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ABSTRACT

The maintenance of genome stability depends on the
ability of the cell to repair DNA efficiently. Single-
stranded DNA binding proteins (SSBs) play an im-
portant role in DNA processing events such as
replication, recombination and repair. While the role
of human single-stranded DNA binding protein 1
(hSSB1/NABP2/OBFC2B) in the repair of double-
stranded breaks has been well established, we have
recently shown that it is also essential for the base
excision repair (BER) pathway following oxidative
DNA damage. However, unlike in DSB repair, the
formation of stable hSSB1 oligomers under oxidiz-
ing conditions is an important prerequisite for its
proper function in BER. In this study, we have used
solution-state NMR in combination with biophysical
and functional experiments to obtain a structural
model of hSSB1 self-oligomerization. We reveal that
hSSB1 forms a tetramer that is structurally similar
to the SSB from Escherichia coli and is stabilized
by two cysteines (C81 and C99) as well as a subset
of charged and hydrophobic residues. Our structural
and functional data also show that hSSB1 oligomer-
ization does not preclude its function in DSB repair,
where it can interact with Ints3, a component of the
SOSS1 complex, further establishing the versatility
that hSSB1 displays in maintaining genome integrity.

INTRODUCTION

Cell survival is contingent on the ability of cells to maintain
their genomic information. Failure to protect, the genome
can give rise to serious diseases such as various cancers. For

this reason, eukaryotic cells have evolved to combat DNA
damage with an obligation to protect genomic information.
The family of single-stranded DNA binding (SSB) proteins
are essential in safeguarding the integrity of DNA (1-4).
SSB proteins confer genomic stability by protecting exposed
single-stranded DNA (ssDNA) from degradation and aid in
the detection and recruitment of vital repair proteins to the
site of DNA damage, which instigates an appropriate DNA
damage response (5). SSBs exist within all three domains
of life and their binding to ssDNA is mediated through the
oligonucleotide binding (OB) domain, which consists of five
anti-parallel B-strands that are arranged into a B-barrel.

The structure of the OB domain is largely conserved
across the domains of life, however the quaternary struc-
ture of SSB proteins are quite diverse. Replication protein
A (RPA) is known to assemble into a heterotrimer contain-
ing six OB folds: four of which contact ssDNA, the remain-
ing two are exclusively protein binding (6-9). The SSB from
Escherichia coli (EcoSSB) is a homotetramer which allows
ssDNA to uniquely wrap around each of the four OB do-
mains with varying degrees of affinity (10-12). In contrast,
the SSB from Sulfolobus solfataricus (SsoSSB) is a simple
monomer containing only one OB domain that recognizes
ssDNA (13-16). We have recently characterized the DNA
binding properties of the OB domain from human SSB1
(hSSB1/NABP2/OBFC2B) (17). Similar to other SSB OB
domains, hSSB1 utilizes a set of important and conserved
aromatic residues that form stacking interactions with the
ssDNA bases (17,18). The OB domain is located at the N-
terminus of the protein whereas the disordered C-terminal
‘tail” is known to be utilized in protein—protein interactions
(3,17,19).

hSSB1 has been shown to exist in separate multi-protein
complexes, such as the SOSS1 complex (consisting of
hSSB1, Ints3 and C90rf80) that is essential in homologous
recombination (HR)-mediated DNA repair (20-23) or the
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MRN complex (consisting of Mrel 1, Rad50 and Nbsl) that
is required for the efficient resection of double-stranded
breaks (DSBs) (24,25). In both of these complexes, hSSB1
exists as a monomer. However, we have recently shown that
oxidation-driven self-oligomerization of hSSB1 is essential
for its function in the base excision repair (BER) pathway,
where its primary purpose is to aid in the removal of oxida-
tive DNA lesions (26,27). While our recent work has also
revealed that cysteine 41 plays an important role in this pro-
cess, the molecular details remain elusive as the side-chain
of this residue is buried deeply inside the hydrophobic core
of the protein (19) and thus unable to form any intermolec-
ular disulfide bonds.

In this study, we have utilized solution-state nuclear mag-
netic resonance (NMR) in combination with multi-angle
laser light scattering (MALLS) to determine the structural
details of hSSB1 oligomerization. Our data-driven struc-
tural model derived from our biophysical data reveals that
hSSBI1 is able to form a tetramer that is structurally highly
similar to the tetrameric arrangement of the SSB from E.
coli. Oligomer formation is achieved by a subset of charged
and hydrophobic amino acids in addition to both surface-
exposed cysteines C81 and C99. We have verified the valid-
ity of our model using mutational analysis and functional
experiments. Our structural and functional data also in-
dicate that hSSB1 self-oligomerization does not preclude
binding of the protein to the SOSS1 complex via Ints3.

MATERIALS AND METHODS
Plasmids, mutagenesis, siRNA and transfection

Both GST-tagged full length hSSB1 (1-221, hSSB1; 5;)
and hSSB1 OB domain construct (1-123; hSSB1; |,3) were
prepared by directional cloning into pGEX-6P using the
restriction enzymes BamHI and EcoRI. All hSSB1, ;;
mutants used were synthesized by GeneArt (Regens-
burg, Germany). The siRNA-resistant WT 3x FLAG
hSSB1; 5;; mammalian expression construct has been
described previously (17) and was altered by site-directed
mutagenesis to form all other described 3x FLAG hSSBI1
vectors using the following primers: N16D_NI18D (F)
5-TCAAGCCTGGGCTCAAGGATCTGGACCTTA

TCTTCATTGTG-3, (R) 5-CACAATGAAGATAAGG
TCCAGATCCTTGAGCCCAGGCTTGA-3; K72A (F)
5-  GACATTATCCGGCTCACCGCCGGGTACGCT
TCAGTTTTC-3, (R) 5-GAAAACTGAAGCGTACCC
GGCGGTGAGCCGGATAATGTC-3; D91A (F) 5-
GGCCGTGGGGGTGCCCTGCAGAAGATTG -3,
(R) 5-CAATCTTCTGCAGGGCACCCCCACGGCC-
3; F98A (F) 5-CTGCAGAAGATTGGAGAAGCCT
GTATGGTTTATTCTGAG-3, (R) 5- CTCAGAAT
AAACCATACAGGCTTCTCCAATCTTCTGCAG-3';

Y102A (F) 5-GGAGAATTCTGTATGGTTGCCT
CTGAGGTTCCTAACTTC-3, (R) 5- GAAGTTAG
GAACCTCAGAGGCAACCATACAGAATTCTCC-

3; C81S (F) 5-GGGTACGCTTCAGTTTTCAAAG
GTTCTCTGACACTATATACTGGCCGTGG-3, (R)
5'- CCACGGCCAGTATATAGTGTCAGAGAAC
CTTTGAAAACTGAAGCGTACCC-3; C99S (F) 5-
CTGCAGAAGATTGGAGAATTCTCTATGGTTTA

TTCTGAGGTTCC-3, (R) 5- GGAACCTCAGAATA

AACCATAGAGAATTCTCCAATCTTCTGCAG  -3.
Mammalian expression constructs were transfected using
Lipofectamine 2000 (Life Technologies). Stealth siRNA
targeting hSSB1 have been described previously (17) with
siRNAs transfected using RNAiMax (Life Technologies).

Recombinant protein expression

hSSB1; 511, hSSB1; 5} mutants and hSSB1,_j»3 protein ex-
pression using the E. coli Rosetta 2 (for BLI) or E. coli
BL21(DE3) (for NMR) strain was induced by addition of
0.2 mM IPTG at 25°C for 16 h. Cells were lysed by son-
ication in 10 mM MES, pH 6.0, 50 mM NacCl, 0.5 mM
PMSEF, 0.1% Triton X-100. In contrast to hSSB1 purified
under non-reducing conditions, proteins purified under re-
ducing conditions additionally contained 3 mM TCEP. Fol-
lowing centrifugation, the supernatant was subjected to
GSH affinity chromatography followed by HRV-3C pro-
tease cleavage overnight at 4°C (leaving the 5-residue stretch
GPLGS at the N-terminus of the OB domain). The solu-
tion was applied to a HiTrap HP Heparin (2 x 5 ml tan-
dem, GE) column equilibrated with NMR buffer (10 mM
MES, pH 6.0, 50 mM NacCl, 3 and 0 mM TCEP for reduced
and non-reduced proteins, respectively). A 500 ml linear
gradient comprising 50-1000 mM NaCl was used to elute
cationic proteins. Fractions corresponding to a distinct ab-
sorbance peak were analysed by SDS-PAGE, pooled, con-
centrated and loaded onto a Superdex-75 gel filtration col-
umn in NMR buffer or MALLS buffer (20 mM Tris, pH
7.0, 100 mM NaCl, 1 mM EDTA). ’N- and N3 C-labeled
hSSB1 protein was prepared using the procedure of (28)
in a 5-1 biofermenter and purified as described above. Pro-
tein concentrations were determined using the absorbance
at 280 nm and the theoretical molar extinction coefficient
for hSSB1.

Multi-angle laser light scattering (M ALLS)

Size exclusion chromatography of hSSB1; »;; coupled to
multi-angle laser light scattering (MALLS) was carried out
as described previously (29) in MALLS buffer. Briefly, be-
tween 250 and 500 ng of hSSB1_5;; or hSSB;_»;; mutants
were applied to a Superose 12 (10/300) analytical size ex-
clusion column (GE healthcare) at 0.5 ml/ min. MALLS
was measured in tandem with size exclusion chromatogra-
phy using a MiniDawn solid-state laser diode (Wyatt) mea-
suring at three different angles (41.5°, 90° and 138.5°) at a
wavelength of 690 nm. Data collection and analysis were
performed with Astra Software (Zimm/Berry fitting algo-
rithm). The molar mass was derived from the average of
Mn, Mw and Mz as calculated by ASTRA. Monomeric
BSA (66 kDa) was used as a reference to determine the
molecular weight of the target protein.

NMR spectroscopy and data processing

NMR experiments were carried out using 0.2-1.0 mM
hSSB|_j3 in NMR buffer in the presence and absence
of TCEP (3 mM). Mutant hSSB; ,;; proteins (used for
MALLS experiments) were prepared at concentration be-
tween 50 wM and 500 wM in MALLS buffer without TCEP.



Proton chemical shifts were referenced to 4,4-dimethyl-4-
silapentanesulfonic acid (DSS) at 0 ppm. 13C and >N chem-
ical shifts were referenced indirectly to the same signal. All
NMR experiments were recorded at 298 K on Bruker 600
or 800 MHz spectrometers (Bruker Avance III) equipped
with 5-mm TCI cryoprobes. 1D, 2D SN HSQC and 2D 3C
HSQC spectra were recorded, all data were processed using
Topspin (Bruker Biospin) and protein backbone resonance
assignments were taken from our previous study (18). Cal-
culation of weighted chemical shift changes was carried out
as described in (30).

HADDOCK modelling

The protein structure of hSSB1 (residue 13-106 contain-
ing the OB domain) was taken from the crystal structure
of the SOSS complex (PDB 40WX) (31) and used as in-
put for HADDOCK (32,33), together with the structure of
the EcoSSB protein tetramer (PDB ID: 1SRU) (34) as a
template. Molecular docking calculations were carried out
in a two-stage process. In the first stage, two single hSSB1
molecules (I and II) were used to create a dimer linked by
cysteine C81. Thereby, hSSB1 protein interface residues 13—
20, 43-50 and 74-85 were defined as semi-flexible based on
our NMR data and the EcoSSB structure resulting in a to-
tal of 40 ambiguous interaction restraints (AIRs, fixed at
2 A). Unambiguous restraints (UIRs, fixed at 2 A) were
introduced to link the cysteines C81 together, create -
strands between molecules I and II (hydrogen bonds be-
tween 14-20, 16-18 and vice versa) as well as hydrogen
bonds to keep existing intramolecular B-strands intact dur-
ing the docking. Additional C2 restraints to maintain the
symmetry of the dimer were used in the calculations. The
energy-best structure from the first stage (out of 200 total)
was subject to a further step, whereby two dimers I/11 and
III/IV were docked together to create a tetramer linked by
cysteine C99. To achieve that, 104 AIRs (residues 13-20,
67-73 and 87-97) as well as UIRs to link C99 and main-
tain structural integrity of the dimer were used. In anal-
ogy to the first stage, C2 restraints were utilized to keep
the overall symmetry. The 10 conformers with the lowest
value of total energy of the lowest-energy cluster out of
500 total structures were analysed using standard HAD-
DOCK protocols and PYMOL (Schrodinger, NY). The
structural coordinates of the energy-lowest model struc-
ture was deposited into the Figshare data repository (DOI:
10.6084/m9.figshare.4892129) as the RCSB PDB database
does not currently accept molecular models (35).

Cell culture, treatments and clonogenic survival assays

HeLa cells were maintained in Roswell Park Memorial In-
stitute Medium supplemented with 10% foetal calf serum
and grown in a humidified atmosphere containing 2% O,
and 5% CO, at 37°C. Cells were transfected and seeded
for clonogenic survival assays as previously described (17).
Twenty four hours post-seeding, cells were treated with 0—
250 wM of H,O; for 30 min in serum-free medium. Colonies
were stained with 4% methylene blue in methanol after 10
days and manually counted. Assays were repeated at least
four times with results displayed as the average relative
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count =+ standard error. Statistical significance was exam-
ined using a Student’s 7 test with a P value of 0.05 consid-
ered significant.

Cell lysis and immunoblotting

Whole cell lysates were collected as previously described
(26) using a buffer containing 20 mM HEPES pH 7.5, 150
mM KClI, 5% glycerol, 10 mM MgCl,, 0.5 mM EDTA,
0.05% IGEPAL CA-630 supplemented with cOmplete pro-
tease inhibitor cocktail (Roche). 15-20 wg of whole cell
lysate was typically separated by electrophoresis on a 4—
12% Bis—Tris Plus Bolt precast gel (Life Technologies) and
transferred to nitrocellulose. Blots were then blocked in 2%
fish gelatin before incubation with primary antibodies. The
FLAG antibody was purchased from Sigma-Aldrich (clone
M2, cat # F1804), the Actin antibody from BD Biosciences
(clone C4, cat # 612656), the Ints3 antibody from Bethyl
(cat # A302-050) and the GAPDH antibody from Cell Sig-
nalling Technology (cat #5174). Primary antibodies were
subsequently detected with IRDye 680RD or 800CW con-
jugated donkey secondary antibodies (Li-Cor) and visual-
ized using the Odyssey imaging system (Li-Cor). The soft-
ware ImageJ was used to measure individual signal intensi-
ties of monomer and oligomer bands, respectively, for each
lane and these values were normalized to the corresponding
GAPDH loading control signal. Ratios between oligomer
and monomer were calculated and are depicted in the fig-
ure (n = 3 blots, average + standard error).

Immunoprecipitation

Cells were resuspended in immunoprecipitation buffer (20
mM HEPES pH 7.5, 150 mM KCl, 5% glycerol, 10 mM
MgCl,, 0.5% Triton X-100) supplemented with 1x phos-
phatase inhibitor cocktail (CST, cat # 5870), 1x protease
inhibitor cocktail (Sigma-Aldrich, cat # 11697498001) and
universal nuclease for cell lysis (1:2000, ThermoFisher Sci-
entific) and lysed by sonication (Vibra-Cell, 3 mm probe;
Sonics and Materials) with 3 x 3 s bursts (10% output). For
the immunoprecipitation of FLAG-tagged proteins, 1000
pg of whole cell lysate was incubated with magnetic anti-
FLAG M2 beads (Sigma-Aldrich) for 1 h at 4°C, beads
washed five times in immunoprecipitation buffer and pro-
tein eluted by heating to 80°C for 5 min in 3x SDS loading
dye. Eluted proteins were then immunoblotted as per above.

RESULTS
NMR reveals distinct hSSB1 oligomerization interface

To determine the molecular details of oxidation-driven
hSSB1 self-oligomerization (26,27), we initially recorded
HSQC NMR experiments of hSSB1 under reducing (pres-
ence of 3 mM TCEP) and non-reducing conditions (ab-
sence of TCEP), respectively, and directly compared them
to each other (Figure 1A). The protein construct that was
used for these experiments encompassed the entire OB do-
main and a short part of the C-terminus (residues 1-123,
hSSB1, »3) and was previously shown to be sufficient for
DNA binding (17). Apart from peak broadening indicative
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Figure 1. NMR analysis reveals the interaction surface of oxidation-driven hSSB1 oligomerisation. (A) Section of a ISN-HSQC of hSSB/_»3 under reduc-
ing (light grey) and non-reducing conditions (black), respectively. Assignments and changes in backbone HN/N resonances are indicated. (B) Weighted
backbone chemical shift changes (30) of HN and N atoms upon oligomer formation of hSSB1. Residues exhibiting changes larger than the average (surface
residues) plus one standard deviation are coloured in black. (C) Cartoon representation of hSSB1 (taken from the published crystal structure, PDB ID:
40WX) (19) with surface residues (as determined in B) coloured in red. Note that all surface residues apart from K33 are located on two distinct sides
of hSSBI (as indicated by rectangles). (D) Cartoon representation of an overlay of the tetrameric structure of E. coli SSB (EcoSSB, PDB ID: 1SRU) (34)
onto hSSBI1. Note the high structural similarity (RMSD of monomers = 1.66 A) and the conservation of the interaction surface (rectangles) utilized in
oligomer formation between hSSB1 and EcoSSB. hSSB1 is shown in the same orientation as in C.

of oligomer formation in the spectrum recorded under non-
reducing conditions, we were also able to observed signifi-
cant differences in the position of some NMR signals (Fig-
ure 1A).

Next, using the backbone assignments determined earlier
(18) we calculated the differences in the chemical shifts of all
backbone resonances between the spectra (Figure 1B). No-
tably, 10 residues exhibited substantial chemical shift differ-
ences (N16, N18, K33, K72, K79, G87, R88, G89, D91 and
M100) which we mapped onto the existing crystal structure
of hSSB1 (19) (Figure 1C). These data revealed that with
the exception of K33 all residues are located on two distinct
sides of the protein (as indicated in Figure 1C) that include
both C81 and C99.

hSSBI1 oligomerization is driven by cysteines C81 and C99

Our recently published study has revealed the presence of
distinct hSSB1 monomers, dimers and tetramers under oxi-
dizing conditions (26). We have also shown that cysteine 41
plays an important role in the self-oligomerization process
of the protein, however, we have concluded that this residue
is not able to form any oxidation-driven disulfide bonds, as
its side chain is buried deeply within the hydrophobic core
of the OB domain (19).

To further investigate the possibility that the remaining
two cysteine residues (C81 and C99), which are surface-
exposed, are involved in oligomer-formation we made three
point mutations (C81S, C99S and C81S/C99S) and anal-
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Figure 2. SEC-MALLS data confirm the involvement of cysteine residues C81 and C99 in the formation of hSSB1 oligomers. (A-D) Representative
size-exclusion chromatography traces (lines) and MALLS data (dots) of full-length hSSB; 511 and hSSB1_5;; cysteine mutants in MALLS buffer under
non-reducing conditions. (E) Summary of MALLS data (n = 4-8) displaying mass proportions of monomers versus oligomers for wild-type hSSB1 and

cysteine mutants (250-500 p.g).

ysed these mutant proteins under non-reducing conditions
by size exclusion chromatography coupled with Multi-angle
Laser Light Scattering (SEC-MALLS). All mutant pro-
teins were assessed for correct folding by 1D NMR (Sup-
plementary Figure S1). As seen previously (26), full-length
hSSB1 (hSSB1; ;1) forms distinct monomers and higher
oligomers, comprising of a mix of dimers, tetramers and
larger oligomers (Figure 2A). In contrast, the C99S mutant
occurs predominantly as a monomer in solution, whereas

mutating C81 to a serine results in a significant reduction
in the formation of higher oligomers (Figure 2B, C and E).
Similarly, replacing both cysteines by serines (C81S/C99S)
essentially abolished the ability of the protein to oligomer-
ize (Figure 2D).

We could not detect significant chemical shifts of the
backbone HN protons of either C81 or C99 in our NMR
HSQC experiments (Figure 1), however, we were able to
unambiguously assigned the signals of the side chain 8-
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Figure 3. A data-driven structural model of hSSB1 oligomerization. (A and B) Cartoon representation of the energy-lowest h\SSBI HADDOCK structural
model (coloured in green, shown in the same orientation as in Figure 1) and EcoSSB crystal structure (PDB ID 1SRU) (34) (dark-blue), respectively.
The disulfide-forming cysteine residues C81 and C99 are indicated as sticks in hSSB1. Note the high structural similarity between the tetrameric hSSB1
and EcoSSB. (C and D) Details of the interface between molecules I and II (monomers coloured in green and salmon, respectively) as well as between
molecules I/II and ITI/IV (dimers coloured in green and salmon, respectively) in the hSSB1 tetramer model. The side-chains of all surface residues that form
electrostatic and hydrogen-bonds (black, dashed line) as well as C81 and C99 are indicated as sticks. In panel C, hSSBI is shown in the same orientation
as in Figure 1; in panel D, the structure has been rotated by 90° counter clockwise about the vertical axis when looking from above relative to Figure 1C.

protons of both residues using '3C HSQC spectra and
NMR data from our previously published study (17). Al-
though assignment of these protons under non-reducing
conditions was not possible, both signals disappear from
their original position upon oxidation (Supplementary Fig-
ure S2), indicating a major change in the redox state of
both C81 and C99 (36). Taken together, these data reveal
that both C81 and C99 are important in oligomer forma-
tion, most likely via disulfide bonding between two or more
hSSB1 molecules.

A data-driven model of hSSB1 oligomerization

To address the oligomerization capacity of hSSB1 visually,
we next compared the interaction interface between individ-
ual hSSBI molecules as determined by NMR (Figure 1C)

with other structurally similar SSBs that form oligomers.
Notably, a structural overlay of the hSSBI OB domain
monomer onto the E. coli (EcoSSB, PDB ID 1SRU) (34)
OB domain tetramer (RMSD between monomers = 1.66
A) reveals that EcoSSB utilizes the corresponding binding
surface to form stable tetramers (Figure 1D). In the same
manner, the intermolecular interaction interface is also con-
served between hSSB1 and the dimeric (dimer of dimers)
structure of the Deinococcus radiodurans SSB (DrSSB, PDB
IDs 3UDG, RMSD between monomers = 1.76 A) (37)
(data not shown).

Based on these comparisons we utilized EcoSSB as a tem-
plate in combination with our NMR and SEC-MALLS
data to calculate a HADDOCK model of the hSSBI
tetramer (Figure 3A). To achieve this, we first calculated a
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Table 1. Hydrophobic and electrostatic interactions (apart from cysteines C81 and C99) within the hSSB1 structural model

Interface between molecules I and 1T

Interface between molecules I/1I and I11/IV

G13 < M100
L14 < L19
L17 < L17
150 < V77
L82 « L8&2
K15 < D45

Hydrophobic

Electrostatic

L14 « T71
G89 < G8&9
120 < 120

T71 < K72
K72 < D91
K72 < G8&9

dimer between two hSSB1 molecules (referred to as I and
IT) mediated by C81, residues located on the interface as
identified by NMR experiments (Figure 1), and B-strands
between residues L14, N16, N18 and 120 in analogy to
EcoSSB (Figure 3C). In the second step, two dimers (re-
ferred to as /1T and I11/1V) were docked together using C99
and interface residues (Figure 1) to form a stable tetramer in
silico. Figure 3A depicts the lowest energy tetrameric struc-
ture calculated from a total of 500 HADDOCK structures.
The interface between molecules I and II is, apart from the
adjacent B-strands and the C81-C81 disulfide bond, sta-
bilised by multiple hydrophobic contacts and one electro-
static interaction (Figure 3C, Table 1, Supplementary Fig-
ure S3), whereas the dimer interface (I/11-III/IV) is made
up by both charged and hydrophobic residues and the C99-
C99 disulfide bond (Figure 3D, Table 1, Supplementary Fig-
ure S3).

Evaluation of the hSSB1 tetramer model

Based on our "'N-HSQC data and a visual examination of
our structural model, we made a series of point mutations in
hSSB1;_5;; to assess the validity of our data-driven HAD-
DOCK model. The first two double-mutants were designed
to disrupt formation of the B-strand (Figure 3C) that is in-
tegral to formation of the I/II dimer (N16D/N18D and
L14DI20D), whereas in the third mutant we replaced two
charged residues (K72 and D91) by alanines in an effort
to disrupt the interface between molecules I/11 and III/IV
(Figure 3D). All three double-mutants were correctly folded
asjudged by their 1D NMR spectra (Supplementary Figure
S1).

Next, the ability of each mutant to form oligomers un-
der non-reducing conditions was assessed by SEC-MALLS,
in analogy to Figure 2. As can be seen from Figure 4, all
three double-mutations significantly reduced the formation
of oligomers. Interestingly, replacing N16 and N18, which
are located in the centre of the adjacent B-strands, by nega-
tively charged aspartic acids, leads to a complete loss in the
ability to form oligomers (Figure 4A and D), highlighting
the role that this continuing B-sheet plays in the formation
of hSSB1 oligomers. In summary, these data confirm the
validity of our structural model.

Functional data further validate the structural model

To further corroborate our structural model we exam-
ined whether mutation of residues important for tetramer
formation impacted oligomerisation of hSSBI1 in cells.
Three hSSBI1,;;; mutants (N16D/N18D/K72A/D91A,

C81S/C99S and N16D/N18D/K72A/D91A/C81S/C99S)
were made and ectopically expressed in HeLa cells grown
at 2% oxygen and treated with or without H,O,. Whole cell
lysates were then collected and analysed by immunoblotting
under non-reducing and reducing conditions (Figure 5A).
While mutation of N16 and N18 (part of B-sheet), together
with K72 and D91 (part of the dimer-dimer interface) did
result in significantly reduced ratios between oligomer and
monomer compared to the wild-type (Figure SA, left), ad-
ditionally replacing the two surface-exposed cysteines C81
and C99 with serines completely abolished the formation of
hSSBI1 oligomers (Figure 5A, far right) in good agreement
with our HADDOCK model. Consistent with our MALLS
data (Figure 2E), mutation of the two cysteines almost elim-
inates any oligomeric species, with only small amounts of
dimer compared to the monomer still visible on the gel (Fig-
ure 5A, middle).

We additionally carried out clonogenic survival assays
using HeLa cells treated with increasing concentrations of
H,0; (to induce oxidative DNA damage) depleted of en-
dogenous full-length hSSB1, »;; and transiently expressing
siRNA resistant full-length 3x FLAG tagged wild-type
hSSB1 5;;, or C81S/C99S, N16D/N18D/K72A/DI1A,
and NI16D/N18D/K72A/D91A/C81S/C99S mutants
(Figure 5B). We have previously found that oligomerisation
of hSSBI is required for cell survival following H,O,
treatment (26,27). In agreement with this, expression of
wild-type hSSB1 was able to rescue depletion of endoge-
nous hSSB1. However, mutation of either the two cysteines
C81 and C99 or a combination of the cysteines with N16,
NI18, K72 and D91 led to a significant decreased cell
survival compared to the control. Taken together, these
functional data provide further strong evidence for the
validity of our structural model.

hSSB1 binding to SOSS1 complex does not interfere with
oligomerization

hSSBI1 has previously been shown to form a hetero-trimeric
complex with Ints3 and C9orf80 (SOSS1 complex), facil-
itating the function of hSSBI in DSB repair and in con-
trolling the termination of transcription (20,22,23,38). It is
not clear whether Ints3 binding within the SOSS1 complex
would interfere with hSSBI1 self-oligomerization (and thus
oxidative DNA damage repair). To assess this, we initially
overlaid the existing Int3—-hSSB1-ssDNA complex struc-
ture (PDB ID 40WX) (19) onto our tetramer model (Figure
6A, shown without hSSB1 and ssDNA from the complex
structure). Intriguingly, no clash between Ints3 and hSSB1
is observed in the structure, indicating that Ints3 binding
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oligomers for wild-type hSSB1 and mutant proteins.

may be able to take place independently of hSSB1 oligomer-
ization.

To confirm this in cells, we assessed the abil-
ity of two hSSB1;,;; mutants (C81S/C99S and
N16D/N18D/K72A/K91A) that affect hSSB1 oligomer-
ization to bind Ints3 in immunoprecipitation experiments
(Figure 6B, left four lanes). Albeit reduced in the case of
the double cysteine mutant, both hSSB1 constructs are
still able to interact with Ints3. In contrast, replacing F98
in hSSB1, a residue that makes extensive contacts with
Ints3 in the crystal structure (19), with alanine, completely
abolishes hSSB1 binding to Ints3.

To further confirm that Ints3 binding can take place inde-
pendently of hSSB1 oligomerization, we first tested whether
the F98A mutant is able to rescue cells depleted of en-
dogenous full-length hSSB1 that were exposed to oxidative
DNA damage (Figure 5B). As seen from the Figure, the
cell surviving fraction is identical to the wild-type protein
indicating that this mutant, while unable to bind Ints3, is
still fully functional in BER repair. Secondly, we tested for
the presence of oligomers in immunoblots revealing that
this mutant displays oligomerization capacity identical to
the wild-type protein (no significant difference in the ra-
tios between oligomer and monomer, Figure 6C). In sum-

mary, our data indicate that two distinct hSSB1 interfaces
(that do not overlap) are utilized for Ints3 binding and self-
oligomerization, respectively.

DISCUSSION
The role of the cysteine residues in h\SSB1 oligomer formation

Our data-driven hSSBI1 tetramer model provides crucial in-
sight into how hSSB1 oligomerizes which is an important
prerequisite for its function in the oxidative damage path-
way (26,27). Protein self-oligomerization is often associated
with the formation of intermolecular disulfide bonds be-
tween cysteines. While we have recently shown that C41
plays an important role in hSSB1 oligomer formation (26),
in light of our structural model it is now clear that, while
not directly involved in disulfide formation, this cysteine
must act as a redox-sensing cysteine with its oxidative sta-
tus influencing the structure of the protein. The other two
cysteines, C81 and C99, however, are surface exposed and
most likely form intermolecular S-S bridges that stabilize
the tetramer as observed in our tetramer model. While the
formation of these disulfide bonds is strongly supported by
our MALLS and NMR data, we were unable to detect them
by X-ray crystallography as attempts to grow viable crys-



Nucleic Acids Research, 2017, Vol. 45, No. 14 8617

hSSB1, ,,,
A hSSB1 N16D/N18D/
N16D/N18D/ hSSB1,,,, K72A/DIIA/
vector hSSB1,,,, K72A/D91A C81S/C99S C81S/C99S
HO, - - ++ - - + + - - + + - - * e+ - -+ +
DIT - + -+ -+ - + - + - + = + -+ -+ -+
200 kDa 200 kDa
150 kDa 150 kDa
100 kDa 100 kDa
75 kDa 75 kDa
FLAG -
@ 50kDa 50 kDa
- 4
B e e B 37 KDA - - - 37 kDa
CAPDH N o o s o o 0 0w - -
*
ratio: 0.6 p<00510WT ratio: 0.6 <008 oWT
oligomer/ |-I-| oligomer/
monomer 0 el I monomer 0
AN SRR AN SR NSRS ANAN AN
o\x%‘x%”)% Q&%"‘%‘%@’Q NCEGESSRH
NRERESE R RRNN: NSRRI
1 ~
g
'8 0.1
©
[@)]
S —e— shSSB1
@ 001 _a shSSB1+hSSB1,,,
—v— shSSB1+hSSB1, | C81SC99S
—e— shSSB1+hSSB1,,,, N1BDN18DK72ADIA
—«— shSSB1+hSSB1, ,,, N1BDN18DK72ADIIACEISCHS
SSSB1 +hSSB1,,, FOBA
0001 ] T T T T T
0 50 100 150 200 250
concentration of H,O, (uM)
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tals were unsuccessful, most likely due to the presence of a
mix of different subspecies (monomers, dimers, and higher
oligomers) as seen in our MALLS data of wild-type hSSB1
proteins (Figure 2A). Interestingly, while SSBs are generally
well known to form homotetramers (39), disulfide bonds
have recently been shown to be essential in the formation
of stable tetramers by the SSB from Streptomyces coeli-
color (40). Similar to hSSBI, the presence of reducing agent
completely abolishes tetramer formation of this SSB. These

data indicate that intermolecular S-S bridges that stabilize
tetrameric structures might be a necessary requirement for
the biological function of SSBs important in oxidative stress
response pathways.
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The data-driven model tetramer model is structurally similar
to other tetrameric SSBs

Apart from the two cysteine residues that appear to act as
molecular clamps, we have identified both hydrophilic and
hydrophobic residues that are essential in the formation of
hSSB1 tetramers (Table 1). Comparison of surface residues
of hSSB1 with both the SSB from Deinococcus radiodu-
rans (DrSSB, Supplementary Figure S3A and B) and E. coli
(EcoSSB, Supplementary Figure S3C), respectively, reveals
two important common features. Firstly, the majority of in-

termolecular interactions are made involving a stretch of
~10 residues at the N-terminus of the OB domain. These
residues take part in the continuous (3-sheet formation be-
tween molecules I and II as well as several electrostatic and
hydrophobic contacts that stabilize the tetramer (for hNSSB1
see Table 1). Secondly, while the nature of the interactions
varies between hSSB1 and the other two SSBs, the loca-
tion of the participating residues appears to be mostly con-
served. For example, whereas hSSB1 utilizes C81 and L82
to make disulfide bonds and hydrophobic contacts between



molecules I and II (see Figure 3), the structurally equivalent
interactions in EcoSSB are formed between the negatively
charged D96 and the positively charged R97. Moreover,
several known residues that affect tetramer formation when
mutated in EcoSSB (12) are at similar positions to ones in
hSSBI that we have shown to be important for oligomeriza-
tion (H56, Q77, Q111; underlined in Supplementary Figure
S3C). Despite these structural similarities it has to be noted
that hSSB1, in contrast to other SSBs, exists in solution in
multiple oligomeric states which is an essential prerequisite
for its function in the different DNA repair pathways (22—
27). Importantly, both our MALLS and functional data
(Figures 2A and 5A) indicate that hSSB1 tetramers might
be capable of polymerizing into larger oligomers of un-
known function by binding additional protein monomers.

Oligomer formation of hSSB1 does not preclude involvement
in DSB repair response

hSSBI1 is part of two well-characterized multi-protein com-
plexes that are essential for DNA DSB repair (SOSS1 and
MRN complex) (20-25). Whereas Ints3 in the SOSS1 com-
plex contacts the OB domain of hSSB1 directly, protein
binding in the MRN complex is via the flexible carboxyl
tail of hSSBI1. Our structural model of hSSBI1 oligomer-
ization (Figure 3) has revealed that only the OB domain
is required for the formation of tetramers with no contri-
bution of the flexible carboxyl-tail implying that oligomer
formation does not interfere with MRN binding. Similarly,
our IP, immunoblot and cell survival experiments (Figures
5 and 6) indicate that binding of hSSBI to itself does not
interfere with recognition of Ints3 (as part of the SOSSI
complex), in good agreement with our previous results (26).
Taken together, these data show that hSSB1 may be able
to function in BER and in the HR-modulated DSB re-
pair pathway simultaneously, further establishing the im-
portance and versatility that hSSB1 displays in maintaining
genome integrity.

DNA binding of hNSSB1

We have recently revealed how monomeric hSSB1 is able to
recognise sSSDNA and demonstrated that the binding mode
in solution is different from the one found in the SOSS1
crystal structure (17,19). The defining feature of the hSSB1-
ssDNA complex solution structure is the base-stacking of
four aromatic residues (W55, Y74, F78, F85), none of which
are directly involved in self-oligomerization, indicating that
ssDNA binding by hSBB1 does not interfere with tetramer
formation. These data raise the possibility that oligomeric
hSSB1 might interact with ssDNA or dsDNA as a func-
tional tetramer, similar to EcoSSB (12,41). Further struc-
tural and biophysical studies are required in order to estab-
lish the exact binding mode of oligomeric hSSBI; in par-
ticular whether it is able to adopt different binding modes
analogous to EcoSSB (41). The increased binding affinity
that hSSB1 displays when recognizing dSDNA containing
a single 8-0xoG (26) might be due to a change in hSSBI1
binding modality. Different DNA binding modalities have
been reported for several SSBs. For example, both RPA and
EcoSSB have been shown to exhibit multiple ssDNA bind-
ing modes, accompanied by conformational changes that
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are central to their function in ssDNA processing mecha-
nisms (1,42,43).

In conclusion, our structural model describes how hSSB1
is able to oligomerize by forming stable tetramers, a pro-
cess that is dependent on oxidation and driven by the two
surface-exposed cysteine residues C81 and C99. Our struc-
tural analysis also reveals that the interaction of hSSB1 with
Ints3 (as part of SOSS1 complex) does not interfere with
tetramer formation, indicating that these two processes can
occur independently from each other in the cell. Future bio-
physical and functional experiments will aim at confirming
this, as well as determining the structural basis of DNA
recognition by hSSB1 tetramers. The data presented here
is central to understanding the molecular mechanism of
oxidation-dependent oligomer formation of hSSBI in the
context of oxidative DNA damage repair, particularly since
blocking this process in tumour cells may be of significant
interest for the development of novel cancer therapeutics.
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