Table 2.
Optimization of Peptide Sequence and Lengtha
| ||||||||||
|---|---|---|---|---|---|---|---|---|---|---|
| Entry | Ligand | i | i+1 | i+2 | i+3 | i+4 | 3 % Remainingb | 4a %Yieldb | 6a % Yieldb | erc |
| 1 | L1 | TMG-Asp | D-Pro | Aib-OLi | - | - | 16 | 65 | 13 | 94:6 |
| 2 | L2 | TMG-Asp | D-Pro | Cle-OLi | - | - | 23 | 62 | 8 | 93:7 |
| 3 | L3 | TMG-Asp | D-Pro | D-Ala-OLi | - | - | 19 | 61 | 11 | 92:8 |
| 4 | L4 | TMG-Asp | D-Pro | Gly-OLi | - | - | 22 | 62 | 9 | 92:8 |
| 5 | L5 | TMG-Asp | D-Pro | Acpc-OLi | - | - | 27 | 58 | 6 | 93:7 |
| 6 | L6 | TMG-Asp | D-Pro | Ala-OLi | - | - | 21 | 60 | 8 | 93:7 |
| 7 | L7 | TMG-Asp | D-Pro | Aib-OMe | - | - | 6 | 52 | 18 | 95:5 |
| 8 | L8 | TMG-Asp | D-Pro | Aib-NHMe | - | - | 9 | 59 | 20 | 95:5 |
| 9 | L9 | TMG-Asp | D-Pro-OLi | - | - | - | 29 | 58 | 6 | 90:10 |
| 10 | L10 | TMG-Asp | D-Pro | Aib | D-Ala | D-Ala-OLi | 23 | 60 | 9 | 94:6 |
| 11 | L11 | TMG-D-Asp | D-Pro | Aib | D-Ala | D-Ala-OLi | 27 | 57 | 15 | 34:66 |
| 12 | L12 | TMG-Asp | D-Pro | Aib | D-Ala-OLi | - | 15 | 61 | 9 | 96:4 |
| 13 | L13 | TMG-Asp | D-Pro | Aib | Ala-OLi | - | 13 | 61 | 9 | 96:4 |
| 14 | L14 | TMG-Asp | D-Pro | Aib | D-Leu-OLi | - | 13 | 67 | 8 | 96:4 |
| 15 | L15 | TMG-Asp | D-Pro | Aib | D-Phe-OLi | - | 15 | 65 | 9 | 96:4 |
Reported results are the average of two trials. Reaction conditions: 3 (0.2 mmol), 4-methoxyphenol (1.1 equiv), Cu(MeCN)4BF4 (10 mol %), peptide (20 mol %), K3PO4 (4.0 equiv), and MeCN (0.8 mL), 45 °C
Yield was determined using 1H NMR by comparing to an internal NMR standard (1,4-bis(trimethylsilyl)benzene).
Enantiomeric ratios were determined using chiral HPLC analysis.
Abbreviations: TMG, tetramethylguanidine; Aib, α-aminoisobutyric acid; Cle, cycloleucine (1-aminocyclpentane-1-carboxylic acid); Acpc, 1-amino-cyclopropane-1-carboxylic acid