.e.
our models using a single gene regulator do not show sig-
nificant prediction performance in inferring gene expression
levels in mESCs (Figure 2B). The correlation coefficients be-
tween the predicted and the measured values for individual
gene regulators are statistically significant, which confirms
that the individual gene regulators are significantly associ-
ated with gene expression levels, although individual gene
regulators alone are not predictive features of gene expres-
sion.

We classify the gene regulators into functional classes:
chromatin modifications and DNA methylations; transcrip-
tion factors; chromatin modification enzymes; and chro-
matin domain associated factors. For each class, we use the
coordinated arrangements of multiple gene regulators in the
class to infer gene expression levels in mESCs measured
in RNA-seq experiments. We find that the coordinated ar-
rangement patterns of chromatin modifications and DNA
methylations show the highest prediction performance of
gene expression levels in ESCs among the four classes; in
fact, the number of factors is greater than the other three
classes (Figure 2B). As the number of gene regulators in a
class increases, the model performance using the patterns
of the gene regulators also increases. To examine whether
the number of factors affects the performance of the models
based on arrangements of chromatin modifications, we ran-
domly select 15 chromatin modifications and validate the
model performance. We find that the predictive model of
gene expression levels performs better than the models us-
ing 15 ESC-specific transcription factors. The results sug-
gest that the arrangements of various chromatin modifi-
cations around the promoter play complementary roles in
gene expression in ESCs.

Considering vast amounts of gene regulators in ESCs,
our model infers gene expression in mESC with high ac-
curacy and low variations in the model’s performance. The

Nucleic Acids Research, 2017, Vol. 45, No. 18 10431

results suggest that gene expression regulation involves the
collective action of numerous gene regulators.

Patterns of the gene regulators in mESCs represent differen-
tial gene regulation in NPCs

Beyond predicting accurate gene expression levels in ESCs,
we investigate whether the interaction patterns of gene reg-
ulators around genes in mESCs can predict differential gene
regulation after fate determination and embryogenesis. Dif-
ferentiation of ESCs to neuronal progenitor cells (NPCs)
reflects critical developmental fate determination in the em-
bryo to become a neuroectoderm (18). Therefore, we exam-
ine the differential gene regulation of neuronal progenitor
cells from embryonic stem cells.

Distinct molecular mechanisms are involved in gene reg-
ulation. Chromatin modifications and DNA methylations
restrict interactions among DNA-binding factors and reg-
ulatory elements. Chromatin modifiers change chromatin
modification status. In particular, chromatin modifications
in ESCs mark the poised genes that are differentially reg-
ulated in differentiated cell types. For example, double hi-
stone modifications of H3K27me3 and H3K4me3 are en-
riched in genes in ESCs that are up-regulated in NPCs.
Therefore, we examine whether a specific molecular mecha-
nism is preferentially involved in differential gene regulation
in NPCs from ESCs.

First, we examine whether the interaction patterns of a
single regulator in ESCs associates with gene expression dif-
ferentiation in NPCs. We estimate gene expression differen-
tiation in NPCs from ESCs by the change of mRNA levels
using RNA-seq data of NPCs and ESCs, respectively. We
build a model inferring gene expression differentiation in
neuronal progenitor cells by using the gene regulator pat-
terns in mESCs as explanatory variables (Figure 3C) and
validate the model by applying it to the remaining 50%
of the gene sets that are not used for modeling. We find
that some gene regulating factors in ESCs are highly re-
lated with differential gene expression in NPCs. In partic-
ular, the patterns of H3K27me3 in mESCs significantly as-
sociate with differential gene regulation in NPCs. The top
ten highly associated factors are H3K27me3, H3K36me3,
E2F1, H3K9ac, SUZ12, EZH2, H3K27ac, LSD1, ¢-MYC
and H3K4me3.

To understand the differential contribution of gene reg-
ulators on inferring differential gene regulation, we catego-
rize the 52 gene regulating factors by chromatin modifica-
tions and DNA methylations, transcription factors, chro-
matin modifiers, and chromatin domain associated factors.
We examine the regulators in each class that predict the dif-
ferential gene regulation in NPCs (Figure 3B). In contrast
to ESCs, binding patterns transcription factors in ESCs
significantly associate with differential gene regulation in
NPCs and ESCs, whereas the models predicting gene ex-
pression change based on chromatin modifications in ESCs,
which show instability in multiple repeated tests, do not sig-
nificantly explain gene expression differentiation in NPCs.
Binding patterns of transcription factors and chromatin
modifiers in ESCs significantly explain the differential gene
regulation in NPCs. The results suggest that transcription
factors and chromatin modifiers are involved in cell-type
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Figure 2. The integrative patterns of transcription factors and chromatin modifications significantly explain gene expression levels in mouse embryonic
stem cells. (A) Integrative patterns of 52 gene regulators in ESCs efficiently predict mRNA levels in ESCs measured in mRNA-sequencing experiments.
The models are trained by using 15 000 genes and tested by using the remaining 10,000 genes. The correlation coefficients between measured and predicted
mRNA levels are around 0.8, P-value ~ 0. (B) Predicting gene expression levels in ESC from the patterns of a single gene regulator and the classes of
gene regulators: six chromatin domain associated factors, 10 chromatin modifiers, 15 transcription factors, 21 chromatin modifications, and all 52 factors.
Boxplots show distributions of the correlation coefficients between the predicted and measured values of 1000 performance tests of model training by using
randomly selected 5000 genes for the respective functional classes of gene regulators.

specific gene regulation, whereas chromatin modifications
tend to be associated with invariant gene regulation. The
results also suggest that the interactions among genes and
diverse gene regulators in mESCs represent regulatory pro-
grams in embryogenesis and cellular differentiation and im-
ply that the integrative interaction patterns of gene regu-
lators in ESCs are important features of pluripotency and
totipotency of ESCs. The results support that the mESC
specific-transcription factors are preferentially involved in
pluripotency of ESCs.

Next, we investigate whether the combinatory patterns of
diverse gene regulators in mESCs predict differential gene
regulation in NPCs. Our model based on the integrative
interaction patterns of 52 gene regulators in mESCs sig-
nificantly explains gene expression differentiation in NPCs
(Figure 3A). To validate the specificity of the model infer-
ring NPC-specific gene regulation, we examine the model
performance inferring gene regulation in other tissues. Ap-
plying the NPC-specific model to liver-specific gene regu-
lation does not show any significant correlation between
the predicted and measured liver-specific gene regulation.
The result shows that the NPC-specific gene regulatory net-
works encoded in ESCs are highly specific to NPC-specific
gene regulation. In summary, the results suggest that the
integrative interaction patterns of the gene regulators in
mESCs significantly associate differentiation of gene regu-
latory program in embryogenesis.

Interaction patterns of the gene regulators in mESCs repre-
sent gene regulatory program in B cell progenitor cells and
adult liver cells

We further investigate whether gene regulator patterns in
mESCs predict differential gene regulatory programs in
adult liver cells and B cell progenitor cells. We estimate the
levels of gene expression differentiation in B cell progenitor
cells and adult liver cells by analyzing cDNA microarray
data of mESC:s, proB cells and liver cells.

We build a model inferring gene expression differentia-
tion in adult liver cells and B progenitor cells, respectively,
by using the gene regulator codes in mESCs as explanatory
variables (Figure 4A) and validate the model by applying
it to the remaining gene sets that are not used for model-
ing. We measure the differential gene regulation levels in
the adult cells from liver cells by using microarray data in
mESCs, adult liver cells, and B cell progenitors (proB). Our
models based on the integrative interactions in ESCs sig-
nificantly explain gene expression differentiation in B cell
progenitor cells and adult liver cells.

Next, we examine whether the four regulator categories
are associated with gene expression differentiation in liver
and proB cells. For each category, we build models predict-
ing gene expression change in liver and proB cells, respec-
tively (Figure 4B). We find that transcription factor binding
patterns in mESCs associate with gene expression differen-
tiation in adult liver cells or B cell progenitor cells, whereas
the models predicting gene expression change based on
chromatin modifications and chromatin modifiers in ESCs
do not significantly explain gene expression differentiation
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Figure 3. The integrated patterns of gene regulators in ESCs fully explain differential gene expression between NPCs and ESCs. (A) Inferring differential
gene expression in NPCs from patterns of 52 gene regulating factors in ESCs. (B) Inferring differential gene regulation in NPCs from patterns of six
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control shows correlation coefficients between the predicted NPC-specific gene regulations based on whole 52 factors and measured adult liver-specific
gene regulation. (C) Inferring differential gene expression levels in NPCs from patterns of a single gene regulator in ESCs. The top 10 highly predictive

factors are marked.

in both adult liver cells and B cell progenitor cells. Using a
single gene regulator in ESCs does not significantly explain
the differential gene regulations in both liver and B cell pro-
genitors. The results suggest that the integrative interaction
patterns of diverse gene regulators in mESCs are involved
in mESC-specific expression and gene expression differen-
tiation in adult cell types.

DISCUSSION

New algorithmic approaches are necessary to understand
the diverse factors regulating a gene in a cell and the result-
ing gene regulatory programs. This paper provides an effi-
cient, data-driven computational approach to explain the
experimental measurements of gene expression and enable
molecular insights into gene regulatory mechanisms. Pre-
dictive models are built to infer condition-specific gene ex-
pression from the integrated patterns of known gene regula-
tors and to validate that the coordinated interactions of the
diverse factors recapitulate mRNA levels measured by us-
ing mRNA-seq and microarrays. The integrated gene regu-
latory codes in embryonic stem cells significantly explained
differential gene regulation in embryogenesis and fate de-
termination. Distinct interactions of diverse gene regulators
were associated with distinct gene regulation in diverse cell
types. The combinatory patterns of diverse gene regulators

in ESCs efficiently represent gene regulatory programs in
diverse cell types as well as ESCs.

The combinatory patterns of numerous gene regulating
factors represent the molecular logic of gene regulatory
mechanisms. Integrating diverse gene regulators into pat-
terns and the pattern recognitions can improve the ability of
predictive models inferring gene regulation over only using
subsets of principal gene regulators. The results of this study
show that distinct arrangements of diverse gene regulators
in ESCs ally to specific gene expression programs in diverse
cell types. We show that the collective actions of numerous
gene regulators as a whole in ESCs are required for ESCs to
poise for differential gene regulation in specialized cell types
generating infinite combinatorial modes of gene expression.
The results imply that the collective action of numerous
gene regulating factors controls gene expression and poises
for ESCs to differentiate into specialized cell types. It also
implies that discovering new regulatory functions of gene
regulators and updating the inference models by integrating
the studies can improve the accuracy of the predictive mod-
els and further our understanding of the molecular mech-
anisms of developments. In summary, the results demon-
strate that gene regulatory machineries in ESCs poise for
differentiation into specialized cells in response to environ-
mental and developmental cues. The cell-type specific gene
regulatory programs can be inferred from the integrative
interaction patterns of gene-regulators in ESCs. The new
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randomly selected 5000 genes for the respective functional classes of gene regulators.

approach to predicting the gene regulatory programs in di-
verse cell types from ESCs will be useful to develop progno-
sis systems for normal developments from stem cells.

The cell-type specific gene regulation is more efficiently
explained by complex regulatory interactions of numerous
factors than a molecular mechanism or a specific gene reg-
ulator. The complexity of gene regulating functions among
numerous factors may make biological systems robust to ge-
netic polymorphisms and environmental changes.

Furthermore, gene regulatory mechanisms are adaptive
control systems. While the gene regulatory interactions in
ESCs can explain ~70% of gene expression differentiation
in NPCs in the early stage of development, poised informa-
tion in ESCs can explain ~60% of the fully developed adult
liver cell specific gene regulation. The inference of cell-type
specific gene regulation from poised gene regulatory pat-
terns in ESCs is less efficient in adult liver cells than NPCs,
which is an early stage of development. The results suggest



that gene regulatory programs are modulated in response to
environmental stimuli and developmental cues.

In conclusion, this study expands our understanding of

the molecular mechanisms of gene regulation in ESCs and
emphasizes that gene regulatory mechanisms are complex
adaptive systems regulated by the interaction of diverse fac-
tors.
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