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Abstract
Background.  Glioma accounts for 80% of malignant brain tumors, but its etiologic determinants remain elusive. 
Despite genetic susceptibility loci identified by genome-wide association study (GWAS), the agnostic approach 
leaves open the possibility that other susceptibility genes remain to be discovered. Here we conduct a gene-centric 
integrative GWAS (iGWAS) of glioma risk that combines transcriptomics and genetics.
Methods. We synthesized a brain transcriptomics dataset (n = 354), a GWAS dataset (n = 4203), and an advanced 
glioma tumor transcriptomic dataset (n = 483) to conduct an iGWAS. Using the expression quantitative trait loci 
(eQTL) dataset, we built models to predict gene expression for the GWAS data, based on eQTL genotypes. With the 
predicted gene expression, iGWAS analyses were performed using a novel statistical method. Gene signature risk 
score was constructed using a penalized logistic regression model.
Results.  A total of 30 527 transcripts were analyzed using the iGWAS approach. Four novel glioma susceptibility 
genes were identified with internal and external validation, including DRD5 (P = 3.0 × 10–79), WDR1 (P = 8.4 × 10–77), 
NOMO1 (P = 1.3 × 10–25), and PDXDC1 (P = 8.3 × 10–24). The genotype-predicted transcription pattern between cases 
and controls is consistent with that between tumor and its matched normal tissue. The genotype-based 4-gene sig-
nature improved the classification between glioma cases and controls based on age, gender, and population strati-
fication, with area under the receiver operating characteristic curve increasing from 0.77 to 0.85 (P = 8.1 × 10–23).
Conclusion.  A new genotype-based gene signature of glioma was identified using a novel iGWAS approach, which 
integrates multiplatform genomic data as well as different genetic association studies.
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Gliomas account for 32% of all brain tumors and 80% of all 
malignant brain tumors.1,2 Mortality is high in advanced glio-
mas (60% of gliomas), and patients with glioblastoma multi-
forme (GBM) have survival rates of 4.7% at 5 years.2 Other than 
ionizing radiation, there are no established environmental risk 
factors for gliomas. Various environmental factors have been 
implicated in the etiology of gliomas, but most findings have 
been inconsistent, which suggests the importance of genetics 
and genomics in the susceptibility of this devastating disease. 
Several rare genetic syndromes, such as neurofibromato-
sis type I, have been associated with the glioma risk,3 and a 
positive family history is associated with a 2-fold elevated risk 
of glioma,4,5 supporting the role for a genetic component to 

glioma. A number of genetic regions have been identified in 
genome-wide association studies (GWAS).6–11 While recent 
findings from GWAS revealed important regions that are asso-
ciated with the glioma risk, the agnostic approach inherent 
to GWAS and the strict adjustment for multiple comparisons 
leave open the possibility that other susceptibility regions 
remain to be discovered. Given the lack of well-established 
causes for glioma, understanding genetic susceptibility will 
provide new insights and opportunities for progress in unrave-
ling the biological mechanisms behind this fatal cancer.

In GWAS, a large number of single nucleotide polymorphism 
(SNP) markers are tested across the genome. As multiple com-
parison adjustments are needed in GWAS, there has been a 

 940 Neuro-Oncology
19(7), 940–950, 2017 | doi:10.1093/neuonc/now288 | Advance Access date 22 February 2017

mailto:ythuang@stat.sinica.edu.tw?subject=


941Huang et al. Genotype-based gene signature of glioma
N

eu
ro-

O
n

colog
y

substantial interest in improving the statistical power of 
testing SNP effects by borrowing additional biological 
information. A major criticism of GWAS lies in its agnostic 
style12: no biological knowledge is encoded in the standard 
GWAS analyses. To address such limitations, SNP-set anal-
yses have been advocated to integrate biological informa-
tion into statistical analyses and to decrease the number 
of tests.13,14 Analyses using SNP sets grouped by physical 
locations have shown a better performance than the stand-
ard single SNP analyses in re-analyzing the breast can-
cer GWAS dataset.14 SNPs can also be grouped into a set 
according to biological functions and have been utilized in 
studying skin cancer,15 bladder cancer,16 and lung cancer.17 
By decreasing the number of tests and incorporating bio-
logical knowledge in the analysis, the SNP-set approach 
has provided a biologically relevant alternative to pursue 
genetic association analyses. However, this approach has 
not yet been applied to glioma.

Expression quantitative trait loci (eQTL) are the SNPs 
that are associated with gene expression. Several stud-
ies have incorporated eQTL data into GWAS using different 
approaches. Some studies used eQTL to prefilter or prioritize 
the SNPs: a GWAS of basal cell carcinoma that focused on 
eQTL SNPs was reported15; an osteoporosis GWAS used 
eQTL to re-prioritize the ranking from the result of genome-
wide scans.18 Other studies focused on the overlap between 
GWAS and eQTL analyses: an asthma GWAS showed that the 
susceptibility loci at 17q21 were also eQTL for the ORMDL3 
gene.19 Still others found that eQTL were enriched in the 
trait-associated SNPs; eQTL SNPs were also found enriched 
among common susceptibility loci of type 2 diabetes,20 bipo-
lar disorder,21 lymphocyte count,22 and the published GWAS 
SNPs in the online database collected by the National Human 
Genome Research Institute.23 These studies have shown the 
promise of integrating eQTL into GWAS analyses.

Currently the existing approaches aim at the overlap of 
SNP–disease (GWAS) and SNP–expression (eQTL) associa-
tions using different strategies, but whether the association 
of SNPs with expression really contributes to the disease 
risk has not been directly examined in previous studies. 
Statistical methods have been developed to jointly ana-
lyze SNP and gene expression data provided that both data 
types are collected from the same individuals.24–26 However, 
how to analytically integrate the genetic and transcriptomic 
data when the GWAS and the eQTL study are conducted in 
different subjects remains a challenge. Here we introduce 
a new analytic framework that utilizes a novel statistical 
methodology27 to jointly analyze SNP and gene expression 
data by integrating a GWAS with an eQTL study.

Methods

Study Population

Three population datasets were included in this analysis: 
a brain eQTL dataset, a glioma GWAS dataset, and a GBM 
dataset from The Cancer Genome Atlas (TCGA). The brain 
eQTL study was conducted at the National Institute on 
Aging and consisted of genomic data obtained from fresh 
frozen tissue samples from the frontal lobe of cerebral 
cortex in 354 neurologically normal Caucasian subjects. 
Genome-wide genotyping was performed using Illumina 
Infinium HumanHap 550K, 610Q, or 660W BeadChips, and 
mRNA expression profiling was measured using Illumina 
HumanRef-8 Expression Beadchips. Additional details on 
this dataset can be found in Gibbs et al.28

The glioma GWAS dataset was archived in the Database 
of Genotypes and Phenotypes (study accession phs000652.
v1.p1). The genome-wide genotype data were collected on 
556 glioma cases and 3647 controls using Illumina 550K, 
610Q, or 660W BeadChip. We randomly divided the GWAS 
data into a Discovery Set consisting of 370 cases and 2430 
controls and Validation Set consisting of 186 cases and 
1217 controls. Missing genotypes were imputed using 
IMPUTE2 software (see Supplement Section I).

To validate the differentially expressed genes estimated 
for cases and controls in the GWAS data, we collected the 
array-based transcriptomic data from 473 GBM tumors or 
stage IV astrocytomas and 10 organ-specific normal con-
trol tissues from individuals without cancer who donated 
tissue for other reasons, both archived in TCGA.29 The tran-
scriptomic data were preprocessed level 3 data measured 
with University of North Carolina AgilentG4502A_07 array. 
The study is based on de-identified data that have been 
made publicly available, and thus does not involve human 
subjects. The demographics of the 3 datasets are summa-
rized in Supplementary Table 1.

eQTL Analyses and Estimation of Gene 
Expression for GWAS Data

Three hundred fifty-four subjects of the eQTL dataset were ana-
lyzed to identify eQTL. We first defined cis-eQTL of a gene as 
SNPs locating within 0.5 Mb of the gene. We then constructed 
univariate eQTL models using linear regression models for 
each transcript expression value, regressing log2-transformed 
expression level on an SNP genotype under additive mode (0, 
1, 2 as the number of the minor allele), adjusting for age and 

Importance of the study
We present a genomic study that utilized a novel 
approach to discover new susceptibility genes of glioma 
and to construct a gene signature for this devastating 
disease. With external reference data of transcriptom-
ics and genetics in brain tissue, we are able to predict 
the cerebral tissue-specific transcriptomic profile for 
the subjects based on their genotypes. We applied this 

approach to synthesize a multiplatform genomic study 
where we jointly analyzed a GWAS dataset, a brain 
transcriptomics dataset, and a tumor genomic data-
set. Our integrative approach identified 4 susceptibility 
genes of glioma: DRD5, WDR1, NOMO1, and PDXDC1, 
which were validated in multiple data and were used to 
construct a 4-gene signature for the glioma risk.
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gender. For the cis-eQTL SNPs with P-value smaller than .05, 
we considered them as potential eQTL and built a multivariate 
eQTL model based on these eQTL SNPs. The distribution for 
the number of potential eQTL for 30 527 transcripts is shown 
in Supplementary Figure 1 (median = 9).

We assumed a multiple linear regression model that 
log2-transformed expression level of each transcript G  
was determined by covariates X  (1 [for the intercept], 
age, and gender), and SNPs S = …( )S S

T

1, , p  from its cor-
responding eQTL set with size of p SNPs:

	 G Ni
T

X i
T

S Gi G Gi = + + ∼X Sαα αα  and ( , ).0 2σ � (1)

Due to the large number of eQTL SNPs, we employed a 
ridge estimator to estimate αα X  and αα S  that minimized 

i
i i

T
X i

T
S SG∑ − −( ) +X Sαα αα ααλ  

2 ; the tuning parameter λ  

was
 
chosen from 10-fold cross-validations. We then pre-

dicted the unmeasured expression levels of probes for 
all 4349 samples in the GWAS study using the estimated 
model coefficients of SNPs, µGi i

T
S= S αα . We obtained the 

predicted expression values of 30 527 unique probes.

Integrative Genome-wide Association Study 

We have developed a novel statistical method to integrate 
an eQTL study into a GWAS where the 2 studies were con-
ducted in different study subjects.27 We built eQTL models 
in (1) to estimate the expression value for each subject 
in the GWAS data and then combined the cis-eQTL SNPs 
mapped to the gene (or transcript) and its estimated 
expression level to assess their joint effect on the glioma 
risk by the following efficient testing procedure.

We first assumed a disease risk model, one transcript 
at a time: for subject i (i n= …1, , ; n  is the sample size of 
GWAS data), the glioma outcome Yi (Yi = 1 and 0 for case 
and control, respectively) is determined by p eQTL SNPs 
Si i pi

T
S S= …( )1 , ,  identified from the above, one mRNA 

expression of a transcript/gene Gi, their possible cross-
product interactions as well as covariates X i : 1 for the 
intercept, age, gender and 4 principal components for pop-
ulation stratification, through a logistic model:

logit | , , .P Y G G Gi i i i i
T

X i
T

S i G i i
T

SG=( ) = + + +1 S X X S Sββ ββ βββ

We then obtain the marginal model for the glioma risk 
under the rare disease assumption that only depends on 
the eQTL SNPs Si  and the covariates X i  by taking an inte-
gral with respect to gene expression G:

logit | , log ( ).P Y e dF gi i i

G

G
i
T

X i
T

S G i
T

SG i=( ) ≈ ∫ + + +( )1 S X X S Sββ ββ βββ

The null hypothesis of no genetic effect is specified as:

H P Y P Y0 1 01 1 0: | , | , .∆ ≡ = =( ) − = =( ) =logit logitX S s X S s

It has been shown that H H S
T

G SG
T T

0 00 0: : , ,∆ = ↔ = ( ) =ββ ββ βββ ,  
provided S  are eQTL SNPs.27 Because of the low power in 
conventional multivariate tests, we further assumed ββS ,  
βG , and ββSG  followed arbitrary working distributions 
with mean zeros and variances τS , τG , and τSG , respec-
tively. Thus the null hypothesis H0 0: ∆ =  became equiva-
lent to:

		  H S G SG0 0: τ τ τ= = = .� (2)

We constructed the test statistic Q  as a weighted sum of 
noncentered scores U

Sτ , U
Gτ , and U

SGτ  for τS , τG , and τSG  
under the null (2):

Q wU w U w U
S G SG

T= + + = −( ) −( )1 2 3 0 0τ τ τ Y K Yµµ µµ ,

where µµ0 01 0= …( )µ , ,µ n

T
, K SS C C= + +w wT

G G
T

SG SG
T

1 2 3w µµ µµ ,  

S S S= …( )1, , n

T
, µµG G Gn

T= …( )µ µ1, , , C C CSG SG SGn

T= …( )1, , , 

and C SSGi Gi i= µ . We chose the weights w1 , w 2 , and w 3  to 

be the square root of the information for U
Sτ , U

Gτ , and U SGτ ,  

respectively. µ0i , the glioma risk for subject i  under the null 

(2), was estimated by e eX

T

i X

T

iββ ββ
X X1

1

+







−

, where ββX  was esti-

mated from the logistic model under the null. We calculated 

P-value for the test statistic Q  by comparing with its under-
lying distribution, a mixture of chi-square distributions.27

We consider the following 3 hypotheses: (1) the SNPs-
only model, H S0 0: τ = ; (2) the model with SNPs and 
gene expression effects but no SNPs-by-expression inter-
actions, H S G0 0: τ τ= = ; and (3) the model with SNPs 
and gene expression effects as well as their interactions, 
H S G SG0 0: τ τ τ= = = . Note the models (1) and (2) are par-
simonious models nested within (3). In order to synthesize 
the information from the 3 candidate models, we conducted 
an omnibus test. Specifically, we calculated P-values for the 
3 models pS , pSG , and pSGC  and used the smallest P-value 
p p p pmin s SG SGC= ( )min , ,  as the test statistic of the omnibus 
test (see Supplement Section II for further discussion). We 
were able to obtain the realization of the approximated 
distribution for the minimum P-value using a perturbation 
procedure, p p pmin

b
min min

B( ) , ,{ } = …{ }( ) ( )1 , where B  is the number 
of perturbation.27 By comparing pmin  with pmin

b( ){ } , we cal-
culated the tail probability as the omnibus P-value. As the 
proposed method protects type I error for each transcript,27 
standard methods of adjusting multiple comparisons on 
P-values can be used (ie, Bonferroni’s correction, false dis-
covery rate, etc). We used Bonferroni’s correction in the 
analysis of glioma risk. Sensitivity analyses by adjusting 
for population stratification in eQTL analyses are present 
in Supplement Section III (Supplementary Tables 4 and 5; 
Supplementary Figures 2 and 3).

Gene Signature

The transcripts identified in the iGWAS analysis were fur-
ther combined to construct a risk prediction model that 
used transcript signature to predict glioma risk with the 
2-stage discovery-validation process. We fit the following 
logistic regression model using the Discovery Set:

logit P Y Xi i G i Gmi i
T

X G i m Gmi= …( ) = + + …+1 1 1 1| , , ,µ µ γ µ γ µX γγ

where m  is the number of genes or transcripts. Due to 
the large degrees of freedom and the correlation among 
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µG1 , . . . , µGm , we introduced an L2  penalty into the maxi-
mum likelihood estimation to stabilize the estimator of 

γγ  

train m

T

= …






γ γ1, ,  and γγ X train, . The tuning parameter for the 

penalty was chosen to minimize mean squared error from 
10-fold cross-validation. The risk score of the gene signature 
was derived as ψ i GSi

T
train= µµ γγ , where µµGSi G i Gmi

T= …( )µ µ1 , , . 
We compared the classification performance between the 
model with covariates and the m-transcript/gene risk score 
(X i

T
X train iγγ , + ψ ) and that with only covariates (X i

T
X trainγγ , ),  

using receiver operating characteristic (ROC) curve. To avoid 
overfitting in ROC, we calculated ψ i  using the expression 
values µµGSi  and the covariates X i  in the Validation Set 
and γγ train  and γγ X train,  estimated from the Discovery Set 
(Figure 4A and C). We also swapped the two sets, ie, using 
the Validation Set to estimate γγ train  and γγ X train,  and calculate 
ψ i  with the expression values µµGSi  and the covariates X i  in 
the Discovery Set (Figure 4B and D). Note that the risk score 
of the gene signature is the weighted sum of the genotype:

ψ µ γi
j

m

Gji j
j

m

ji
T

Sj( )genotype based risk score = =




= =

∑ ∑
1 1



S αα  γ j ,

where S ji  is the genotype of eQTL for gene (or transcript) 
j  and αα Sj  is the association of the eQTL SNPs with the 

gene (or transcript) expression.

Results

iGWAS

The analysis strategy is depicted in Figure 1. The glioma 
GWAS dataset was randomly divided into Discovery and 
Validation Sets. We conducted iGWAS to analyze 30 527 
transcripts using the Discovery Set. The distribution of the 
30 527 omnibus P-values is very close to a uniform distribu-
tion with a spike at the low end (Supplementary Figure 4). 
The quantile-quantile plot is shown in Supplementary Figure 
5 with a genomic inflation factor of 1.061. Note that the 30 527 
transcripts may not be independent due to the fact that eQTL 
could be mapped to multiple transcripts and that multiple 
transcripts could be derived from the same gene. iGWAS 
omnibus P-values of the 30 527 transcripts in the Discovery 
Set were presented in a Manhattan plot (Figure 2). Note that 
each dot represents a statistical significance level of a tran-
script where we jointly analyzed its expression value and the 
genotypes of its eQTL. The black dots are the 55 transcripts 
with P < .001 in both Discovery and Validation Sets.

Among the 30 527 transcripts, 371 (1.30%), 397 (1.39%), 
400 (1.40%), and 467 (1.63%) transcripts were significant 
at discovery P < .01 in tests for the SNP-only model, tests 
for SNP and gene expression main effect model, tests for 
interaction model, and omnibus tests, respectively; 98 
(0.34%), 96 (0.34%), 101 (0.35%) and 107 (0.37%) transcripts 
were significant at discovery P < .001. It suggests that bet-
ter statistical power was achieved by incorporating geno-
type-estimated gene expression, which is consistent with 
the numerical studies.27

The 55 validated transcripts are summarized in Table 1 
and Supplementary Table 2. Fifty-four of them had discovery 

P-values lower than the Bonferroni-adjusted genome-wide 
significance level, and all 55 combined P-values reached the 
genome-wide significance. Results of the SNP-only model, 
the SNP and gene expression main effect model, and the 
interaction model are summarized in Supplementary Table 
3. The estimated gene expression provided advantage in 
detecting statistical significance in transcripts of OR7E85P, 
SLC2A9, DRD5, WDR1, VNN3, SNORD100, SNORA33, 
NOMO1, and PDXD1, but not the 40 transcripts of the ubiq-
uitin specific peptidase 17-like family, NTAN1, STMN3, 
and LIME1, which had higher statistical significance in the 
SNP-only model. The most significant genes included DRD5 
(dopamine receptor D5; P = 3.0 × 10–79), WDR1 (WD repeat 
domain 1; P = 8.4 × 10–77), SLC2A9 (solute carrier family 2 
[facilitated glucose transporter] member 9; P = 1.4 × 10–27), 
NOMO1 (NODAL modulator 1; P = 1.3 × 10–25), and PDXDC1 
(pyridoxal-dependent decarboxylase domain containing 1; 
P = 8.3 × 10–24).

In addition to the iGWAS approach, we investigated 
candidate regions and previous GWAS loci using univari-
ate genetic association analyses. For the 20 previously 
reported glioma (or GBM) susceptibility loci that can be 
mapped in our data, we confirmed 10 SNPs: rs2736100 
(5p15.33; TERT), rs2853676 (5p15.33; TERT), rs2252586 
(7p11.2; EGFR), rs4977756 (9p21.3; CDKN2BAS), rs1412829 
(9p21.3; CDKN2BAS), rs1063192 (9p21.3; CDKN2A/B), 
rs2157719 (9p21.3; CDKN2A/B), rs3851634 (12q23.3; 
POLR3B), rs2297440 (20q13.33; RTEL1), rs6010620 
(20q13.33; RTEL1, TNFRSF6B) (Supplementary Table 6). 
Based on our eQTL analyses, rs2297440 and rs6010620 
were associated with the expression of STMN3 and LIME3.

As shown in the Manhattan plot, there are 4 hot spots 
of glioma susceptibility, including 4p16.1, 6q23.2, 16p33.11, 
and 20q13.33 (Figure 2). In 4p16.1, rs6824806 had highly 
significant genetic association with glioma risk, and the 
SNP also had very strong association with transcription 
levels of DRD5, WDR1, SLC2A9, OR7E85P, and ubiquitin 
specific pepetidase 17-like family. In 6q23.2, rs4458717 and 
r12200377 had significant association with SNORD100, 
SNORA33, and VNN3 expressions as well as the glioma 
risk. In 16p33.11, rs11075260 was associated with PDXDC1, 
NOMO1, NTAN1 expressions, and the glioma risk. In 
20q13.33, rs2297440, rs6010620, rs6089953 had strong 
association with the glioma risk and moderate association 
with STMN3 and LIME3 transcription level. We note that 
20q13.33 is also the region that harbors significant SNPs 
(rs2297440 and rs6010620) in previous GWAS.6,9

Genotype-based Gene Signature

Hierarchical clustering was performed based on Euclidean 
distance among the estimated expression values of the 55 
validated transcripts (Figure 3). Glioma cases are enriched 
in the red cluster, compared with the other clusters (20.1% 
vs 8.1%, P = 1.2 × 10–29). With the 55 transcripts, we devel-
oped a gene signature with use of L2  penalized logistic 
regression. Compared with the model with only covariates: 
age, gender, and 4 principal components of population 
stratification, the model with the additional 55 transcripts 
had better discrimination between glioma cases and con-
trols with area under the ROC curve (AUC) increasing from 
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0.76 to 0.83 (P = 1.3 × 10–5) in the Validation Set with mod-
els built by the Discovery Set (Figure 4A), from 0.77 to 0.88 
(P = 1.1 × 10–35) in the Discovery Set with models built by 
the Validation Set (Figure 4B), and from 0.77 to 0.88 (P = 
1.0 × 10–35) with model building and testing using both sets 
combined. ROC curves for a single transcript of all 55 tran-
scripts are shown in Supplementary Figure 6.

Among the 55 transcripts, 8 (DRD5, WDR1, SLC2A9, VNN3, 
NOMO1, PDXDC1, STMN3, and LIME1) can be identified in 
TCGA gene expression data of GBM. We investigated the esti-
mated gene expression by comparing differential expression 
patterns between cases and controls with those in TCGA GBM 

tumors versus organ-specific control tissues. Four genes 
(DRD5, WDR1, NOMO1, and PDXDC1) were validated: expres-
sion of DRD5, NOMO1, and PDXDC1 was significantly lower 
and that of WDR1 was significantly higher in GBM tumor tis-
sue than normal brain tissue, which is consistent with find-
ings based on the estimated gene expression for the glioma 
GWAS data (Figure 5). With the 4 genes further validated by 
TCGA data, we developed a parsimonious 4-gene signature. 
Its performance is similar to the 55-transcript signature, with 
AUC increasing from 0.76 (the model with only covariates) to 
0.82 (the model with covariates and the 4 genes) (P = 2.3 × 
10–4) in the Validation Set (Figure 4C), from 0.77 to 0.86 (P = 

Fig. 1  The schematic of design and analysis of the integrative genome-wide association study (iGWAS).
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1.4 × 10–27) in the Discovery Set (Figure 4C), and from 0.77 to 
0.85 (P = 8.1 × 10–23) in both sets combined. The other 4 genes 
that were not validated by TCGA data were SLC2A9, VNN3, 
STMN3, and LIME1. Interestingly, the signature constructed 
by these 4 genes had only modest increase in AUC (from 0.76 
to 0.81 in the Discovery Set; from 0.76 to 0.79 in the Validation 
Set) (Supplementary Figure 7). The genotype-estimated 
expressions of the 55 transcripts between glioma cases and 
controls are shown in Supplementary Figure 8.

Discussion

Here we present a new approach to conduct a genome-
wide association study, which identifies novel susceptibility 
genes of glioma risk: DRD5, NOMO1, PDXDC1, and WDR1. 
Gene-centric GWAS analysis decreases the number of tests 
and has become popular. Genotype-based methods such 
as the SNP-set Sequence Kernel Association Test (SKAT) 

Fig. 2  Manhattan plot of eQTL- and gene expression–integrated genome-wide association studies of 30 527 transcripts with glioma risk. The black dots 
are −log10p of the 55 transcripts confirmed by the Validation Set. The horizontal broken line indicates the Bonferroni genome-wide significance level.

Table 1  The 16 out of 55 transcripts discovered at the significance level of omnibus P < .001 and validated at the level of omnibus P < .001

Illumina ID Ensembl  
Gene ID

HGNC  
Symbol

Chromosome Start 
Position

End  
Position

No. of 
SNPs

Omnibus P-value

Discovery Validation Combined

ILMN_1684499 ENSG00000251694 USP17L9P 4 9360109 9361701 27 7.17E-47 3.27E-14 1.13E-59

ILMN_2079225 ENSG00000250884 OR7E85P 4 9485365 9486349 61 2.98E-52 3.15E-16 7.17E-63

ILMN_1738406 ENSG00000109667 SLC2A9 4 9772777 10056560 186 2.20E-20 1.78E-05 1.40E-27

ILMN_1723803 ENSG00000109667 SLC2A9 4 9772777 10056560 186 6.78E-60 7.36E-18 3.09E-71

ILMN_1689043 ENSG00000169676 DRD5 4 9783258 9785632 126 5.59E-58 8.42E-16 2.95E-79

ILMN_1780036 ENSG00000071127 WDR1 4 10075963 10118573 188 2.89E-43 2.02E-13 8.27E-58

ILMN_1675844 ENSG00000071127 WDR1 4 10075963 10118573 188 1.27E-60 5.83E-19 8.39E-77

ILMN_1804935 ENSG00000093134 VNN3 6 133043926 133055904 226 2.90E-08 4.60E-05 1.89E-12

ILMN_2096747 ENSG00000221500 SNORD100 6 133137941 133138016 231 5.58E-12 0.000821 9.84E-16

ILMN_2096747 ENSG00000200534 SNORA33 6 133138358 133138487 231 8.75E-12 0.000967 1.92E-15

ILMN_2126957 ENSG00000103512 NOMO1 16 14927538 14990017 43 4.15E-20 9.43E-08 1.28E-25

ILMN_1702114 ENSG00000103512 NOMO1 16 14927538 14990017 43 2.34E-18 1.16E-05 1.67E-22

ILMN_1703969 ENSG00000179889 PDXDC1 16 15068448 15233196 46 1.35E-19 1.97E-06 8.32E-24

ILMN_1815552 ENSG00000157045 NTAN1 16 15131710 15149921 35 2.37E-15 0.000821 6.78E-17

ILMN_1728645 ENSG00000197457 STMN3 20 62271061 62284780 136 8.16E-07 0.000322 5.42E-11

ILMN_2344079 ENSG00000203896 LIME1 20 62366815 62370456 145 7.72E-06 0.000682 1.14E-09

HGNC = Human Genome Organisation (HUGO) Gene Nomenclature Committee. The omnibus P-value characterizes the statistical significance incor-
porating SNP-only models, SNP and gene expression main effect only models, and interaction models. Only 1 of the 40 ubiquitin specific peptidase 
17-like family members (USP17L9P) is presented, and the remaining 39 transcripts are presented in Supplementary Table 1.
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analyze all genetic variants within a gene and have shown 
better power than single-SNP analyses.14,30 A special case 
of our method focusing on an SNP-only model can be con-
strued as SKAT analyses with the linear kernel. Similar to 
our approach, an eQTL-based method PrediXcan proposed 
to utilize reference data to impute transcriptome in GWAS.31 
The difference is that PrediXcan focused only on the asso-
ciation of imputed gene expression with phenotype, and 
we jointly analyze the genotype data, the imputed gene 
expression data, as well as the genotype-by-transcription 
interaction using a score-type variance component test.27 It 
is critical to include the genetic effect, which captures the 
trans-eQTL effect through other genes or effects of other 
transcriptional regulation and biological pathways not 
via the imputed transcription. It has also been shown that 
analysis with single platform loses statistical power com-
pared with the proposed joint analyses.27 By integrating 
both genetic and transcriptomic data, we present a unified 
framework where SKAT and PrediXcan are 2 special cases, 
and our approach further provides omnibus tests to synthe-
size the optimal information.

A challenge of jointly analyzing SNP and gene expres-
sion data in genome-wide association studies is its 

difficulty in gaining access to the target tissue. In most 
GWAS, investigators collect peripheral blood samples and 
genotype DNA extracted from blood cells. While mRNA 
can also be extracted and profiled from blood cells to 
study immune-related diseases,19 it is subject to serious 
limitations in interpretation when generalizing to non-
immune related diseases such as glioma, since brain tis-
sue is the target tissue, not blood cells. For glioma, it is not 
impossible to obtain target tissue from cases; however, it 
is often difficult and unethical if not impossible to obtain 
target tissue from controls. To integrate genomic data col-
lected from different genetic association studies, we have 
developed a statistical method27 under the framework of 
causal mediation modeling.32,33 Utilizing the newly devel-
oped algorithm, our proposed iGWAS approach provides 
an analytic paradigm to exploit the information from an 
external eQTL study to infer the missing transcriptomic 
profile for GWAS subjects. We note that our eQTL analy-
ses focused on the expression profile from only the cer-
ebral tissue that is only limited to the frontal lobe, which 
may attenuate the signals or even diminish the likelihood 
of identifying signals. The information of anatomical sites 
can be easily incorporated in our analytic framework by 

Fig. 3  Hierarchical clustering of the 55 validated transcripts based on the Euclidean distance of estimated expression level. The red stripe indi-
cates the glioma case and the orange indicates the control.
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developing lobe-specific eQTL models for prediction, 
which may increase the power of detecting susceptibility 
genes.

In the example illustrated here, we identified 4 new genes 
that have not been linked to glioma before: DRD5, NOMO1, 
PDXDC1, and WDR1. DRD5 encodes the D5 subtype of the 
dopamine receptor, a G-protein coupled receptor which stim-
ulates adenylyl cyclase.34 Consistent with our findings that 
low expression was associated with glioma risk (Figure 5A 
and B), the Human Protein Atlas shows that DRD5 protein 
has high expression in cerebral cortex but is not detectable 
in glioma tumor tissue; the expression in cerebral cortex is 
mostly observed in neuropil but not in glial cells, endothelial 
cells, or neuronal cells.35,36 DRD5 has been associated with 
neurologic disorders such as Parkinson’s disease,37 multiple 
sclerosis,38 schizophrenia,39 and attention-deficit hyperactiv-
ity disorder,40 and is also an FDA-approved drug target.41 
However, the literature is very limited on its role in carcino-
genesis, which deserves more research.

NOMO1, also known as PM5, is one of the 3 highly 
similar genes located in a duplication region on p arm 
of chromosome 1642; the 3 genes encode proteins that 
may have the same function, and one protein has been 

identified as part of a complex involved in the nodal sign-
aling pathway during development.34,43 NOMO1 protein is 
highly expressed in normal cerebral cortex, particularly in 
glial cells and neuronal cells, but not in endothelial cells 
or neuropil; in contrast, its expression in glioma tissue 
ranges from medium to nondetectable.35,36 The protein 
expression pattern is consistent with our findings in the 
GBM data from TCGA (Figure 5F) as well as in the eQTL-
estimated expression (Figure  5E). NOMO1 was found 
overexpressed in the cutaneous T-cell lymphoma cell line 
compared with normal peripheral blood monocytes,44 
but little is known about its role in glioma. Discussion 
of WDR1 and PDXDC1 is provided in the Supplementary 
material.

We note that the results from TCGA should be inter-
preted with caution because the set from TCGA was 
derived from tumor DNA, and GWAS and eQTL sets were 
derived from normal DNA. Because gene expression is 
profiled after tumors have developed, such differential 
expression could be from either causal genes that induce 
carcinogenesis or reactive genes with their expression 
altered secondary to cancer development.45 The gene 
expression of the tumor consists of 2 components: the 

Fig. 4  The gene signature of glioma risk. (A, B) The ROC curve and its area under the curve (AUC) of the model with only covariates (dark gray 
curve) and that with covariates and the 55 transcripts (light gray curve) in Validation Set (A) and Discovery Set (B). (C, D) The ROC curve and its 
AUC of the model with only covariates (dark gray curve) and that with covariates and the 4 genes: DRD5, WDR1, NOMO1, and PDXDC1 (light 
gray curve) in Validation Set (C) and Discovery Set (D).
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Fig. 5  Gene expression in glioma GWAS data and TCGA GBM data. (A) The gene expression level of DRD5 estimated for glioma cases and con-
trols in our glioma GWAS data: (A) DRD5, (C) WDR1, (E) NOMO1, (G) PDXDC1. The observed gene expression level of brain tissue from GBM 
patients and organ-specific controls: (B) DRD5, (D) WDR1, (F) NOMO1, (H) PDXDC1.
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causal gene expression and reactive gene expression. 
Since both GWAS and eQTL sets were derived from the 
nontumor DNA, we hypothesize that the predicted tran-
scriptome is more likely to represent the causal gene 
expression than the reactive one. The 4 genes, SLC2A9, 
LIME1, STMN3, and VNN3 with estimated expression not 
validated by TCGA data could be due to the difference 
of causal (in iGWAS data) and reactive (in TCGA data) 
expression, or simply false positives. Moreover, the valid-
ity of the estimated transcriptomic data for the GWAS 
subjects by the eQTL data relies on the assumption that 
the eQTL subjects are representative of the GWAS sub-
jects, conditioning on age, gender, and ethnicity/popula-
tion stratification. Exploratory analyses using low-grade 
glioma tumors were also conducted to validate DRD5 and 
WDR1 (Supplement Section IV). We expect that the set 
from TCGA tends to provide a more conservative valida-
tion, ie, we may miss causal signals due to its being inter-
twined with the reactive genes.

In conclusion, we identified 4 novel susceptibility genes 
of glioma: DRD5, NOMO1, PDXDC1, and WDR1, and con-
structed a genotype-based gene signature of glioma risk 
using integrative genomic analytics, iGWAS. The iGWAS 
approach integrates multiplatform genomic data, that is, 
SNP and gene expression data as well as different genetic 
association studies (ie, an eQTL study and a GWAS). The 
iGWAS has advantages of identifying biologically plausi-
ble results and improving statistical power, which make it a 
promising strategy to revisit existing GWAS data identifying 
new disease susceptibility genes that are transcriptionally 
functional.

Supplementary Material

Supplementary material is available at Neuro-Oncology 
online.
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