Skip to main content
. 2017 Dec 20;12(12):e0189873. doi: 10.1371/journal.pone.0189873

Table 1. Each model used in the gender prediction task was fine-tuned.

Optimal values for each parameter are marked in bold.

Model Parameters
LogisticRegression C:{1, .2, .5, 1, 2, 5, 10}
RandomForestClassifier max_features:{all, sqrt, log2},
n_estimators:{1000}
GradientBoostingClassifier max_features:{all, sqrt, log2},
learning_rate:{0.001, 0.002, 0.005, .01, .02, .05},
n_estimators:{1000}
AdaBoostClassifier learning_rate:{0.01, 0.02, 0.05, 0.1, 0.2, 0.5, 1.0},
n_estimators:{1000}
SVC C:{.01, .05, 0.1, .5, 1, 5, 10},
kernel:{linear, poly, rbf, sigmoid}