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Abstract

In shotgun proteomics analysis, user-specified parameters are critical to database search 

performance and therefore to the yield of confident peptide-spectrum matches (PSMs). Two of the 

most important parameters are related to the accuracy of the mass spectrometer. Precursor mass 

tolerance defines the peptide candidates considered for each spectrum. Fragment mass tolerance or 

bin size determines how close observed and theoretical fragments must be in order to be 

considered a match. For either of these two parameters, too wide a setting yields randomly high-

scoring false PSMs, whereas too narrow a setting erroneously excludes true PSMs., in either case 

lowering the yield of peptides detected at a given false discovery rate. We describe a strategy for 

inferring optimal search parameters by assembling and analyzing pairs of spectra that are likely to 

have been generated by the same peptide ion in order to infer precursor and fragment mass error. 

This strategy does not rely on a database search, making it usable in a wide variety of settings. In 

our experiments, this strategy yields more high confidence PSMs than using settings based on 

instrument defaults or determined by experts. Param-Medic is open source and cross-platform. It is 

available as a standalone tool (http://noble.gs.washington.edu/proj/param-medic/) and has been 

integrated into the Crux proteomics toolkit (http://crux.ms), providing automatic parameter 

selection for the Comet and Tide search engines.
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1 Introduction

Database search algorithms such as Sequest1 serve as the core of many shotgun analysis 

pipelines. Most search engines require a long list of user-supplied parameters, including 

cleavage enzyme, number of missed cleavages to allow, static and variable peptide 

modifications, and tolerances to use in matching observed precursor and fragment masses to 

their theoretical counterparts. Appropriate values for these parameters depend on the 

instrument used, the instrument settings used for a particular analysis, instrument 

performance at the time of acquisition, and other factors.

In this work, we focus on two of the most important search algorithm parameters. Precursor 

mass tolerance defines the peptide candidates considered for each spectrum. A narrower 
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setting reduces the running time of the search algorithm by requiring it to perform fewer 

comparisons between peptides and spectra, but a too-narrow setting can exclude true 

matches. Too wide a setting can reduce sensitivity in a different way: as more candidates are 

considered for each spectrum, the chance of a false match randomly generating a higher 

score than a true match increases.2 Similarly, fragment mass tolerance or bin size determines 

how small the absolute value of the difference between a pair of observed and theoretical 

fragment masses must be in order to consider them a match. A tighter setting can exclude 

true matches between fragments, while a loose setting can lead to false matches between 

fragments, leading to more high-scoring false matches.

An important goal of many proteomics workflows is to achieve high statistical power for 

peptide detection. A commonly-used proxy for the peptide detection power of a database 

search is the number, or “yield,” of peptide-spectrum matches (PSMs)at a set false discovery 

rate (FDR) such as 0.01, as estimated by target-decoy procedure.3 We define the optimal 

value for precursor or fragment mass tolerance as the value that yields the most PSMs at 

FDR 0.01. The optimal value for either parameter may vary widely from experiment to 

experiment. This sensitivity to parameter settings has a real impact on experimental results, 

because the measurement of yield can vary greatly between the best and the worst parameter 

settings.

Researchers adopt different strategies to arrive at the settings they use for a given analysis. 

Some labs fine-tune the optimal settings for a particular instrument by performing searches 

on acquired data with many different settings. Because instrument performance can change 

over time to cause drift in both mass accuracy and calibration, researchers most concerned 

with using the proper settings will periodically perform measurements solely to reassess 

performance. On the other extreme, database searches are often performed by researchers 

other than those who ran the instrument, as when labs share data or when spectra are 

reanalyzed after being deposited in a public repository. In the absence of detailed 

information about how the instrument was run or how well it was performing at that time, 

researchers typically rely on instrument settings reported by the lab that ran the instrument 

or on the advertised capabilities of the instrument that was used,

Several tools have been developed to aid researchers in selecting optimal search parameter 

values. Many of these tools infer instrument calibration from experimental data by analyzing 

the observed m/z values of known ions: either spiked-in peptides or peaks confidently 

identified by database search.4–7 One such tool for the Windows platform, Preview,5 

additionally assesses precursor and fragment mass error, nonspecific digestion, and sample 

modifications using a fast database search. However, neither Preview nor any of the other 

tools we surveyed provides a well-defined method for translating assessed m/z error into 

parameter settings for database search.

Here we describe Param-Medic: an open-source, cross-platform tool for assessing 

experimental m/z error and deriving parameters to search an LC-MS/MS experiment. We 

have trained Param-Medic to produce parameters appropriate for the Comet8 search engine, 

but the same strategy could be extended to work for any algorithm. At the heart of Param-

Medic is a key assumption that despite the use of so-called “dynamic exclusion” rules, LC-
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MS/MS experiments typically make multiple observations of many individual peptide ions. 

Param-Medic exploits these repeated observations to enable estimation of m/z error. 

Specifically, the algorithm identifies pairs of spectra likely to represent the same peptide and 

then analyzes the distribution of differences between those pairs’ precursor and matched 

fragment ion m/z values. We trained Param-Medic on eight datasets from public repositories 

from a variety of organisms and instruments, and we evaluated its performance on three 

additional public datasets. Param-Medic is available as a standalone tool and as a part of the 

Crux proteomics toolkit, providing an open, integrated platform for parameter inference and 

database search.

2 Methods

2.1 Mass-to-charge error estimation

Param-Medic infers both precursor and fragment m/z search parameters in a four-step 

procedure (Figure 1). First, it pairs closely-eluting MS/MS spectra that have similar 

precursor and fragment m/z values. Then, it calculates the mass differences of both the 

paired precursors and the paired fragments. Next, it fits a separate mixed Gaussian-Uniform 

distribution to the error values for precursors and for fragments. Finally, it maps the standard 

deviation of each estimated Gaussian distribution to a value usable as a precursor tolerance 

or fragment bin size for database search.

Param-Medic begins by assembling pairs of measurements from spectra with an inferred 

charge of 2 that appear to represent the same precursor ion or fragment ion (Figure 1). 

Precursor and fragment masses are calculated from their observed m/z values and are each 

binned coarsely with bin size 1.0005079, corresponding to the distance between the centers 

of two adjacent peptide mass clusters.9 One list of paired measurements is initialized for 

precursor values, and another for fragments.

As Param-Medic processes each sequential MS/MS scan, the algorithm identifies a previous 

MS/MS scan whose precursor falls in the same bin (if any). It then checks whether the 

associated precursor m/z is within 50 parts per million (ppm) of the precursor m/z of the new 

scan and whether at least 20 of the 40 most-intense binned fragments are unambiguously 

shared between the two spectra. If both conditions are met, then the two spectra are 

considered to represent the same peptide ion. In this case, the two precursor m/z values and 

the paired values for the five most-intense pairs of fragment m/z values are added to their 

respective lists. No single spectrum is included in more than one such pair. If Param-Medic 

detects fewer than 200 such pairs, then the program will terminate without estimating 

parameter settings.

In the second step, the ppm differences in measurement pairs are calculated from the pairs of 

measurements. This step and the following steps are performed separately but identically for 

precursor pairs and for fragment pairs. The output of this step is an empirical list of ppm 

differences in paired peak measurements. In practice, this list represents a mixture of 

differences between two correctly-paired measurements of the same peak and differences 

between two incorrectly-paired measurements of peaks that represent different ions. Below, 

we refer to these as “true” and “false” pairs, respectively.
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In the third step, Param-Medic fits a theoretical distribution to the empirical distribution of 

errors from step two. Param-Medic assumes that ppm measurement error for true pairs is 

normally distributed. Therefore, the difference between two values drawn from the 

distribution of ppm measurement error is also normally distributed, with variance twice that 

of the measurement error. Param-Medic also assumes that differences between false pairs are 

uniformly distributed over the range considered. Accordingly, it models the distribution of 

measurement differences as a mixed Gaussian(  for observed differences y) and 

uniform distribution. Expectation-maximization (EM) is used to estimate three parameters: 

the mean and standard deviation of the Gaussian distribution component(  and ), and the 

probability of membership in the Gaussian distribution (pG). EM maximizes the log-

likelihood of the observed data:

(1)

The algorithm alternates between an E step, which estimates expectation of the log-

likelihood using the current parameter estimates, and an M step, which computes new 

parameter values maximizing the expected log-likelihood. Once  is estimated, the standard 

deviation of the measurement error, , is estimated as .

In the final step, having estimated the standard deviation of the ppm error distributions, 

Param-Medic applies a scaling factor to  to calculate the estimated optimal search 

parameter (either precursor tolerance or fragment bin size). This scaling factor is empirically 

estimated on an analysis of data from a wide variety of mass spectrometry experiments, as 

described in the following sections.

Many of Param-Medic’s parameters are adjustable. The values mentioned above for the 

charge state (2), wide ppm tolerance (50 ppm), number of peaks that must be shared 

between spectrum pairs (20 of the most-intense 40), number of fragments per pair used for 

estimation (5), and number of difference measurements required for estimation (200) are 

defaults that should be widely applicable but may be adjusted for unusual datasets. For 

example, a user may wish to choose a higher charge state when analyzing an experiment on 

tryptic peptides known to contain a very high proportion of missed tryptic cleavages.

2.2 Search of public datasets with different parameter values

For use in learning the scaling factors mapping  to search parameter values, we collected 

eight training and three test datasets from the PRIDE10 and Chorus Project (http://

chorusproject.org) proteomics data repositories, representing a variety of organisms and 

instruments (Table 1). All database searches were performed using Comet8 version 2015.01 

rev. 2. Samples were searched against the appropriate UniProt databases for single 

organisms, Human Microbiome Project stool database for gut microbiome,11 or a site-

specific sequencing-derived database for ocean microbiome.12 We used a concatenated 

decoy database in which peptide sequences were reversed but C-terminal amino acids left in 
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place. Search parameters included a static modification for cysteine carbamidomethylation 

(57.021464) and a variable modification for methionine oxidation (15.9949). Enzyme 

specificity was trypsin with proline cleavage suppression, with one missed cleavage allowed. 

Parent ion mass tolerance was defined around five isotopic peaks. False discovery rate 

(FDR) was calculated by target-decoy competition using Percolator,13 and PSMs were 

accepted at FDR 0.01.

The most basic method of choosing parameters is to use settings associated with the typical 

performance of the instrument. This method is often used when the experimental details 

related to a dataset are unknown. We defined “instrument default” settings for precursor ppm 

error and fragment bin tolerance for each instrument represented by the training and test 

datasets (Table 2), based on advertised instrument capabilities and literature search. We then 

held fragment bin tolerance for each experiment at the instrument default and performed ten 

separate searches, with settings for precursor ppm error varying uniformly over the range 5–

50 ppm. Similarly, we held precursor ppm error at the instrument default and performed ten 

additional searches with settings for fragment bin tolerance varying uniformly over the range 

0.02–1.0005 Da. A related parameter, fragment bin offset, should be set to roughly 0.4 when 

fragment bin size is near 1.0005 to ensure that the highest proportion possible of peaks 

associated with the same nominal mass are included in the same bin, but has little effect for 

other bin size values. This parameter was set to 0.4 in all searches. PSM yield for each 

search was defined as the number of PSMs at FDR 0.01.

2.3 Mapping estimated error to search parameter values

The final outputs of Param-Medic are precursor and fragment m/z tolerance values for use in 

a database search. To produce these estimates, we used the search results from our eight 

training data sets over a wide range of parameter settings, along with the empirical error 

standard deviations , to estimate a multiplier that converts  values into database search 

parameters that maximize PSM yield for a wide range of datasets. To this end, we 

normalized for differences in measurement error across the eight training datasets as follows. 

Separately for each parameter (precursor m/z tolerance and fragment bin size), we divided 

each parameter value vrawi by the corresponding measurement error standard deviation 

for that sample and then calculated a normalized value  as the natural log of the result:

(2)

We then normalized the PSM yield  associated with the search of an experiment e with the 

ith value for the parameter, by dividing by the highest PSM yield observed for experiment e 
under any parmeter setting:

(3)
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For each experiment, this process yielded a different set of normalized parameter setting 

values, each associated with a different normalized PSM yield. In order to estimate the value 

associated with the highest mean normalized PSM yield over all experiments, we segmented 

the range from the minimum to the maximum values of the normalized parameter setting 

into 200 bins. We defined the yield of experiment e in bin b, , as the normalized PSM 

yield in that experiment associated with that bin, interpolating linearly between adjacent 

observed measurements  and using the yields for the bins with highest and lowest 

normalized parameter values for each dataset to stand in for all higher-value or lower-value 

bins not searched for that dataset (Figure 3). We then chose the bin b′ associated with the 

highest mean normalized yield over the n experiments:

(4)

The center of bin b′, , is the natural log of Param-Medic’s estimate of the optimal 

multiplier relating one of the two  values to its corresponding search parameter value. 

Therefore, to calculate the optimal precursor tolerance or fragment bin size, Param-Medic 

multiplies the appropriate  estimate by its associated .

Param-Medic will refuse to estimate precursor error or fragment bin tolerance if there are 

fewer than 200 pairs of values that make up the mixed distribution. It will also fail if, as was 

the case in one of our training datasets, at least half of the values in the mixed distribution 

are exactly 0. This situation occurs when the values are rounded, and it is incompatible with 

the Param-Medic approach.

2.4 Alternative parameter-setting strategies

We compared search PSM yield from settings determined by Param-Medic with PSM yield 

from searches using other means of determining search parameters. In addition to the 

instrument defaults described above, we also derived parameter settings from the 

publications describing the datasets (or, in the case of one as-yet-unpublished training 

dataset, from the experimental metadata provided in the PRIDE repository for project ID 

PXD002854). Because the datasets were originally searched with a variety of search 

algorithms, the published parameter values may not map directly to Comet precursor 

tolerance and fragment bin size; ours is a good faith effort to represent the original searches 

as accurately as possible within the Comet/Percolator framework. We also used Preview to 

assess precursor and fragment median m/z error. To map these Preview-estimated error 

values to Comet search parameters, we used five times the median error, which is the the 

“rule of thumb” suggested in the Preview user manual.
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3 Results

3.1 Param-Medic’s performance

We evaluated Param-Medic’s performance in terms of PSM yield, comparing it with the 

settings used in the original papers describing our datasets, with instrument default settings, 

and with Preview. On seven training datasets (Figure 2), Param-Medic parameter settings 

yielded 96% to 153% as many PSMs as settings as the original papers (median: 105%), and 

99% to 296% as many as defaults based on instrument type (median: 120%). Param-Medic 

failed to find a sufficient number of repeated ions for parameter estimation on one training 

dataset because of a large proportion of exactly identical sequential values for precursor m/z, 

which we speculate was due to rounding of the precursor m/z values. Preview failed on the 

same training dataset as Param-Medic due to insufficient search results for error estimation. 

On the remaining seven datasets, Param-Medic yielded 99% to 139% as many PSMs as 

Preview (median: 101%).

On three test datasets, Param-Medic parameter settings yielded 99–104% as many PSMs as 

settings from the original papers describing the experiments (median: 100%), and 103% to 

206% as many PSMs as defaults based on instrument type (median: 104%). Preview failed 

on one test dataset due to insufficient search results for error estimation. On the other two, 

Param-Medic yielded 96% and 99% as many PSMs as Preview (Figure 2).

Any method for automatically estimating m/z search parameters should be fast as well as 

effective at optimizing PSM yield. On a 3.0GHz Intel Core Duo processor, Param-Medic ran 

in a few seconds to just over a minute on all training and test datasets, while Preview ran in a 

few minutes to nearly an hour and a half (Table 3). Param-Medic’s running time scaled with 

the number of spectra per experiment, while Preview’s scaled with both both the number of 

spectra and the size of the database. Preview took 88 minutes to run on the human gut 

microbiome sample, which it searched against a large gut microbiome database, even though 

that sample had just 10% more spectra than a human sample on which Preview ran in 14 

minutes. The Preview running times are dominated by the database search, but also include 

some time spent performing activities not required for inferring mass error (e.g., inferring 

peptide digestion and variable modifications).

3.2 PSM yield variation between parameter settings

Some of our training experiments were much more sensitive to parameter settings than 

others. The extremes in difference in PSM yield between optimal and suboptimal settings for 

either parameter were quite high, with the worst and best parameter settings for precursor 

error yielding between 15% and 152% as many peptides as the instrument default settings, 

and for fragment bin size yielding between 13% and 334% (Figure 3A and 3B). The 

relationship between parameter settings and PSM yield was not consistent within an 

instrument type, with, for instance, the two QExactive experiments having opposite trends in 

yield as a function of precursor error tolerance. These results further demonstrate that the 

values specified for precursor and fragment tolerances can have a sizeable impact on PSM 

yield, and that knowledge of instrument type alone is not sufficient to set those parameters 

optimally.
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For fragment bin size, there was very close agreement between the experiments as to the 

optimal multiple of estimated error standard deviation (0.005). For precursor tolerance, the 

agreement was not as complete, with two experiments holding the most influence over the 

derived optimal multiple (37.40) due to their high sensitivity to changes in this parameter 

(Figure 3C and 3D). The lower level of agreement for precursor tolerance may reflect 

differences in the density of candidate precursor matches in the target and databases being 

searched against.

4 Discussion

We have demonstrated that Param-Medic optimizes precursor error and fragment bin size 

parameter settings for LC-MS/MS search based on characteristics of the dataset being 

searched. Param-Medic assumes that LC-MS/MS experiments are likely to make multiple 

observations of many peptide ions. Ironically, this phenomenon is often perceived as a 

chronic problem plaguing data-dependent acquisition proteomics: high-abundance peptides, 

in particular, will tend to trigger multiple MS/MS scans, leading to fewer acquisitions of 

other peptides. Accordingly, instrument makers and researchers often adjust a dynamic 

exclusion window to minimize these repeated measurements, but such measurements are 

nonetheless a constant feature of most proteomics experiments. Param-Medic exploits these 

repeated measurements to provide valuable information about the m/z tolerance 

characteristics of the experiment.

On several of our training and test datasets, Param-Medic increased PSM yield greatly over 

parameter settings chosen based on instrument type. Many researchers will spend time 

iteratively fine-tuning their search settings for a particular instrument over multiple 

experiments in order to maximize yield, a process that Param-Medic can assist with. In other 

circumstances, instrument-based parameter settings are used often, as when searching 

experimental data provided by collaborators or downloaded from a public repository, with 

minimal description. Param-Medic showed particular improvement over instrument defaults 

for one of the QExactive training datasets. Like other instruments, the QExactive can be run 

in high- or low-resolution fragment mode; our instrument default settings naively assumed 

high-resolution fragments. Although this setting was not discussed in the paper describing 

the dataset, the Param-Medic error estimate and the much higher PSM yield with low-

resolution fragments strongly suggest that the QExactive was run in low-resolution fragment 

mode when generating this dataset.

In our training and test datasets, Param-Medic settings yielded modestly more PSMs than 

settings chosen by experts for searching their own data for publication (and 47% more in 

one training dataset). We do not know what criteria these authors used to choose the settings, 

and the settings may have behaved quite differently in their hands, using different search 

engines or values for parameters other than the two considered here. However, the 

consistency of the trend indicates that many labs may benefit from an approach to 

parameter-setting that is based on the characteristics of the individual experiment being 

searched.
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In terms of PSM yield, Param-Medic performs very similarly to Preview on most datasets 

evaluated, with a large advantage in PSM yield in a single training experiment and nearly 

identical performance in our test experiments (Supplementary Figure 1 compares the 

parameter estimates derived from Param-Medic and Preview on the training and test 

datasets). Param-Medic and Preview each fail to assess error in different circumstances: 

Preview when its database search fails, Param-Medic when there are insufficient or 

suspicious differences in measurements available for error estimation. In our training and 

test datasets, Param-Medic refused to estimate error once, whereas Preview refused to 

estimate error on that same experiment and on one other experiment. In addition to error 

estimation, Preview also infers instrument calibration and sample modifications. Preview is 

proprietary software and runs only on Windows. Param-Medic is implemented in Python as 

a standalone tool and is also integrated into the Crux toolkit for streamlined parameter 

estimation and search with Comet and Tide search engines. In both incarnations, Param-

Medic is open source and can be run on Windows, Linux and Mac. Furthermore, the Param-

Medic running time is much shorter than that of Preview. Preview’s running time scales with 

both the number of MS/MS spectra and the database size, whereas Param-Medic’s running 

time scales only with the number of spectra. In practice, neither tool’s running time likely to 

be onerous, except possibly for Preview when the search database is large. This occurs often, 

for instance, in a metaproteomics context.

Param-Medic has been implemented as a standalone Python 2.7 tool which may be 

downloaded (including source code) at https://github.com/dhmay/param-medic or simply 

added to a Python installation with the ‘pip’ tool. It has also been incorporated into version 

3.1 of the Crux Toolkit, available at http://crux.ms. Within Crux, Param-Medic is available 

as a standalone tool and is also integrated into the Tide and Comet search algorithms for 

automatic detection of optimal parameter settings. All proteomics datasets described here, 

and links to all software, may be found at http://noble.gs.washington.edu/proj/param-medic/.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Param-Medic workflow
Param-Medic collects pairs of closely-eluting MS/MS spectra and assembles their pairwise 

precursor and most-intense five fragment mass differences. Precursor and fragment error are 

inferred by fitting a mixed Gaussian/uniform distribution to pairwise differences. Search 

parameter values are chosen by multiplying estimated error standard deviation by a 

multiplier associated with highest mean PSM yield in training datasets.
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Figure 2. Comparing Param-Medic with other methods
A. PSM yield at FDR 0.01 using parameters determined by four different methods: 

instrument defaults, Param-Medic, original paper settings, or Preview. Each cluster of bars 

represents one of the seven training experiments for which Param-Medic and Preview 

returned error estimates. Results are reported for the seven training data sets. B. Box plots 

showing the distribution PSM yield of searches with Param-Medic parameters as a 

percentage of the PSM yield using instrument defaults, original paper settings, and Preview, 

over the same seven training experiments. C and D. As A and B, but showing data from the 

three test experiments.
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Figure 3. PSM yield vs. parameter settings in training datasets
Panels A and B show PSM yield at FDR 0.01 as a function of the percentage of the PSM 

yield for that dataset when searched with instrument default settings. Each line represents a 

different training dataset, colored by instrument type. Black diamonds indicate instrument 

default settings. A: varying precursor tolerance from 5 ppm to 50 ppm. B: varying fragment 

bin size from 0.02 Da to 1.005 Da. Panels C and D show normalized PSM yield as a 

function of normalized error. Vertical axis measures PSM yield at FDR 0.01 as the natural 

log of the proportion of the maximum for that experiment. Horizontal axis measures 

parameter setting as the natural log of a multiple of the estimated standard deviation of 

measurement error. Gray lines represent individual experiments; blue line represents mean 

across all experiments. C: varying precursor tolerance. D: varying fragment bin size.
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Table 1

Experiments used in the training and testing of Param-Medic and their associated search parameters as adapted 

from their publications.

Experiment Instrument Organism Precursor tolerance (ppm) Fragment bin size (Th)

Training Datasets

2014kim-kidney14 Orbitrap Velos human 10 0.05

2014kim-lung14 Orbitrap Elite human 10 0.05

2015clark-redefining15 LTQ Orbitrap human 50 1

2015radoshevich-isg1516 QExactive human 4.5 0.02

2015tanca-impact17 Orbitrap Velos human gut microbiome 10 0.02

2015uszkoreit-intuitive18 Orbitrap Elite mouse 5 0.4

2016mann-unpublished QExactive human 10 0.02

2016schittmayer-cleaning19 Orbitrap Velos yeast 10 0.8

Test Datasets

2016may-metapeptides12 Qexactive ocean microbiome 10 0.02

2016audain-in-depth20 LTQ Orbitrap yeast 25 0.5

2016zhong-quantitative21 Orbitrap Velos human 20 0.5
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Table 2

Settings used in “instrument default” searches.

Instrument precursor (ppm) fragment bin (Th)

LTQ Orbitrap 50 1.005

Orbitrap Velos 50 0.05

Orbitrap Elite 50 0.02

QExactive 10 0.02
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Table 3

Wall-clock running times for Preview and Param-Medic on each experiment, in minutes. “N/A” indicates that 

a tool did not run successfully on a given experiment.

Experiment Organism Spectra Preview Param-Medic

Training Datasets

2014kim-kidney14 human 9,072 2 0.07

2014kim-lung14 human 17,612 3 0.13

2015clark-redefining15 human 38,570 N/A N/A

2015radoshevich-isg1516 human 63,185 14 1.03

2015tanca-impact17 human gut microbiome 69,685 88 0.48

2015uszkoreit-intuitive18 mouse 26,992 6 0.67

2016mann-unpublished human 41,157 7 0.12

2016schittmayer-cleaning19 yeast 9,297 1 0.19

Test Datasets

2016may-metapeptides12 ocean microbiome 98,317 N/A 0.68

2016audain-in-depth20 yeast 18,175 2 0.35

2016zhong-quantitative21 human 14,962 3 0.27
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