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Abstract

Evidence over the past decades has found that stress, particularly through the corticosterone stress hormones, produces 
complex changes in glutamatergic signaling in prefrontal cortex, which leads to the alteration of cognitive processes medicated 
by this brain region. Interestingly, the effects of stress on glutamatergic transmission appear to be “U-shaped,” depending 
upon the duration and severity of the stressor. These biphasic effects of acute vs chronic stress represent the adaptive vs 
maladaptive responses to stressful stimuli. Animal studies suggest that the stress-induced modulation of excitatory synaptic 
transmission involves changes in presynaptic glutamate release, postsynaptic glutamate receptor membrane trafficking and 
degradation, spine structure and cytoskeleton network, and epigenetic control of gene expression. This review will discuss 
current findings on the key molecules involved in the stress-induced regulation of prefrontal cortex synaptic physiology and 
prefrontal cortex-mediated functions. Understanding the molecular and epigenetic mechanisms that underlie the complex 
effects of stress will help to develop novel strategies to cope with stress-related mental disorders.
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Introduction
Trauma or stressful events across the lifespan are associated 
with many medical comorbidities, such as cardiovascular and 
immunological illnesses (de Kloet et  al., 2005; McEwen, 2008; 
Iwata et  al., 2013). Stress is also a critical predisposing factor 
for psychiatric disorders, including depression, anxiety, post-
traumatic stress disorder, and schizophrenia (Agid et al., 1999; 
Pittenger and Duman, 2008; McEwen and Morrison, 2013). 
Corticosteroid, the major stress hormone, plays a key role in 
emotional and cognitive regulation in the CNS. Interestingly, 
it induces a “U-shaped” effect to maintain brain homeostasis 

(Diamond et  al., 1992; Joels, 2006). Acutely released or moder-
ate levels of corticosteroid mediate a “flight-or-fight” adaptive 
response in threatening situations. On the other hand, chroni-
cally present or high levels of corticosteroid are considerably 
harmful to brain functioning and are associated with the mala-
daptive changes in disease processes (Joels, 2006).

It has been believed that genomic mechanism of corticos-
teroid is responsible for the delayed and long-lasting effect of 
stress (de Kloet et  al., 2005). Mineralocorticoid and glucocorti-
coid receptors, the major subtypes of corticosteroid receptor, 
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are also ligand-driven transcription factors. Binding of corti-
costeroid triggers nuclear translocation of the receptor and 
subsequently influences the expression of genes involved in 
stress-mediated pathway (Beato and Sanchez-Pacheco, 1996; 
Joels et  al., 2013). Recent studies suggest that corticosteroid 
can also rapidly influence synaptic activities via nongenomic 
mechanisms. It is proposed that release of corticosteroid from 
the HPA-axis orchestrates an array of crosstalk within the limbic 
areas, such as amygdala, prefrontal cortex (PFC), and hippocam-
pus, to facilitate behavioral adaptation in response to stress 
(Groeneweg et  al., 2011; Joels et  al., 2013). Thus, it is thought 
that stress hormone has a complex impact on brain functions, 
largely depending on the exposure duration to stress and the 
associated levels of corticosterone being released. In agreement 
with this, experimental data have revealed the biphasic effects 
of stress on synaptic physiology and cognitive behaviors medi-
ated by PFC, a critical brain region implicated in stress-related 
diseases (Yuen et al., 2009, 2011, 2012; Popoli et al., 2011; McEwen 
and Morrison, 2013). This review will discuss current findings on 
the molecular basis underlying the regulation of synaptic physi-
ology and cognitive functions by corticosteroid stress hormones.

Stress Effects on Cognitive Functions

Human studies support the procognitive effect produced by 
acute stress. Imaging of functional magnetic resonance imaging 
(fMRI) shows that acute stress enhances PFC signals during the 
performance of working memory tasks (Porcelli et al., 2008). Oral 
administration of hydrocortisone improves working memory 
performance and elevates dorsolateral PFC activity in humans 
(Henckens et al., 2011). Moreover, using pharmacological tools to 
decrease cortisol levels significantly impairs the PFC-dependent 
cognitive performance, which is restored by hydrocortisone 
replacement (Lupien et al., 2002a, 2002b). Correlating to human 
studies, acute stress significantly improves the performance 
of working memory in young rats (Yuen et  al., 2009, 2011). 
Interestingly, acute stress can also enhance the later ability to 
acquire new associative memory. Animals exposed to the unes-
capable tail shock stress have the facilitated classical condition-
ing of eyeblink responses (Shors et al., 1992; Shors, 2006). Such 
ability is lost when peripheral adrenal medulla, the glucocorti-
coid-releasing organ, is removed (Beylin and Shors, 2003).

In addition to the procognitive effect of acute stress, some 
human and animal studies also show that acute, uncontrolla-
ble stress impairs PFC-mediated cognitive functions (Arnsten, 
2009; Hermans et al., 2014; Arnsten et al, 2015). For instance, 
fMRI studies unveil that healthy participants who are exposed 
to an experimentally induced acute psychological stress show 
significantly impaired working memory-related activity in 
the dorsolateral PFC (Qin et al., 2009). Exposing monkeys to 
continuous loud noise stress for 30 minutes impairs delayed-
response performance in the spatial working memory task, 
a PFC-mediated cognitive function (Arnsten and Goldman-
Rakic, 1998). Rats exposed to acute (15 minute) tail-pinch 
stress have less accurate recall on a PFC-dependent cogni-
tive task that is sensitive to working memory deficits, and 

the stress-induced errors are reversed by blockade of glu-
cocorticoid receptors in the medial PFC (Butts et al., 2011). 
The impairing effect of acute stress often occurs at the very 
early stage, which is likely due to the fast increase of the con-
centration of catecholamines, such as norepinephrine and 
dopamine, in the frontal cortical region (Abercrombie et al., 
1989; Finlay et al., 1995; Murphy et al., 1996; Marsteller et al., 
2002; Pascucci et al., 2007). High levels of noradrengergic and 
dopaminergic receptor activation trigger intracellular signal-
ing pathways, which reduces the excitability of PFC neurons, 
leading to the weakening of PFC function (Birnbaum et al., 
2004; Vijayraghavan et al., 2007; Gamo et al., 2015).

To integrate the intricate stress responses, the factor of 
timing with respect to stressor onset needs to be considered 
(Hermans et al., 2014). Human studies have found that the PFC 
activity related to an executive control task decreases shortly 
following stress induction (Qin et  al., 2009) but enhances at a 
240-minute delay (Henckens et al., 2011). It has been proposed 
that the rapid changes in catecholamines / glucocorticoids 
ratios in response to acute stress may determine the diverse 
effects on cognitive processes (Hermans et al., 2014). Right after 
acute stress, the increased catecholamines promote vigilance at 
the cost of an executive control network. After stress subsides, 
the increased glucocorticoids enhance higher-order cognitive 
processes for long-term survival (Hermans et al., 2014).

Importantly, the outcome of stress appears to be deter-
mined by the duration and severity of the stressor (de Kloet 
et al., 2005; Joels M, 2008). Contrary to acute stress, repeated or 
prolonged unpredictable stress causes the prominent deficit in 
working memory and recognition memory (Yuen et  al., 2012), 
depression-like phenotypes, including increased immobility in 
tail suspension test, and increased latency to feed in novelty-
suppressed feeding (Seo et  al., 2016). In humans, impairment 
of cognitive function also correlates to the duration of stressor. 
Imaging studies show that 1-month exposure to psychosocial 
stressor produces a long-standing but reversible impairment of 
the PFC-dependent attention shifting task (Liston et al., 2009). 
However, cumulative life stressful events, such as death or 
chronic illness of a family member, cause a prominent volume 
loss in medical PFC and irreversible deficit in spatial working 
memory (Ansell et al., 2012; Hanson et al., 2012). Taken together, 
these results suggest that stress exerts complex effects on PFC-
mediated functions presumably by linking to divergent molecu-
lar pathways.

Stress Effects on Synaptic Physiology

The Impact of Acute Stress on Glutamatergic Transmission
Introducing a short period of stressful stimuli to animals, 
such as forced swim, foot shock, or restraint, produces signifi-
cantly enhanced glutamatergic transmission in PFC circuitry. 
This increased transmission is shown to be related to the 
enhancement of readily releasable pool of glutamate vesicles 
via a nongenomic mechanism mediated by membrane recep-
tors (Moghaddam, 1993; Bagley and Moghaddam, 1997; Popoli 
et al., 2011; Treccani et al., 2014). Such stress-induced increase 
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in glutamate release is caused by the accumulation of presyn-
aptic SNARE complexes in synaptic membranes of PFC neurons 
(Musazzi et al., 2010; Tardito et al., 2010). Moreover, acute foot-
shock stress increases spine density and excitatory synapses 
and induces dendritic remodeling in medial PFC, which can 
be partially blocked by chronic treatment with the antidepres-
sant desipramine (Nava et al., 2014, 2017a; Musazzi et al., 2015). 
Interestingly, recent study reveals that although both acute 
stress and in vitro application of corticosterone increase the size 
of readily releasable pool of synaptic vesicles in PFC, only acute 
stress enhances depolarization-evoked release of glutamate in 
PFC, which is positively correlated with phosphorylated synap-
sin I in PFC synaptic membranes (Musazzi et al., 2010; Treccani 
et al, 2014).

Besides presynaptic increase of glutamate release, acute 
stress also produces postsynaptic modification at PFC synapses. 
Patch-clamp recordings in PFC pyramidal neurons taken from 
acutely stressed animals shows a delayed and long-lasting 
potentiation of both NMDAR- and AMPAR-mediated synaptic 
currents (Yuen et al., 2009, 2011). The delayed time course sug-
gests a genomic mechanism. Serum- and glucocorticoid-induc-
ible kinases (SGKs), an immediate early gene activated by stress 
hormone, is shown to be involved in the stress-mediated glu-
tamate receptor trafficking in PFC neurons (Yuen et  al., 2012). 
Activation of SGK enhances the activity of Rab4, a small GTPase 
mediating the trafficking of glutamate receptors from early 
endosomes to plasma membrane (Liu et al., 2010; Popoli et al., 
2011; Yuen et al., 2012). SGK is proposed to be one of the critical 
regulators of learning and memory. Transfecting SGK facilitates 
spatial memory performance in rats, and elevated SGK expres-
sion levels are found in hippocampus of rats with faster learning 
(Tsai et al., 2002). On the other hand, reduced SGK expression is 
found in postmortem brains of PTSD patients, and inhibition of 
SGK in rat PFC produces helplessness- and anhedonic-like phe-
notypes (Licznerski et al., 2015).

Posttranslational modification of glutamate receptors may 
also play a role in the acute footshock stress-induced, time-
dependent modification of AMPAR and NMDAR subunits at PFC 
(Bonini et al., 2016). Phosphorylation of GluR1 at Ser 845, which is 
linked to the increased AMPAR channel open probability (Wangs 
et al., 2005), is elevated immediately after stress (Bonini et al., 
2016). At 2 hours after start of stress, NR1 and NR2A subunits in 
postsynaptic spines are markedly upregulated, and phosphoryl-
ation of GluR2 at Ser 880, which is involved in promoting AMPAR 
internalization (Scannevin et al, 2000), is elevated (Bonini et al., 
2016). These changes may underlie the early enhancement of 
AMPAR-mediated currents, followed by the potentiation of 
NMDAR-mediated currents in animals exposed to footshock 
stress.

The role of acute stress in glutamate receptor trafficking is 
supported by additional studies. A single (60 minute) restraint 
stress enhances the expression of Arc, an activity-dependent 
cytoskeletal-associated protein involved in AMPAR endocytosis 
(Fumagalli et al., 2011). Interference of adhesion molecules that 
anchor glutamate receptors at the synaptic surface abolishes the 
acute stress-induced enhancement of GluR2 membrane traffick-
ing and memory facilitation (Conboy and Sandi, 2010). In addi-
tion, acute footshock stress induces both rapid and sustained 
alterations of the expression of key genes involved in synaptic 
plasticity and spine structure, such as Homer, Shank, Spinophilin, 
Rac1, and downstream target genes Limk1, Cofilin1, and Rock1 
(Nava et al., 2017b). Overall, acute stress facilitates postsynap-
tic signaling molecules or adhesion/cytoskeleton networks that 
support the synaptic trafficking of glutamate receptors.

The Impact of Chronic Stress on Glutamatergic Transmission
Impairment of cognitive flexibility in chronically stressed indi-
viduals has been associated with the suppression of mPFC activ-
ity (Liston et al, 2006). A 21-day restraint stress produces impaired 
dendritic branching, atrophy, and spine loss in PFC pyramidal 
neurons (Radley et al., 2006; Popoli et al., 2011; Musazzi et al., 
2015), and such structural reorganization is found to be revers-
ible after 3-week cessation of stress (Radley et al., 2005). Having 
a prior chronic exposure to corticosterone causes a reduction 
of NR2B and GluR2/3 subunit expression in ventromedial PFC 
(Gourley et al., 2009). Consistently, a prominent loss of GluR1 and 
NR1 subunit expression has been found in PFC pyramidal neu-
rons from repeatedly stressed animals (Yuen et al., 2012). Such 
changes lead to a long-lasting depression of both NMDAR- and 
AMPAR-mediated synaptic currents in PFC.

The loss of glutamate receptor expression in PFC of repeat-
edly stressed animals is attributable to the increased ubiquitin/
proteasome-mediated degradation, which is controlled by E3 
ubiquitin ligases Nedd4 and Fbx2. Inhibition of proteasomes 
or knockdown of Nedd4 and Fbx2 in PFC abolishes the loss of 
glutamate receptors by repeated stress (Yuen et al., 2012). The 
transcription of Nedd4 is upregulated by repeated stress via 
an epigenetic mechanism involving the elevated histone dea-
cetylase 2 (HDAC2). HDAC2 inhibitors prevent the impairment 
of glutamate receptors and excitatory transmission in PFC of 
chronically stressed animals (Wei et al., 2016).

Chronic unpredictable stress has also been found to induce 
extracellular glutamate accumulation and the enhanced NR2B-
mediated extrasynaptic response, which is associated with 
the increased interaction of Death-associated protein kinase 
1 (DAPK1) with NMDARs (Li et  al., 2017a). Uncoupling of the 
DAPK-NR2B complex, knockdown of DAPK, and pharmacological 
blockade of NR2B all produce the rapid antidepressant effects in 
chronically stressed animals (Li et al., 2017a).

Additional Molecular Players Involved in  
Stress Effects

A multifunctional protein highly enriched in layer II-III PFC 
pyramidal neurons, p11, has been found to play an important role 
in stress-induced depression (Seo et al., 2016). p11 interacts with 
5-HT receptors, ion channels, enzymes, and chromatin-remod-
eling factors and is critically involved in depression-related 
behaviors and/or antidepressant actions (Svenningsson et  al., 
2013). Chronic restraint stress induces the selective loss of p11 
in PFC. Viral expression of p11 in PFC rescues the stress-induced 
suppression of glutamatergic transmission and depression-like 
behaviors (Seo et al., 2016).

Neurotrophic factors, such as brain derived trophic factor 
(BDNF), vascular endothelial growth factor, fibroblast growth 
factor 2, and insulin-like growth factor 1 (IGF1) are suggested as 
one of the important players in synaptic plasticity induced by 
long-term stress (Hill et al., 2011; Musazzi et al., 2011; Duman 
et al., 2016). Individuals carrying the Val66met allele of the BDNF 
gene have increased vulnerability to stress and antidepres-
sant responses (Yu et al., 2012; Nava et al., 2014, 2015). Such a 
polymorphism shows the decreased activity-dependent BDNF 
secretion (Egan et al., 2003). BDNF expression is suppressed in 
animals exposed to various stress paradigms (Vaidya et al., 1997; 
Treccani et al., 2014; Musazzi et al., 2016). Application of corti-
costerone decreases BDNF expression (Schaaf et  al., 1998) but 
increases BDNF in animals undergoing adrenalectomy (Chao 
et  al., 1998). BDNF overexpression increases dendritic arbo-
rization in hippocampal neurons (Tolwani et  al., 2002), blocks 
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chronic stress-induced hippocampal atrophy, and improves 
depression-like behaviors (Govindarajan et  al., 2006). Chronic 
stress is also known for suppressing neurogenesis, a process 
promoting proliferation and survival of newborn neurons in 
adult brain (Duman, 2004). Antidepressant treatment reverses 
the stress-induced downregulation of neurogenesis (Duman, 
2004), which is likely through BDNF-mediated tyrosine kinase-
regulated signal transduction (Duman and Monteggia, 2006).

Many other molecular targets of stress are also involved in 
synaptic alteration. Animals exposed to chronic unpredictable 
stress have the decreased expression of Neuritin, a synaptic 
activity-dependent gene, which is reversed by antidepressant 
treatment. Viral knockdown of Neurtitin prevents the stress-
induced atrophy of dendrites and spines and the depression-
like behaviors (Son et al., 2012).

Another stress-activated molecule, mTORC (also known as 
mammalian target of rapamycin complex), also receives much 
attention in the field. The mTORC signaling is found to be sup-
pressed by cellular stress (Corradetti et  al., 2005). Decreased 
levels of mTORC are reported in postmortem brains of individu-
als with stress-related mood disorders (Jernigan et  al., 2011), 
whereas the rapid-acting antidepressant ketamine increases 
mTORC signaling in rat PFC (Li et al., 2010). REDD1 (regulated in 
development and DNA damage responses-1) is an endogenous 
inhibitor of mTOR. Enhanced expression of REDD1, together with 
inhibition of downstream cascades of mTOR, are concomitantly 
found in the PFC of animals exposed to 21-day unpredictable 
stress (Ota et al., 2014). Animals with REDD1 knockdown have 
greater resilience to the chronic stress-induced spine shrink-
age and AMPAR current reduction (Ota et  al., 2014). Moreover, 
REDD1 level is found to be significantly elevated in postpartum 
depressed human brains and is thought to play a key role in the 
stress-induced depressive phenotypes (Ota et al., 2014).

Recent studies propose a new concept that inflammatory 
cytokine can be a central mediator linking stress to psychiat-
ric disorders and other systemic diseases (Musazzi et al., 2011; 
Iwata et  al., 2013; Duman et  al., 2016). Supporting this theory, 
depressed patients show elevated proinflammatory cytokines, 
such as tumor necrosis factor and interleukin 1β, which are 
reversed by antidepressant treatment (Pascucci et  al., 2007; 
Arnsten, 2009; Dowlati et  al., 2010). Pharmacological blockade 
or genetic knockout of caspase-1, an interleukin 1β-converting 
enzyme, prevents the chronic restraint stress-induced, depres-
sive-like phenotypes in mice by stabilizing surface AMPARs (Li 
et al., 2017b). Interestingly, levels of cytokine also demonstrate a 
biphasic relationship with synaptic transmission. It is suggested 
that intact glutamatergic transmission requires a moderate 
level of inflammatory molecules. A  low level of cytokine pro-
motes new AMPAR insertion and glutamate release from astro-
cyte in an activity-dependent synaptic modification (Santello 
and Volterra, 2012). However, “too much” inflammatory cytokine 
leads to impairment of long-term potentiation and synaptic 
loss (Finlay et  al., 1995; Boulanger, 2009; Arnsten et  al., 2015). 
Blocking the activation of cytokine reverses anhedonic pheno-
types induced by chronic unpredictable stress (Iwata et al., 2016).

Epigenetic Factors in Stress Effects

It has been a fascinating question whether stressful experi-
ence or its phenotype can be transmitted across generations. 
If so, what are the molecular substrates to determine vulner-
ability or resilience to stress? It is shown that chronic maternal 
separation alters the profile of DNA methylation at particular 
genes in the sperm of stressed animals (Franklin et  al., 2010) 

and alters the HPA stress responsivity of offspring (Rodgers 
et al., 2013). Interestingly, injecting sperm RNAs from stressed 
males into wild-type oocytes creates offspring with behavioral 
and metabolic phenotypes similar to the stressed father (Gapp 
et al., 2014). Recent studies have identified genes that contrib-
ute to stress susceptibility, including the ones within the HPA 
axis (Polanczyk et al., 2009), serotonin receptors (Yu et al., 2012; 
Nava et al., 2014, 2015), and neuropeptide Y (Finlay et al., 1995; 
Marsteller et al., 2002; Domschke et al., 2010; Liu et al., 2010).

Emerging evidence indicates that aberrant gene transcrip-
tion via chromatin remodeling or histone modifications con-
tributes to the stress-induced maladaptive changes, including 
neuronal plasticity, synaptic neurotransmission, as well as cog-
nitive processes. In response to chronic stress, histone acety-
lation level is robustly changed in different brain regions. In 
nucleus accumbens, decreased HDAC2 and HDAC5 expression is 
observed in depressed animals or humans (Renthal et al., 2007; 
Covington et  al., 2009). In the hippocampus of stressed ani-
mals, global acety-H3K14 shows a transient increase, followed 
by a persistent decrease, which is associated with changes in 
BDNF gene expression (Tsankova et al., 2006; Covington et al., 
2011). In amygdala, H3K14 acetylation is found to be transiently 
increased after social defeat stress, while HDAC5 is significantly 
decreased after unpredictable stress (Covington et  al., 2011; 
Sterrenburg et  al., 2011). Repeated stress increases HDAC2 in 
rat PFC, which causes the epigenetic alteration of Nedd4, an E3 

Figure  1.  A diagram illustrating the complex effects of stress on prefrontal 

cortex (PFC) synaptic physiology and PFC-mediated functions. Acute/modest 

stress or chronic/severe stress induces divergent changes on protein kinases, 

ubiquitin ligases, signaling molecules, and epigenetic enzymes, which leads to 

the convergent and opposite alterations of postsynaptic glutamate receptors, 

presynaptic glutamate release, and dendritic spine structure. Consequently, 

glutamatergic synaptic function in prefrontal cortex is bi-directionally changed, 

resulting in adaptive or maladaptive effects on cognitive processes. In response 

to acute stress, executive control can be compromised at the early time point as 

a result of the promoted emotional reactivity for short-term adaptation, while 

higher-order cognitive processes are enhanced at later time points for long-term 

survival.
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ubiquitin ligase for AMPAR degradation, leading to the impair-
ment of AMPAR expression and cognitive function (Wei et  al., 
2016). In addition, various HDAC inhibitors are implicated in 
antidepressant responses in stressed animals (Covington et al., 
2009; Sun et al., 2013; Bagot et al., 2014; Wei et al., 2016).

In addition to histone acetylation, DNA methylation is found 
to be altered in stressed animals. Animals with better mater-
nal care are found to have decreased DNA methylation of the 
glucocorticoid receptor gene, leading to the increased expres-
sion of the receptors and more resilient stress response in adult 
(Weaver et al., 2005). Such resilience can be reversed by intro-
ducing hypermethylation of glucocorticoid receptors in adult 
rats (Marsteller et al., 2002; Tsai et al., 2002; Weaver et al., 2005; 
Liu et al., 2010). Genes controlling HPA axis adaptation have also 
been found to contribute to stress resilience. The expression of 
Corticotropin-Releasing Hormone is elevated in the hypothala-
mus of animals that develop social avoidance after exposure to 
chronic social defect stress (Elliott et al., 2010). However, in the 
subset of animals that do not show stress-induced social avoid-
ance, their Corticotropin-Releasing Hormone gene is hyper-
methylated. Environmental enrichment reduces basal ACTH 
and stress responses (Moncek et al., 2004), suggesting a possible 
link among epigenetic, genetic, and environmental factors con-
tributing to the HPA stress response.

In conclusion, recent studies introduce the concept of 
biphasic stress responses in cognitive processes mediated by 
prefrontal cortex, through modulating molecular substrates 
at glutamatergic synapses (Figure  1). Changes in presynaptic 
glutamate release, postsynaptic glutamate receptor trafficking 
and expression, spine structure and cytoskeleton network, and 
epigenetic control of plasticity genes all contribute to the com-
plex effects of stress. Despite the richness of information in this 
field, there are still key questions waiting to be answered. For 
example, how is the adaptive response to short-term modest 
stress switched to the maladaptive response to long-term severe 
stress? Why does the vulnerability to stress differ a lot among 
individuals? How much translational value do the results from 
animal studies have? Understanding the mechanisms that regu-
late glutamatergic synaptic function in PFC may shed light on 
identifying pathophysiology and novel pharmacological inter-
vention for stress-related psychiatric disorders.
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