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Abstract

Egocentric network sampling observes the network of interest from the point of view of a set of 

sampled actors, who provide information about themselves and anonymized information on their 

network neighbors. In survey research, this is often the most practical, and sometimes the only, 

way to observe certain classes of networks, with the sexual networks that underlie HIV 

transmission being the archetypal case. Although methods exist for recovering some descriptive 

network features, there is no rigorous and practical statistical foundation for estimation and 

inference for network models from such data. We identify a subclass of exponential-family 

random graph models (ERGMs) amenable to being estimated from egocentrically sampled 

network data, and apply pseudo-maximum-likelihood estimation to do so and to rigorously 

quantify the uncertainty of the estimates. For ERGMs parametrized to be invariant to network size, 

we describe a computationally tractable approach to this problem. We use this methodology to 

help understand persistent racial disparities in HIV prevalence in the US. We also discuss some 

extensions, including how our framework may be applied to triadic effects when data about ties 

among the respondent’s neighbors are also collected.
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1. Introduction

There is growing interest in the statistical modeling of network data across a wide range of 

fields: from the study of political coalitions in the social sciences, to protein-protein 

interaction networks in genetics and the spread of infectious diseases in epidemiology. In 
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some cases, it is possible to observe the complete network of interest, but in others the 

network must be sampled. Estimating network models from sampled data raises some 

unique issues. While progress has been made in developing a general framework for 

statistical inference (Handcock and Gile, 2010), there is a need for feasible methods that can 

be used with common network sampling designs in different fields.

In this paper we present a framework for inference from egocentrically sampled network 

data, a network sampling design that is common in the social and population sciences. 

Egocentrically sampled network data contain very limited information about network 

structure: for those individuals in the sample, only information about their immediate 

partners in the network is observed, and even that information is often limited to non-

identifying demographics. The work was motivated by a specific question in the field of HIV 

epidemiology—Does network structure help explain the persistent racial disparities in HIV 

prevalence in the United States?—but it has the potential for wide application given the 

simplicity of collecting egocentrically sampled network data in the population sciences.

The HIV epidemic in the US is now in its third decade. While the rate of transmission has 

dropped, the racial disparities in HIV prevalence have become entrenched. An African 

American today is 10 times more likely than a white American to be living with HIV/AIDS. 

The disparity begins early in life (Morris et al., 2006), and persists through to old age 

(NCHH-STP, 2013), and is evident among all risk groups: heterosexuals, men who have sex 

with men (MSM), and injection drug users. The disproportionate risks faced by heterosexual 

African-American women are especially steep. In 2010, the most recent year for which 

statistics are available (NCHH-STP, 2012), the annual rates of heterosexually acquired 

infections by demographic subgroup were roughly 33, 19, 7 and 1 per 100,000 persons for 

African-American women and men and White women and men, respectively. Similar 

disparities are found among other sexually transmitted infections, both bacterial and viral 

(Morris et al., 2006), and for the older reportable STIs, like gonorrhea and syphilis, they 

stretch back to the earliest reports in the 1960s. (NCDC, 1967)

Empirical studies repeatedly find that these disparities cannot be explained by systematic 

differences in individual behavior, such as higher numbers of partners or rates of injection 

drug use, or lower condom use (Hallfors et al., 2007, for example). Nor have race-linked 

biological differences been identified that could explain disparities across this wide range of 

pathogens. What all of these infections do share, however, is an underlying transmission 

network. This network can channel the spread of infection in the same way that a 

transportation network channels the flow of traffic, with emergent patterns that reflect the 

connectivity of the system, rather than the behavior of any particular element.

A growing body of work is therefore focused on the role that network structure may play in 

explaining these disparities. Descriptive analyses and simulation studies (Laumann et al., 

1992, 1994; Morris, 1993a; Morris and Kretzschmar, 1997) have focused attention on two 

structural features: homophily and concurrency. Homophily is the strong propensity for 

within-group partner selection. It is a common pattern for many social attributes, though not 

all. (For example, most sexual partnerships are cross-sex rather than same-sex.) When 

present, homophily leads to clustered, segregated networks. Concurrency is non-monogamy
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—having partners that overlap in time. While there is a very strong norm of monogamy in 

sexual partnerships, deviations from the norm occur. When present, concurrency increases 

network connectivity by allowing for the emergence of stable network connected 

components larger than dyads (pairs of individuals).

The hypothesis is that these two network properties together can produce the sustained 

HIV/STI prevalence differentials we observe: differences in concurrency between groups are 

the mechanism that generates the prevalence disparity, while homophily is the mechanism 

that sustains it. To test this hypothesis, we need to assess the strength and significance of 

observed concurrency differentials and homophily by race, and to evaluate whether the 

observed network mechanisms predict differentials in network exposure by race and sex that 

are consistent with the differentials in observed HIV prevalence.

Statistical models for social networks, like exponential-family random graph models 

(ERGMs), let us test for these effects, and we can simulate from them to predict network 

exposure; but these models must first be fit to available data that can support broad 

population-level inference. Our main statistical challenge is, therefore, to fit network models 

(ERGMs in particular) to egocentrically sampled data, and to obtain rigorous measures of 

uncertainty of these fits; to do so in a computationally feasible manner, for when the 

population of interest is very large or its size is unknown. We elaborate on these models and 

these data in turn.

1.1. Exponential-family random graph models

Exponential-family random graph models (ERGMs) are a popular and, importantly for us, 

parsimonious, class of stochastic models for graphs in general and for social networks in 

particular. (Frank and Strauss, 1986; Wasserman and Pattison, 1996; Hunter and Handcock, 

2006) An ERGM expresses the probability of an observed graph y as an exponential family:

(1.1)

It is specified by the sample space  of possible networks (configurations of relationships) 

and a sufficient statistic vector g(y, x), which is a function of the whole network y and 

possible covariates x, and whose elements are selected to represent features of the network 

that are of substantive interest or believed relevant to the generative process of the 

relationships in the network (e.g., count of monogamous actors to represent monogamy and 

count of ties within an exogenously defined group to represent homophily); and it is 

parametrized by its vector of natural parameters θ. The normalizing constant κg(θ, x) ≡ 
Σy′∈  exp{θ⊤g(y′, x)} is usually intractable when the choice of g(y, x) induces dependence 

among the relationship states.

Analogously to Prg(·; x, θ), we define Eg(·; x, θ) and varg(·; x, θ), as, respectively, the 

expectation and the variance under this ERGM process; and let μg(θ, x) ≡ Eg{g(Y, x); x, θ}, 

the smooth and invertible (Brown, 1986, Thm. 3.6, for example) mapping from the natural to 

the mean-value parameters of this model; call its inverse θg(μ, x) ≡ (θ s.t. μg(θ; x) = μ).
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Estimating θ facilitates inference about the social forces that shape the network as well as 

principled simulation of complete networks whose features are similar, on average, to those 

of the network observed. In the case of sampled network data in particular, it would allow 

recovering possible full networks from which the sample may have been drawn. Therefore, 

θ is our target of inference.

1.2. Egocentrically sampled data

Network data are distinguished by having two units of analysis: the actors and the links 

between the actors. This gives rise to a range of sampling designs that can be classified into 

two groups: link tracing designs (e.g., snowball and respondent driven sampling) and 

egocentric designs. Much of the recent literature has focused on developing model- or 

design-based inference for link tracing designs. (Thompson and Frank, 2000; Salganik and 

Heckathorn, 2004; Volz and Heckathorn, 2008; Snijders, 2010; Handcock and Gile, 2010; 

Tomas and Gile, 2011; Illenberger and Fltter, 2012; Pattison et al., 2013) Our work focuses 

on the egocentric designs that are more commonly used in the social sciences, but are less 

well developed statistically.

Egocentric network sampling comprises a range of designs developed specifically for the 

collection of network data in social science survey research. The design is (ideally) based on 

a probability sample of respondents (“egos”) who, via interview, are asked to nominate a list 

of persons (“alters”) with whom they have a specific type of relationship (“tie”), and then 

asked to provide information on the characteristics of the alters and/or the ties. The alters are 

not directly observed. Depending on the study design, alters may or may not be uniquely 

identifiable, and respondents may or may not be asked to provide information on one or 

more ties among alters (the “alter” matrices). Alters can, in theory, also be present in the 

data as an ego or as an alter of a different ego; the likelihood of this depends on the sampling 

fraction and the network’s topology.

In this work, we focus on the minimal egocentric network study design, in which alters 

cannot be uniquely identified and alter matrices are not collected. The minimal design is 

more common, and the data are more widely available, for three reasons.

Confidentiality and alter identification—If the relationship of interest is sensitive, 

requiring full identification of the alters is likely to reduce respondent disclosure, and 

knowledge of alter–alter ties by the respondent may be unreliable. In addition, Institutional 

Review Boards often forbid the collection of identifiable data about the alters, as the alters 

have not given informed consent for their personal information to be collected. The minimal 

egocentric design allows for representative data to be collected in such contexts, with less 

intrusion and full consent. In public health research on HIV and other STIs, for example, 

egocentric study designs make it possible to conduct empirical research on how individual 

sexual behavior influences the population structure of infection transmission networks. 

There is a growing international archive of public data from such studies, with comparable 

surveys now available from over 50 different countries as far back as the early 1990s 

(MEASURE DHS, 2000–2014; Tanfer, 1991; Laumann et al., 1992; Udry, 2003; NSFG, 

2002, 2006–2011, for example).
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Time cost of alter matrix collection—The number of potential alter–alter ties grows 

quadratically with the number of alters nominated by the ego, quickly making data 

collection burdensome for the respondent, and difficult to justify in surveys that must serve 

multiple needs. As a result, even the less sensitive forms of social network data tend to be 

collected using the minimal egocentric design. Perhaps the best known example is the 

egocentric friendship network data collected annually by the General Social Survey since 

1985 (Burt, 1984), which was used in the landmark study of the decline in American 

friendship and social support networks as described in Bowling Alone (Putnam, 2000).

Compatibility with established methods for survey sampling for population-
based inference—While in theory, the “seed nodes” for a link-traced sample could be 

chosen at random from the population of interest, the real strength of these designs is the 

ability to sample from hidden or inaccessible populations, where no sampling frame is 

available, and this is the application context in which they are most often used. Egocentric 

designs, by contrast, sample egos using standard sampling methods, and the sampling of 

links is implemented through the survey instrument. As a result, these methods are easily 

integrated into population-based surveys, and, as we show below, inherit many of the 

inferential benefits.

This sampling design has immediate implications for the scope of models that can be fit. For 

example, lack of information on alter–alter ties means that triadic (friend-of-a-friend) effects 

are not identifiable, and the lack of information on alter degree means that degree 
assortativity (a correlation between degrees of linked actors) (Gupta et al., 1989) also cannot 

be identified. These limitations must be kept in mind when drawing inferences, but they are 

not likely to undermine the specific inferences we draw here. Further discussion can be 

found in Section 8.2.

Despite the widespread availability of the minimal egocentrically sampled network data, 

statistical methods for analyzing them are still relatively undeveloped. Early work focused 

on descriptive methods for analyzing “mixing matrices”, cross-tabulations of ego–alter 

dyads by actor attributes (Marsden, 1981; Morris, 1991), or bivariate associations between 

ego attributes and alter summary statistics (Marsden, 1987; Admiraal, 2009). van Duijn, van 

Busschbach, and Snijders (1999) used a multilevel (mixed effects) model to analyze factors 

affecting changes over time in such networks based on repeated observations on same 

relations over time, and conditioning on the initial time point’s relationships. More recent 

work has focused on the key topic of recovering whole network attributes from egocentric 

data (Gjoka, Smith, and Butts, 2014b, e.g., clique size distributions), but does not provide a 

framework for inference.

Handcock and Gile (2010) established a general framework for model-based inference for 

networks based on sampled data that allows for egocentrically sampled data as a special 

case: when only dyads incident on those in the sample are observed (Koskinen, Robins, and 

Pattison (2010) developed a similar approach in a Bayesian framework.) Unfortunately, their 

likelihood approach is infeasible for our problem for three reasons. First, it requires fitting 

an ERGM to a network of the size equal to that of the population from which the egos were 

sampled, which is, often, on the order of millions, and possibly unknown. Second, it 
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assumes uniquely identified alters: one can identify when one ego nominates another ego 

and when two egos nominate the same alter. For most egocentrically sampled data 

(including all of the studies cited above), alters are not identified. Although a likelihood can 

be derived for this case too, it requires integration over the space of networks that produce 

exactly the observed dataset—a more complex constraint. Third, if the data come from a 

complex (even just weighted) design, ignorability of the sampling process might not hold, 

requiring nested integration over the sampling process as well.

Krivitsky, Handcock, and Morris (2011) described how the sufficient statistic needed to fit 

certain ERGMs may be derived from egocentrically sampled data and used to simulate 

networks consistent with egocentric observations. This approach has been used in applied 

contexts (Morris et al., 2009; Goodreau et al., 2010; Smith, 2012). What remains lacking, 

however, is a general, rigorous framework for ERGM inference for such data, and we turn to 

the pseudo-MLE (PMLE)1 (Binder, 1983; Pfeffermann, 1993, for example) approach to do 

this.

Outline—The rest of the article proceeds as follows. In Section 2, we describe the notation 

and the sampling framework for egocentrically sampled network data, and in Section 3, we 

specify an ERGM subfamily amenable to being fit to such data. The pseudo-MLE of θ—

calculated by obtaining a design-based estimator of the ERGM sufficient statistic of the 

network of interest and fitting the ERGM to that—and its asymptotic properties are derived 

in Section 4, along with a method for quantifying its uncertainty. An overview of 

implementation issues and of a validating simulation study are given in Sections 5 and 6, 

respectively, with the details left to the supplemental article (Krivitsky and Morris, 2016). 

Finally, in Section 7, we apply our developments to the question of the impact of network 

structure on persistent racial disparities in HIV prevalence in the US.

2. Notation and sampling

Let N be the population being studied: a very large, but finite, set of actors whose relations 

are of interest, and let xi be a vector of attributes (e.g., age, sex, race) of an actor i ∈ N, with 

xN (or just x, when there is no ambiguity) being the attributes of actors in N. Let (N) ≡ {{i, 
j}: (i, j) ∈ N × N ∧ i ≠ j} (distinct unordered pairs of actors) be the set of dyads (potential 

ties) in an undirected network of these actors. Then, let (N, x) ⊆ 2 (N) (set of subsets of 

potential ties) be the set of networks (sets of ties) of interest. (·, ·) may incorporate 

exogenous constraints, which we discuss in Section 3.2. For a network y ∈ (N, x), let yi,j ≡ 
yj,i be an indicator function of whether a tie between i and j is present in y and yi = {j ∈ N: 
yi,j = 1}, the set of i’s network neighbors.

Throughout, y will refer to what we will call the population network: a fixed but unknown 

network of relationships of interest.

1This is not to be confused with the maximum pseudolikelihood estimation (MPLE) of Strauss and Ikeda (1990), the technique for 
approximating the MLE for an intractable likelihood for fully observed networks. We do not make direct use of it in this work.
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2.1. Egocentric data

Now, let ei be the “egocentric” view of network y from the point of view of actor i (“ego”). It 

comprises : i’s own attributes, and : an unordered list (technically, a 

multiset) of attribute vectors of i’s immediate neighbors (“alters”), but not their identities 

(indices in N). For convenience, we refer to the kth attribute/covariate observed on ego i and 

its alters as  and .

Then, (ei)i∈N (eN for short) represents the egocentric census, the information retained by the 

minimal egocentric sampling design discussed in Section 1.2. The information about y 
contained in an egocentric sample of actors S ⊆ N can then be represented as eS ≡ (ei)i∈S.

2.2. Sampling design considerations

In the following developments, we will assume that egocentric observations are sampled 

using a conventional sampling design, with N as the sampling frame, though as we discuss 

in Section 5, this is not critical in practice. The proposed methods can be applied to more 

complex—stratified, for example—designs, but here, we focus on simple probability 

designs, and designs that can be approximated with simple probability designs. Specifically, 

let inclusion probabilities πi ≡ Pr(i ∈ S), for i ∈ N, and assume that a weight  is 

observed for each ego i ∈ S, but only up to proportion: Σi∈N wi is not known. In our 

application, in particular, wS incorporate both stratification for oversampling and post-

stratification to account for missing reports, making inclusion probabilities πi difficult to 

obtain.

Analogously to the ERGM process, we will use ES(·) and varS(·) to refer to the expectation 

and the variance under the sampling process.

3. Egocentric ERGMs

Even if the whole population is observed (i.e., S = N, a census), not every ERGM can be fit 

to such data, and we turn to the notion of sufficiency to identify those that can. Define an 

ERGM of the form (1.1) to be egocentric if both its sufficient statistic and its sample space 

constraints (if any) can be recovered from an egocentric census. We discuss them in turn.

3.1. Egocentric statistics

We call a network statistic gk(·, ·) egocentric if it can be expressed as

(3.1)

for some function hk(·) of egocentric information associated with a single actor. For the 

egocentric observations ei of the form defined in Section 2.1, the space of egocentric 

statistics includes dyadic-independent (Hunter et al., 2008b) statistics that can be expressed 

in the general form of gk(y, x) = Σ(i,j)∈y fk(xi, xj) for some symmetric function fk(·, ·) of two 

actors’ attributes; and some dyadic-dependent statistics that can be expressed as gk(y, x) = 
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Σi∈N fk{xi, (xj)j∈yi} for some function fk(·, ···) of the attributes of an actor and their network 

neighbors. Table 1 gives their representations in terms of of hk(·), along with some 

examples. Such egocentric statistics induce at most Markov graph dependence (Frank and 

Strauss, 1986) and are local by the definition of Krivitsky et al. (2011).

As one might expect from the discussion in Section 1.2, statistics measuring triadic closure, 

degree assortativity, and 4-cycles are not egocentric under this sample design. However, 

some of them (and thus the ERGMs that use them) may be egocentric under different 

egocentric sampling designs, which we discuss in Section 8.2.

Other statistics that are not egocentric include the average number of neighbors of an actor

—gk(y, x) = 2|y|/|N|—because the corresponding  depends on the 

network size, which is information not contained in ei. (That is, an individual cannot see 

exactly how big the network of interest is.) The latter are thus not local by the definition of 

Krivitsky et al. (2011). (This does not mean that the mean degree parameter itself cannot be 

estimated from egocentric data, only that our inferential results might not apply.)

3.2. Egocentric sample space constraints

We call the sample space (·, ·) of an ERGM egocentric if it can be expressed as

for some indicator function ℋ(·) that depends only on egocentric information associated 

with a single actor. For example,  would constrain y ∈ (N, x) so that no 

actor has more than d ties; and, given a binary actor attribute xi,k (e.g., sex), 

 would force all of the ties to be between groups defined by xi,k, 

modeling a bipartite network (if, say, the focus were on heterosexual partnerships).

For the remainder of this paper, we will fix ℋ(ei) = 1 so that (N, x) = 2 (N): our data 

include same-sex ties, and statistics g(·, ·) with free parameters can be used to model the 

above-described features more flexibly. Also, hard constraints are less well understood, and 

techniques such as network size adjustment needed for the computational approach 

described in Section 5.2 have not been developed for even the simpler ones.

4. Inference

Our inferential goal is to fit ERGMs to unobserved networks based on egocentric samples 

from them: to recover the parameters that would have been estimated had an ERGM been fit 

to fully observed y. Because y and x are fixed, we will drop them from g(y, x) (i.e., g) and 

others from now on, unless it is to emphasize the dependence.

Most treatments of ERGM estimation treat θ as a parameter of a superpopulation process of 

which y is a single realization; and the maximum likelihood estimator (MLE) θ̂ is obtained 

by solving the score equation
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(4.1)

which has a unique solution θ̂ = θg{g(y)}. When the likelihood contains an intractable 

normalizing constant κg(·) (which also makes μg(·) and θg(·) intractable), Monte-Carlo 

Maximum Likelihood Estimation (MCMLE) techniques of Geyer and Thompson (1992), as 

applied to ERGMs by Hunter and Handcock (2006), can be used. The variance of θ̂ is then 

typically estimated by the inverse of the simulated negative Hessian of the log-likelihood.

In contrast, we treat θ as a finite population parameter, defined implicitly for the unobserved 

population network y as the solution to (4.1). The inverse-negative-Hessian is not the correct 

variance for this estimation problem: whereas it reflects, loosely, the uncertainty in estimates 

due to the stochasticity of the generative process for the network’s ties, we treat the network 

as a fixed, unknown, finite population, so it is not a source of uncertainty in the first place. 

Rather, uncertainty comes from having to estimate g from an egocentric sample eS. Indeed, 

if S = N, (3.1) gives g exactly, so varS(θ̂) = 0. (We do address the superpopulation case in 

Section 8.3.)

Our inferential approach is, therefore, to obtain an estimator for g based on the available 

data, then substitute it into (4.1), solving it to obtain a pseudo-MLE θ̃. We derive it, and its 

properties, as follows.

4.1. Pseudo maximum likelihood estimation

Following Binder (1983), substituting (3.1) into (4.1) gives a score equation of the form of 

Binder’s eq. 2.6. Binder’s Assumptions (a), (c), and (d) (open parameter space, smoothness, 

and continuity of variance, respectively) are guaranteed by finite exponential family 

proprieties of ERGMs. Assumption (b) calls for an asymptotically normal estimator of the 

population total g and a consistent estimator of its variance. We treat them in turn.

A consistent, asymptotically normal estimator for g—For our design, we use the 

inverse-probability weighted estimator (Hájek estimator) scaled to the population size. 

(Hájek, 1971) With y, x, and therefore g being fixed, and letting ,

(4.2)

is a design-consistent—if slightly biased—estimator of h̄ ≡ g/|N|, the population mean 

contribution of each actor to the sufficient statistic. (Fuller, 2011, p. 61) Scaling it to the 

population size, g̃(eS) ≡ |N|h̃(eS) is then a design-consistent estimator for the population 

network statistic g. Provided the joint distribution of [wi, wih(ei)] under the sampling 

process in Section 2.2 is not degenerate and the fourth moments of wi and h(ei) are finite, 

Fuller (2011, Thm. 1.3.8, pp. 58–61) gives
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where

(4.3)

with μw ≡ ES(wi), the expected sampling weight, and

A consistent estimator for ΣH—Provided the fourth moments of wi and h(ei) are finite, 

by the Weak Law of Large Numbers, the sample variance  consistently 

estimates Σ[w,wh], h̃(eS) consistently estimates h̄, and w̄ ≡ w·/|S| consistently estimates μw. 

Substituting them into (4.3) gives such an estimator; call it Σ̃H.

Then, the PMLE θ̃ = θg{g̃(eS)} solving  is a consistent, 

asymptotically normal estimator of θ (Binder, 1983):

(4.4)

Notably, θg{g̃(eS)} is defined for every g̃(eS) in the convex hull of g( ; x) (the set of 

sufficient statistics attainable in the model’s sample space), so θ̃ is defined even when, say, 

g̃(eS) estimates a fractional number for a network statistic that is a count (like |y|), and 

MCMLE can be used in this situation without modification. (Hummel, Hunter, and 

Handcock, 2012)

4.2. Variance estimation

In addition to the estimator for ΣH, the variance in (4.4) calls for an estimator of ∇θμg(θ). In 

practice, it can be approximated by ∇θμg(θ̃), which can be estimated as a byproduct of the 

likelihood maximization using MCMLE (e.g., Hunter and Handcock, 2006, eq. 3.5): for a 

minimal exponential family, ∇θμg(θ) = −Eg{∇θ sc(θ); θ} = Eg{sc(θ) sc(θ)⊤; θ} = 

varg{g(Y ); θ}, so ∇θμg(θ) can be approximated by the sample variance–covariance matrix 

of g(Y) simulated at θ̃. That is,

(4.5)
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an estimator of the form of Binder (1983, eq. 3.4).

5. Implementation

Section 4 leads to the following procedure:

1. Estimate the sufficient statistic of the ERGM with g̃(eS).

2. Obtain θ̃, using MCMLE to solve .

3. As a byproduct of Step 2, obtain .

4. Estimate varS(θ̃) as described in Section 4.2.

For the simulation study and the analysis that follow, we use, mainly, the R (R Core Team, 

2013) package ergm (Hunter et al., 2008b; Handcock et al., 2014) for fitting and simulating 

from ERGMs. The extensions to fit ERGMs to egocentrically sampled data have been 

implemented in a new R package, ergm.ego, under development for public release. We also 

use the R package sna (Butts, 2008) to calculate network connected component sizes.

Some additional implementation challenges arise as well.

5.1. Reconstructing xN from sampled data

Formally, our procedure depends on x being observed completely (i.e., a census), or, at least, 

its distribution being known to a very high degree of accuracy. Step 2’s MCMLE, in 

particular, requires sampling over the space of possible population networks, conditional on 

all actor attributes, and its implementation requires constructing a network having actor 

attributes xN, which is unobserved. While this may seem like a major obstacle, in practice it 

is not: for i ∈ S, xi are observed directly, and for the remainder, only a distribution of x is 

needed: actors having the same xi are interchangeable.

Therefore, in the analyses performed here, we use the design-based estimator of the finite-

population distribution of xN: we replicate each xi for i ∈ S as close to |N|wi/w· times as 

possible. This has consequences, which we illustrate in the simulation study in Section 6 and 

the supplemental article (Krivitsky and Morris, 2016, App. B).

5.2. Scalable estimation

The procedure also calls for fitting an ERGM to a network of size |N|. While possible in 

principle, this is often a computationally infeasible task. For example, the “population” of 

the NHSLS study we consider below is all individuals aged 18 through 59 and living in the 

US at the time of the study (1992)—hundreds of millions—and naively fitting an ERGM to 

a smaller subnetwork is unlikely to produce meaningful estimates due to non-projectivity of 

ERGMs with dyadic dependence (Shalizi and Rinaldo, 2013). We work around this using 

the network-size-invariant parametrization of Krivitsky et al. (2011): by adding an offset 

term, some ERGMs can be adjusted so that fitting them to networks having similar structure 

and composition but different sizes produces the same parameter estimates. We thus 

construct a “scaled-down” pseudopopulation of interest, N′, and fit the adjusted model to it, 

thus approximating the θ̃ that would have been obtained by fitting to the full N. This 
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adjustment is not applicable to every network feature of every possible ERGM, but its 

applicability to a given model can be verified by simulation. Further details are given in the 

supplemental article (Krivitsky and Morris, 2016, App. A).

Thus, using the network-size-invariant parametrization, and estimating xN from xS, the 

procedure does not require any information not in eS.

6. A simulation study

To evaluate the properties of our estimators we performed a simulation study, constructing a 

large population network with known ERGM parameters and simulating egocentric samples 

from it, using two sampling designs: unweighted and weighted. The sampling weights have 

a range similar to the NHSLS, oversample some groups of actors (A and C), and are 

correlated with a continuous covariate used in the model (xi,2). For each sample, we 

calculated point estimates and standard errors in order to assess their accuracy and the 

coverage of Wald confidence intervals. Details and full results are given in the supplemental 

article (Krivitsky and Morris, 2016, App. B).

Selected bias and coverage results for sample size |S| = 1,000 are shown in Figure 1. The 

unweighted sampling estimates display some bias, though it does not appear to have a 

systematic pattern as a function of |N′| or model term. None of the estimated biases are 

greater than 10% of the standard deviation of θ̃ under repeated sampling; that is, bias 

accounts for less than 1% of the mean squared error (MSE) of the estimator.

The weighted sampling estimators are, as one would expect, highly biased for smaller |N′|. 

For the largest |N′|, the bias tends to approach that of the unweighted, and the most biased 

parameter’s (Difference in x·,2) bias is less than 20% of its standard deviation (≈ 4% of 

MSE). A possible reason why it is the most biased is that egos with small xi,2 are by design 

severely undersampled, which means that there will exist many samples where the full range 

of x·,2 is not represented. This is likely to be less problematic in real-world applications like 

the analysis in Section 7, where continuous covariates (like age) have an explicit range of 

interest.

Overall, we found the standard errors for both weightings to be conservative, overestimating 

the simulated standard deviation by between 1% and 20% (in a few cases). The resulting 

confidence interval coverage is consistent with these observations: for almost all terms, the 

intervals are somewhat conservative for both sampling designs (given sufficient |N′|).

We replicated the study for |S| = 2,000, and found that the biases decrease (both absolutely, 

and relative to their standard deviation, which is, itself, smaller), and the standard errors 

became more accurate as well. The coverage remains somewhat conservative. (Krivitsky and 

Morris, 2016, App. B.2)

This study demonstrates parameter recovery for when the egocentric ERGM on observed 

actor attributes is the “true” model (though dropping the assumption that the whole xN is 

observed). We discuss the issue of model misspecification in Section 8.2.
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7. Understanding persistent racial disparities in HIV prevalence in the US

We now return to our motivating questions: 1) How strong is the race homophily in the the 

population? 2) Are there differences in the propensity towards monogamy and concurrency 

for the races and the sexes? And, 3) What impact do these network features have on overall 

network connectivity and differentials in network exposure by race and sex?

7.1. Data

The National Health and Social Life Survey (NHSLS) of 1992 (Laumann et al., 1992, 1994) 

was undertaken at the start of the AIDS epidemic in the US. The objectives of the study 

included obtaining the data on sexual behavior necessary to predict the long term trajectory 

of HIV and AIDS prevalence, and to understand the disparities in HIV prevalence by race 

that had already begun to emerge. The survey collected, among other information, a 

representative egocentric sample of sexual partnerships of a stratified sample of residents of 

the US aged 18–59 (inclusive). A rich set of socio-demographic attributes was collected, 

including the respondent’s age, sex, race/ethnicity, and respondents were asked for similar 

information about all of their sexual partners from the previous twelve months.

For this analysis, we focus on modeling the cross-sectional network of ongoing sexual 

partnerships of persons aged 18–59. Some reported partners were outside this age range, and 

a small number of respondents had turned 60 by the time they were interviewed. We exclude 

these partnerships and persons, as well as those with missing data on the necessary attributes 

(race, sex, and age, for both ego and alter). More appropriate handling of missing actor data 

in egocentrically sampled networks is subject for future research. These exclusions lead to 

dropping 75 egos and 215 alters, leaving 3,357 egos and 2,555 alters in the sample for 

analysis. The ego degree distribution for the analytic sample was not significantly different 

from the full sample.

The NHSLS study used a stratified multistage cluster sample, with oversampling of Black 

households. The public dataset includes weights that account for both stratification and 

attribute-based non-response, so we approximate the design by an independent weighted 

sample.

7.2. Methods and models

We divide the respondents into three racial/ethnic categories: White, Black, and Other. 

While the primary contrast of interest here is between Whites and Blacks, a non-negligible 

fraction of egos reported other identifications for themselves and their alters. These cannot 

be dropped in a network analysis, as they can serve as connecting elements that influence the 

measures of interest.

Homophily is operationalized as an edge covariate, and is defined as concordance in actor 

attributes in a partnership, as reported by ego. We focus on homophily by sex and race in 

this analysis, allowing for differential homophily by race. Concurrency is operationalized at 

the actor level, and is defined as actor degree greater than 1. For modeling purposes, we fit a 

monogamy term to capture these effects, defined as actor degree equal to 1, again allowing 
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for group-specific propensities for monogamy. This produces more stable estimates, 

especially for smaller groups with very low rates of reported concurrency.

We fit a sequence of nested models to test the network hypothesis for the racial disparities in 

HIV prevalence. Model 1 serves as a baseline, fitting the observed mean degree for each sex 

by race, as well as the prevalence of heterosexual mixing. It has terms for the main effects 

for each sex and each race, and a homophily term for sex. Since this is a largely heterosexual 

population, we expect the sex homophily term will be strongly negative, but same-sex 

partnerships are not precluded. This model assumes partners are selected at random with 

respect to race, and there is no propensity for monogamy in sexual partnerships. Model 2 
tests homophily by race by adding a term for each race to capture the prevalence of within-

group mixing. We expect these terms to be large and positive. Model 3 tests heterogeneities 

in the propensity for monogamy by adding a term for each sex by race to capture the 

prevalence of persons with exactly one partner. We expect these terms to be positive, given 

the strong norm of monogamy in sexual partnerships, but we also expect there to be 

significant differences by race and sex. Since the group-specific mean degrees have been fit 

by the baseline terms, lower coefficient values on the monogamy terms will imply higher 

prevalence of concurrent partners.

We evaluate the goodness of fit of each model using the following criteria:

Reproducing observed degree distributions—We compare the observed degree 

distribution to 100 realizations of complete networks from each specified model. In 

principle, we can evaluate the goodness of fit to any egocentric statistics that are not already 

in the model, following the general approach of Hunter, Goodreau, and Handcock (2008a). 

We choose the degree distribution because it is a primary determinant of network 

connectivity. A model that does not fit the degree distribution well is unlikely to produce the 

unobserved network connectivity that we wish to infer.

Reproducing whole network patterns consistent with observed HIV incidence
—We simulate complete networks from the fitted models, which allows us to evaluate 

whether the micro-level processes specified by each model produce non-egocentric macro-

level outcomes (network connectivity and exposure) that are consistent with observed 

epidemiological data. We measure overall network connectivity using the connected 

component size distribution. The propensity for monogamy in Model 3 is expected to 

increase the number of components of size 2 (mutual monogamy) and decrease the number 

and size of the larger components. We measure network exposure at the actor level, using the 

probability of membership in components of size 3 or greater. This represents the risk of 

indirect exposure: an actor with only one partner will have little direct exposure, but by 

virtue of the network she or he may still be exposed to her or his partner’s other partner(s) 

and beyond. Under the network hypothesis, only Model 3 is expected to produce 

differentials in network risk exposure that are consistent with the observed disparities in HIV 

incidence.

Robustness of conclusions to additional predictors—The models we consider are, 

of course, not intended to be complete specifications of the network process, as they exclude 
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many factors that are known to influence sexual behavior and partner selection. For our 

purposes, the question is whether our results are robust to the inclusion of these factors, 

which would depend on whether the factors are correlated to race and sex, or interact with 

them in relevant ways. A good example to consider is age, as it influences both degree and 

partner selection patterns, and we examine its effects by adding to Model 3 terms to capture 

the impact of age on both degree distribution and partner selection. If the addition of these 

terms renders the monogamy-bias or homophily terms nonsignificant, it would suggest that 

there is an age mechanism that underlies these biases, and the marginal impacts in Model 3 
are due to differences in age composition by race.

The population network would have had |N| ≈ 147 million persons (Population Estimates 

Program, 2001), so we take advantage of the scaled-down approach mentioned in Section 

5.2. Based on reasoning detailed in the supplemental article (Krivitsky and Morris, 2016, 

App. C.1), we select, conservatively, |N′| ≈ 45,000 ≈ 13.4 × |S|, or 44,859 after rounding the 

scaled sampling weights. This network size is also used in the simulation results we report. 

Notably, this may be overly conservative in practice: we obtained very similar results in a 

pilot analysis using |N′| ≈ 15,000.

Verification of the assumption that our models are amenable to network-size- invariant 

parametrization is given in the supplemental article (Krivitsky and Morris, 2016, App. C.4).

7.3. Results

We report the model fits in Table 2. Model 1 results are consistent with expectations. There 

is a significant and strong propensity for heterosexual ties, and a slightly higher mean degree 

for men than women. There are no significant differences in mean degree by race. In Model 
2, the results are consistent with the network hypothesis: all of the race homophily terms are 

large and significant. In Model 3, the results are again consistent with the hypothesis: there 

is a strong propensity for monogamy in all groups, but the propensity is relatively higher 

among White men and women. The difference between Whites and Blacks is significant for 

men (contrast diff. = 1.17, s.e. = 0.32, P-value < 0.001), but not for women (diff. = 0.45, s.e. 

= 0.51, P-value > 0.3). Women have higher rates of monogamy than men in all groups, 

especially among Blacks, but these differences are not statistically significant.

The goodness of fit for each model is shown in Figure 2a. The first two models do a very 

poor job fitting the observed degree distribution: both underestimate the fraction of persons 

with only one partner and overestimate both the fraction with no partner, and more than one 

partner. The data clearly indicate a strong propensity for monogamy, and Model 3 captures 

this well. Because there are race and sex-specific monogamy terms in Model 3, it provides a 

good fit for all groups. (A more detailed breakdown and discussion are given in the 

supplemental article (Krivitsky and Morris, 2016, App. C.2).)

The overall network connectivity predicted by each model can be seen in Figure 2b. The plot 

shows the distribution of component sizes produced by each model. The first two models 

are, again, similar: both predict that about three quarters of the components are size 1 

(isolated actors), and the ties distributed to the remaining actors produce components with 

sizes that can reach 100 or more. By contrast, Model 3 predicts that the modal component is 
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size 2 (mutual monogamy), that only about 20% of the actors are isolates, and the maximum 

component size attained in the 100 simulated realizations has fallen to only 6. Monogamy 

thus has the expected effect: it dramatically reduces the connectivity in the overall network.

The differential network risk exposure by race and sex predicted by each model can be seen 

in Figure 2c. This plot shows the group-specific distributions of the probability of belonging 

to a component of size 3 or more for each model. Models 1 and 2 produce very similar 

results: overall network exposure probabilities are about 40%, and the race-specific 

differences are small, with lower probabilities of exposure predicted for Blacks than Whites. 

Since lower probabilities of exposure imply lower transmission risks, this pattern is the 

opposite of what we expect given the HIV/STI prevalence disparities. Adding the differential 

monogamy terms in Model 3 reverses the predicted network exposure risk differentials for 

both sexes, producing a pattern that is consistent with the observed racial disparities in 

HIV/STI prevalence, and consistent with the network hypothesis.

Note that within each racial group, women are more likely than men to be in components of 

size 3 or more. This is because 3 is by far the most common component size predicted 

among those not mutually monogamous (≈ 80%, as seen in Figure 2b), and coupled with the 

higher rates of concurrency among men than women this means that these components 

typically comprise 1 man and 2 women. This a good example of the somewhat 

counterintuitive logic of network exposure in infectious diseases: your exposure is not just a 

function of your own behavior, but also a function of your partner’s. In countries with 

generalized heterosexual HIV epidemics, such as those in sub-Saharan Africa, concurrency 

is similarly gendered, and women’s HIV prevalence is typically much higher then men’s 

(40% higher across this particular region (UNAIDS, 2014)).

Model 3 is clearly the best fit, and it predicts network exposure risks that are consistent with 

the observed disparities in HIV prevalence by race and sex. Per Section 7.2, we augmented it 

with several age-related terms. The results, given in the supplemental article (Krivitsky and 

Morris, 2016, App. C.3), are that age effects are generally significant, but that the key 

homophily and monogamy-bias results reported for Model 3 are robust.

8. Discussion

There are many challenges in developing rigorous inference for ERGM estimates from 

egocentrically sampled network data: the stochastic dependence in networks can be 

complex, the information present in an egocentric sample is limited, and the use of the data 

is often secondary. We have proposed a technique to conduct statistically valid ERGM 

inference under these conditions, using pseudo-maximum-likelihood estimation and 

exploiting exponential family proprieties. This makes it possible to estimate the parameters 

of a class of statistical models defined by the structural properties of a network that can be 

observed from an egocentric sample, test hypotheses of interest, assess goodness of fit, and 

conduct principled simulation from a superpopulation of networks having properties similar 

to those observed. By making use of a network-size-invariant parametrization for the 

ERGMs of interest, this can be done even when the target population is very large or even 
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unknown. The result is a general statistical framework for leveraging whole network 

information from an efficient minimal sampling design.

As with all inferential frameworks, ours rests on a set of approximations and assumptions, 

and comes with limitations, some of which may be addressed in future research:

8.1. Data considerations

x is sampled—Per Section 5.1, we had constructed xN′ by extrapolating from the sample, 

but we did not take this into account in our inference. Our simulation study suggests that the 

inference is still valid (conservative, in fact), but this issue can be addressed more rigorously. 

Recall that we only require the joint distribution of xN\S, not their individual values. 

Fortunately, the distribution for demographic attributes such as sex, age, ethnicity, and 

geographic location is often known to a very high degree of precision—from a national 

census, for example; and it could be used to construct an xN′ with virtually no sampling 

variation. In fact, the weights in the NHSLS data in Section 7 had been calculated through 

post-stratification to reflect the population, so, in our analysis, this had already been done for 

us.

Alternatively, uncertainty from x being sampled may be incorporated into the inferential 

procedure: in particular, Fellows and Handcock (2012) propose an exponential-family model 

for jointly modeling actor attributes and ties. Provided the sufficient statistic associated with 

actor attributes could be recovered from egocentric data, our results should be applicable.

Stratified and cluster sampling—We approximated the sampling design of the NHSLS 

study with that of Section 2.2: a simple probability sample. A more accurate estimate of 

varS(θ̃) could be obtained by substituting into (4.5) an estimate of varS{h̃(eS)} that better 

reflects the design than Σ̃H/|S| does. And, for small N, finite-population correction can be 

used.

Measurement error—In our application, we assumed that the responses were accurate: 

that, for example, the male respondents did not overreport their partnerships and female 

respondents did not underreport. While the discrepancy in the number of lifetime partners 

reported by men and women is well-established in the literature (Morris, 1993b), the 

magnitude of the discrepancy declines with the length of the recall period (Hamilton and 

Morris, 2010). In the NHSLS data used here, there is almost perfect correspondence 

between the weighted total number of ongoing heterosexual partnerships reported by women 

and men (1366 and 1388, respectively), which suggests some internal validity to the reports.

8.2. Model considerations

Misspecification—The potential for model misspecification is particularly serious for 

egocentric inference. This is not because of the inferential approach as such: our asymptotic 

results guarantee that for an egocentric ERGM, the PMLE (say, θ̃E) consistently estimates 

the parameters (θE) that would have been obtained had the same model been fit to the full 

population network, with variability of θ̃E under repeated sampling accurately quantified. 

Rather, this is because of how the data limit the scope of the models that can be estimated: 
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even where the “true” model specification is known and is an ERGM (say, with coefficients 

θT), it might not be estimable (identifiable) with the available data. Therefore, the question 

about the impact of misspecification in egocentric inference reduces to the question of 

whether substantive conclusions drawn based on the coefficients in θE are different from 

those that would be drawn from the corresponding coefficients of θT, were it estimable.

While assessing general misspecification through traditional goodness-of-fit approaches is 

uniquely challenging in the context of egocentric data constraints, it is still possible to assess 

some aspects of model specification this way, as we have done in Section 7.2. Others can be 

tested by validating model predictions against specific hypotheses, for example, 

demonstrating that the disparities in network exposure predicted by the model are consistent 

with the observed disparities in HIV prevalence only when both of the hypothesized network 

features (homophily and monogamy bias) are included. But, this still leaves open the 

question of whether unobserved higher-order (such as triadic or degree-assortative) effects 

significantly influence the overall network structure, and potentially alter the impacts of the 

observed network features on the outcomes of interest.

In general, the potential impact of specific unobserved features could be examined through 

simulation. One could construct or simulate networks whose egocentric statistics match 

those inferred from the data but which also possess the specific hypothesized higher-order 

properties, such as more transitivity than predicted by simulating from θ̃E obtained from the 

egocentric submodel alone. Estimating the “true” MLE θT̂ and the egocentric submodel’s 

MLE θÊ (≈ θẼ, by construction) based on these networks and comparing their common 

elements should provide information about what biases may have been introduced by 

omitting the higher-order terms.

In our application, we did not use simulation to address this question, because the specific 

alternative hypothesized network effects in this case can be assessed more directly. For 

example, one might wish to consider how unobserved triadic effects or degree-based mixing 

might influence the conclusions we have drawn. Both effects would clearly influence the 

overall network structure in ways that might alter the spread of an infectious disease—

positive/negative triadic effects might cluster/disseminate prevalence, and assortative/

disassortative degree-based mixing would have similar effects. But, both of these are also 

examples of network configurations that can be produced by other mechanisms that, in our 

case, are observable in egocentric data. In particular, a triangle would have to contain at least 

one tie between nodes of the same sex. Given the very low prevalence of same-sex sexual 

ties observed in our population level data, the potential for triangles is very limited, and our 

models capture this through negative sex homophily even if the data preclude us from 

identifying specific triadic biases (positive or negative) beyond that. Similarly, one of the 

most striking features of the HIV prevalence disparities in this application is the lack of 

correlation with observed activity levels (degree). This would be predicted by degree-

disassortative mixing, which we cannot observe in egocentric data. However, we do observe 

and model a mechanism that would produce degree-disassortative configurations: the 

systematically higher monogamy bias among women, combined with disassortative mixing 

on sex. In both cases, therefore, we are producing strucural configurations—that we cannot 
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directly observe—by representing mechanisms that are well grounded in the science, 

observable, and statistically testable.

In other application settings, where explicitly triadic mechanisms may be at work, friendship 

networks where such triadic mechanisms can be empirically distinguished from homophily 

(Goodreau et al., 2009, in particular), suggest that misspecification bias is a bigger problem 

for estimates of triadic effects than estimates of homophily. That is, unaccounted-for 

homophily can lead to upward bias in the triadic closure coefficients, but the converse does 

not hold: unaccounted-for triadic closure does not appear to affect homophily coefficients 

substantively, and certainly not to the point of, e.g., turning assortative into disassortative 

mixing or vice versa. Whether this is a general property of the model, or an empirical feature 

of social networks, is a topic for future research.

One may also be interested in considering potential confounders for the effect of race on the 

observed racial homophily: for example, homophily on socioeconomic status and residential 

segregation may both play a role, and (in the United States) both are associated with race 

and ethnicity. However, this would not alter the main finding that racial homophily 

contributes to HIV prevalence disparities by race: from the pathogen’s point of view, it does 

not matter why a particular group structure has emerged, only that it has.

Ultimately, the underlying generative process for the network is outside of the scope of 

models that we consider for other reasons as well. (Airoldi, Blei, Fienberg, Goldenberg, 

Xing, and Zheng, 2008, Panel Discussion) The model we consider here is a model only for 

the static relations, but the underlying process is dynamic. Representing these dynamics 

would require models for tie formation and dissolution (Krivitsky and Handcock, 2014), and 

may also require models for random nodal attributes, nodal entry and exit (Airoldi et al., 

2008, Blei), and (depending on research goals) the underlying utility functions that represent 

nodal preferences (Airoldi et al., 2008, Shalizi). This means that our methodology is subject 

to the usual limitations in terms of causal inference.

Expanding the scope of the model—We can consider a number directions for 

explanding the scope of these models, subject to data availability.

Directed and bipartite networks—Our development was aimed at undirected relations 

on unipartite networks, but the general inferential technique should be applicable to directed 

relations, provided each ego’s in-ties, as well as out-ties, are observed, and to bipartite 

networks.

Triads and other higher-order terms—We note in Section 3.1 that whether an ERGM 

term is egocentric—whether it can be identified given available data—is a function of the 

egocentric survey design: what information does ei contain? Though less common, 

information about alters’ connections is sometimes available in an egocentric design through 

solicitation of alter–alter ties. Smith (2012) and Gjoka, Smith, and Butts (2014a) consider 

this case for estimating clique size distributions and for reconstructing plausible networks, 

though not for ERGM inference. Other variations and extensions include studies that collect 

egocentric-like data but allow some individuals appearing twice in the data to be matched, 
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e.g., couple studies (where the two individuals with a link are recruited together and each is 

asked about their alters), or a one-wave snowball sample. In epidemiology, such data may be 

collected in more focused studies of networks of men who have sex with men (MSM) and 

injecting drug users (IDUs)—where triadic effects may be highly relevant. (Dhanjal et al., 

2011; Trotter et al., 1995)

In such studies, ei would contain some additional information, and the set of statistics 

expressible in the form of (3.1) would expand accordingly. For example, the transitive ties 
statistic (a non-degenerate analogue of the triangle count) counting the number of ties (i, j) 
such that at least one path i − k − j exists, i.e.,

can be expressed in the form of (3.1) as

which depends only on the set of i’s immediate neighbors (i.e., yi) and which of those 

neighbors, j and k, are connected to each other (i.e., yj,k). (Krivitsky and Kolaczyk (2015) 

derive this form in a different context.) The pseudo-MLE inferential argument then applies 

directly.

Dynamic network models—Minimal egocentric surveys often do include temporal 

information on the ties—such as duration of ongoing and recent partnerships—and inference 

for dynamic network models based on such data is the focus of ongoing work. (Krivitsky, 

2012)

Non-egocentric ERGM terms—Expressability in the form (3.1), is sufficient but not 

strictly necessary for the estimation: for example, the global clustering coefficient (3 × (# of 

triangles)/(# of 2-stars)) cannot be so expressed, but both its dividend and its divisor can 

(given alter–alter data), so the Delta Method or a resampling method can be used to obtain 

an estimator and its variance. At the same time, such model terms would tend not to be local 

(Krivitsky et al., 2011)—a given dyad’s state would be conditionally dependent on the 

whole network, rather than some reasonable social neighborhood of the actors involved—

causing difficulties in interpretation and network-size adjustment.

Network-size invariance—Our implementation utilizes the network-size-invariant 

parametrization of Krivitsky et al. (2011) primarily to facilitate computation—to allow us to 

fit the model to an “microcosm” N′ of the population N.

This parametrization also facilitates interpretation by giving us parameter estimates invariant 

to our choice of |N′|, which was the original motivation for its development. It is highly 
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likely that this scaling could be extended to bipartite networks, and Krivitsky and Kolaczyk 

(2015) propose a size adjustment for ERGM mutuality terms that could be used for 

egocentric data on directed networks, along with an approach that holds promise for triadic 

effects. The discussion in the supplemental article (Krivitsky and Morris, 2016, App. A.1) 

may provide some guidance for developing and testing such adjustments in the future.

In general, an ERGM specification is not guaranteed to have a meaningful size-invariant 

parametrization. But, size invariance is not strictly necessary for our framework: given 

sufficient computing power, one may dispense with N′ and estimate parameters on N 
directly, with inferential results and ability to simulate from the fit networks consistent with 

the observed data unaffected.

8.3. Inferential considerations

Bias—Our simulation study in Section 6 and the supplemental article (Krivitsky and 

Morris, 2016, App. B) shows our estimators to be slightly biased. There are four likely 

sources of bias: (i) sampling variation of x; (ii) biasedness of the Hájek estimator (4.2) for h̄; 
(iii) nonlinearity of the mapping θg(·) and Jensen’s Inequality (analogous to that in logistic 

regression (Firth, 1993)); and (iv) scaled-down approximation, particularly for weighted 

samples. Biases (i)–(iii) decrease in sample size |S|, while bias (iv) decreases in |N′|.

We attempted to reduce (ii) using jackknife, with little noticeable improvement in the 

simulation studies, suggesting that it is not a major source of bias in this case. Judging by the 

small difference between the biases from the higher values of |N′| considered (found in the 

supplemental article (Krivitsky and Morris, 2016, App. B.2)), (iv) likely becomes negligible 

reasonably quickly: the estimates converge to a nonzero bias. We believe this remaining bias 

to be primarily due to (i) and (iii).

Unfortunately, while a technique like nonparametric bootstrap jointly resampling wi and ei 

can be used for bias reduction and uncertainty estimation alike, this is likely to be 

computationally prohibitive: whereas every resample of bootstrap or jackknife for (ii) 

requires merely recalculating a weighted average, culminating in a single ERGM fit using 

the debiased h̃(eS), for (i) and (iii), every resample requires refitting an ERGM to a large 

network. At the same time, it may be possible to reduce (iii) using the penalized likelihood 

approach of Firth (1993). All this is subject for ongoing work.

Inference for a superpopulation—Lastly, in our framework, the population network y 
is fixed and unknown and θg {g(y)} is a finite population property to be estimated. In some 

applications, it may be more meaningful to view Y as being drawn from a superpopulation 

(e.g., ERGM) parametrized by θ, and then observed egocentrically. Although deriving 

rigorous asymptotics of this generative process may not be feasible, the variance of the 

estimator is straightforward: whatever the generative process for Y, g̃{eS(Y)} remains an 

asymptotically unbiased estimator of g(Y) for any given Y, under repeated egocentric 

sampling from Y. Then, Law of Total Variance gives
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which, for an ERGM superpopulation and the sampling process (S) being independent of the 

network (Y)—something likely to hold in social surveys—reduces to

for , and if Eg (varS[g̃{eS(y)}|Y]; θ) is approximated by |N|2 Σ̃H/|S|. 

However, while the variance of the parameter estimates may be estimated thus, the normality 

of g(Y) under the superpopulation is not guaranteed. If the superpopulation process is an 

ERGM, it can be tested as a side-product of the estimation.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig 1. 
Simulated bias in the point estimates, relative to simulated standard deviation (top); and 95% 

confidence interval coverage, relative to the miss probability of 5% (bottom) for |S| = 1,000. 

Dashed lines are level 0.05 critical values: 95% of the results should fall between them, if 

the estimator is unbiased / has nominal coverage.
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Fig 2. 
Simulation results based on 100 realizations from each of the fitted models: (a) goodness-of-

fit plot, comparing simulated degree frequencies (dot plot) to that observed in the data; (b) 

simulated network component size distributions, averaged over each simulation; and (c) 

simulated distribution of the proportions of individuals of each race and sex who are in 

components of size 3 or greater. (Because of the large |N′| used in the simulation, there is 

little variability percent-wise between realizations in (a).)
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Table 1

Examples of egocentric statistics for undirected networks. xi,k may be a dummy variable indicating i’s 

membership in a particular exogenously defined group. hk(ei) that sum over ties are halved because each tie is 

observed egocentrically twice: once at each end.

Statistic gk(y, x) hk(ei)

General sum over ties Σ(i,j)∈y fk(xi, xj)

Number of ties in the network |y| ≡ Σ(i,j)∈y 1

 weighted by actor covariate xi,k Σ(i,j)∈y(xi,k + xj,k)

 weighted by difference in xi,k Σ(i,j)∈y|xi,k − xj,k|

 within groups identified by xi,k Σ(i,j)∈y 1xi,k=xj,k

General sum over actors Σi∈N fk {xi, (xj)j∈yi}

Number of actors with d neighbors Σi∈N 1|yi|=d

 weighted by actor covariate xi,k Σi∈N xi,k1|yi|=d
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Table 2

Coefficients and standard errors for the three models. Coefficients reported are in the presence of an edge 

count offset of −log(44859) = −10.71.

Model 1 2 3

Main + Mix. + Monog.

Actor activity by sex

 Female 0.02 (0.10) −0.99 (0.19)*** −1.88 (0.31)***

 Male 0.46 (0.10)*** −0.55 (0.20)** −1.18 (0.25)***

Same-sex partnership −4.49 (0.21)*** −4.50 (0.20)*** −4.52 (0.21)***

Actor activity by race

 White 0 (baseline)

 Black −0.09 (0.07) −0.58 (0.29)* −0.30 (0.38)

 Other −0.03 (0.07) 0.83 (0.33)* 0.93 (0.42)*

Race homophily by race

 Black 5.13 (0.35)*** 5.15 (0.38)***

 Other 2.06 (0.35)*** 2.04 (0.35)***

 White 2.25 (0.34)*** 2.32 (0.36)***

Monogamy by sex and race

 Black Female 1.80 (0.47)***

 Other Female 2.51 (0.67)***

 White Female 2.25 (0.31)***

 Black Male 0.99 (0.24)***

 Other Male 1.40 (0.31)***

 White Male 2.16 (0.25)***

Significance levels: 0.05 ≥ * > 0.01 ≥ ** > 0.001 ≥ **
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