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Evaluating single molecule 
detection methods for microarrays 
with high dynamic range for 
quantitative single cell analysis
Ali Salehi-Reyhani   

Single molecule microarrays have been used in quantitative proteomics, in particular, single cell 
analysis requiring high sensitivity and ultra-low limits of detection. In this paper, several image analysis 
methods are evaluated for their ability to accurately enumerate single molecules bound to a microarray 
spot. Crucially, protein abundance in single cells can vary significantly and may span several orders 
of magnitude. This poses a challenge to single molecule image analysis. In order to quantitatively 
assess the performance of each method, synthetic image datasets are generated with known ground 
truth whereby the number of single molecules varies over 5 orders of magnitude with a range of signal 
to noise ratios. Experiments were performed on synthetic datasets whereby the number of single 
molecules per spot corresponds to realistic single cell distributions whose ground truth summary 
statistics are known. The methods of image analysis are assessed in their ability to accurately estimate 
the distribution parameters. It is shown that super-resolution image analysis methods can significantly 
improve counting accuracy and better cope with single molecule congestion. The results highlight the 
challenge posed by quantitative single cell analysis and the implications to performing such analyses 
using microarray based approaches are discussed.

The need for quantitative information in systems biology has been the driving force of a number of analytical 
techniques over the last decade or so, seeking to provide a fully resolved description of the underlying mech-
anisms at play. To quantify absolute numbers of biomolecules present in cells presents an enormous challenge. 
Microarray technology has become a popular tool for highly parallel analyses of biological markers; arrays of 
DNA, RNA, proteins, peptides, carbohydrates and other biomolecules are powerful research tools and play a criti-
cal role in biochemistry and molecular biology research. Microarrays are typically formed upon planar substrates, 
such as a surface modified glass slide, comprising thousands of small spots, typically on the order of 100 µm in 
diameter, where they react with specific analytes in a complex solution to perform a miniaturised bio-molecular 
assay.

Fodor et al. lay the foundation for microarrays in 1991 by demonstrating a process to build an array of synthe-
sised peptides by sequentially depositing amino acid groups on a glass surface1. The substrate was functionalised 
using a combination of photolabile chemical building blocks and photomasks to synthesise an array of 1024 
peptides. The technology was subsequently used to construct oligonucleotide microarrays because of interest 
in genome sequencing; nucleic acid synthesis was well known and the high throughput offered by microarrays 
was appealing. Schena et al. used a robot to mechanically print spots of complementary DNA onto glass using a 
quill-type metal pin2. Indeed, Schena’s technique has become the most widespread technique today in the prepa-
ration of protein microarrays.

Once sequencing the human genome was complete, attention focussed on the proteome and methods to study 
it. The success of the microarray to genomic studies was not immediately replicated in protein microarrays owing 
to the chemical complexity and diversity of the proteins themselves – proteins have a broad diversity of solubility, 
tertiary structures and amino acid content. All aspects of protein microarrays, such as printing, surface chemistry, 
geometry and capture probes, have undergone significant development, and continue to do so.
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It would take over a decade for single cell analysis by microarray to be reported. Today, several approaches 
to single cell protein analysis have been reported with the capability to sense and quantify protein species in a 
highly complex or congested sample requiring no pre-separation stage3–6. Microarrays are compatible with the 
microfluidic format and, indeed, benefits from the reduced volume environment in respect of the proportion of 
the capture analyte that is bound7,8.

A number of optical techniques have been used to detect surface bound targets and conventional methods 
predominantly employ fluorescence slide scanners9. Image processing of such microarray scan data requires an 
identification step to dissect an image into single spot sub-images, a segmentation step to identify spot shape and 
classify pixels as either foreground, belonging to the spot, or background, and a step to extract signal intensity, 
that may involve additional measures to limit non-biological variation of the data10. The estimation of true signal 
is difficult for low-intensity spots and the desire to extend dynamic range to analyse targets at or near the limits of 
detection motivated, in part, the development of single molecule detection methods; touted as the ultimate limit 
in microarray performance sensitivity.

High resolution single molecule approaches to analysing microarrays have been greatly aided by the adop-
tion of evanescent wave-based techniques, such as total internal reflection (TIRF) microscopy11–13. Hirschfield 
was the first to exploit evanescent wave excitation to optically detect single molecules14. More thorough surveys 
of the field and how it developed may be found elsewhere15–18. A crucial milestone in the development of single 
molecule microarrays was achieved when Hesse et al. reported high resolution scanning over large scales at 
high speed19. They notably demonstrated an extended dynamic range using their methods, which significantly 
exceeded conventional microarray analysis.

Owing to their sensitivity and low limits of detection, single molecule microarray methods are well suited to 
quantifying cellular constituents free of the cell and the ability to detect single biomarkers in liquid samples, par-
ticularly blood, can accelerate the discovery and use of more sensitive diagnostics. The enumeration of oncogenic 
proteins expressed within cancer cells has been demonstrated using antibody-based capture spots and is capable 
of detecting a little as 21 proteins from single cells4,20. Shirasaki et al. employed single molecule detection to 
monitor in real-time the secretion of the cytokine interleukin 1β from a single cell21. Conventionally, such assays 
require washing steps to remove unbound material prior to imaging. Single molecule microarrays imaged by 
TIRF are able to simplify assays by avoiding such steps since only bound molecules are detected. Jain et al. showed 
that employing single molecule methods enables the study of individual protein complexes and can help provide 
information on complex stoichiometry22.

The identification of single molecules and their accurate enumeration is key in quantitative microarray anal-
ysis. Methods of spot detection in fluorescence microscopy have been well reported; Izeddin et al. presented a 
wavelet based algorithm that focussed on single molecule localisation23. Smal et al. performed a thorough survey 
of techniques and quantitatively evaluated single molecule image analysis methods for peak detection24. However, 
there is a paucity of reports that focus on the methods of image analysis for high-resolution single molecule 
microarray data. The work of Mureşan et al. is an exception to this, wherein they report the detection of single 
molecules based on undecimated wavelet transforms25. Using the detection results, an estimation of the number 
of single molecules per spot could be made and could further discriminate between specific and non-specific 
signal.

The determination of what constitutes a specific, or true, signal is not a simple task in single molecule imaging; 
issues such as low signal to noise ratio (SNR), background estimation, impurities and variations in fluorophore 
labelling all contribute to errors. Methods of image analysis to detect single molecules are continually being 
developed but are predominantly designed to analyse super-resolution cell microscopy data, whereby the focus 
is generally toward single molecule localisation. Isolated fluorophores may be localised to a precision well below 
that of the diffraction limit26; however, imaging single molecules in cells inevitably leads to the problem of con-
gestion where the target density in some structures is such that single molecules are no longer individually resolv-
able. Some super resolution microscopy techniques exploit the stochastic nature of photo-activatable fluorophore 
switching to image a subset of fluorophores in an otherwise congested region; a complete molecular image is then 
built up over time. Single molecule localisation microscopy (SMLM) is a proven bioanalytical tool and relies just 
as heavily on switchable fluorophores as it does on powerful algorithms to identify and estimate the positions of 
single molecules. Many algorithms currently exist along with standardised data to benchmark implementations 
that can provide guidance on which is most suitable for a particular application27,28.

In this work, methods of image analysis are assessed in their ability to accurately determine the number 
of single molecules in high resolution images of microarray spots. Images were processed with wavelet based 
transforms to enhance single molecule contrast or to denoise images. A concern when performing SMLM is 
the efficient detection of a statistically sufficient number of molecules for analysis. This needn’t be 100% of all 
target molecules for SMLM whereas it certainly is the case when quantitatively enumerating targets bound to a 
microarray spot. With this in mind, a super-resolution peak fitting algorithm is also tested for its performance in 
analysing microarray images. To evaluate methods, synthetic datasets were generated with known ground truth, 
ranging from 100 to 1 × 107 molecules bound to a spot, equivalent to a density of molecules of 1.27 × 10−2 μm−2 
to 1.27 × 103 μm−2. The density of single molecules per spot varied such that images are considered either to be i) 
non-congested, where single molecules are sparse; ii) semi-congested, where the degree of overlap is significant; 
or iii) congested, where the density of single molecules is high and are no longer individually distinguishable.

It has been recently shown that the underlying mechanisms of gene expression may be uncovered from the 
summary statistics of single cell distributions of protein abundance29. It is therefore important to measure these 
distributions with sufficient accuracy in order to capture subtle variations in behaviour as a cell or pathway is 
stimulated or dysregulated. Synthetic datasets were generated whereby the number of single molecules per spot 
corresponds to single cell distributions of protein abundance whose summary statistics are known. The distri-
bution parameters of which served as the ground truth to which the estimated distributions derived from single 
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molecule counts were compared. Finally, the image analysis methods are tested with experimental single mol-
ecule microarray data generated from a microfluidic platform for the quantification of proteins with single cell 
resolution.

Results
Single molecule image analysis.  The performance of the detection methods was quantitatively evaluated 
using synthetic image datasets (Fig. 1). Single molecule detection rate, a measure of accuracy, was determined 
as parameter settings were varied for synthetic images of varying image quality and number of single molecules. 
Additionally, methods were compared to intensity thresholding without any pre-processing to reduce noise or 

Figure 1.  Synthetic single molecule image data. (a) The synthetic image shows a 10 × 5 test grid of single 
molecules. From left to right, the signal to noise ratio of the single molecules in each column is 1, 2.5, 3, 4, 
5, 6, 7.5, 10, 12.5, 15 and 20. The red arrows indicate each column and helps to identify low signal to noise 
ratio single molecules. Scale bar is 5 μm. (b) Shown are exemplar images of simulated spots (SNR = 7.5). Each 
synthetic image is generated with a pre-defined number of single molecules randomly located inside a circular 
area which is intended to mimic a microarray spot. The labels indicate the number of single molecules on 
spot (102 molecules per spot is equivalent to a molecule density of 1.27 × 10−2 μm−2) and the dashed circle 
in the leftmost image indicates the extent of the microarray spot area. The bottom row of images are zoomed 
in areas indicated by the red square in the top row. The scale bar for the top row of images is 20 µm, and 5 µm 
for the bottom row. (c) Images are processed using the image analysis methods under assessment to detect 
and enumerate the single molecules in each image; this is pre-defined and so the number of single molecules 
‘counted’ by each method can be compared to the ground-truth to determine the accuracy as a function of 
analysis method, number of single molecules per spot and signal to noise ratio of the molecules. (i) and (ii) 
show exemplar results whereby the counting accuracy is <70% and >90%, respectively. The resolution of all 
images is 0.26 μm per pixel.
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enhance signal. The synthetic image datasets were each characterised by a SNR of the single molecules; SNR 
values varied between 1 and 20. The detection rate is determined by comparing the ground truth to the count 
number produced using each image analysis method. How the detection rate varies for each algorithm to an 
increasing number of single molecules as a function of SNR is shown in Fig. 2, for SNRs of 5, 7.5 and 10. (The 
response to all SNRs is shown in Figure S2). For spots with a number of single molecules (NSM) that is low, their 
density is such that they are spatially well separated and individually distinguishable. Due to the limited resolu-
tion of the microscope, as the NSM per spot increases, the likelihood of single molecules touching or overlapping 
also increases such that they are identified as connected components or single structures; thereby underestimat-
ing the counted NSM.

Intensity thresholding alone (No Filter) fails for SNR ≤ 5 and accuracy only exceeds 80% for SNR ≥ 10 for 
molecule density <0.127 (ISM < 1000 molecules per spot) i.e. non-congested spots. Processing with either the 
Ricker (RW) or ‘a trous’ wavelet (ATW) significantly enhances the accuracy in single molecule identification for 
non-congested spots with low SNR and peak fitting results in the best overall performance; however, there are 
exceptions to this when comparing peak fitting to processing with an ATW for SNR ≤ 4 (Figure S2).

For SNR ≥ 10, all methods performed to a satisfactory degree for molecule density <0.127 (NSM < 1000) 
where accuracy exceeded 82.1%. The accuracy profile of each method for SNR ≥ 10 as molecule density increases 
is typically sigmoidal; characterised by a fairly flat response up to 0.1 μm−2 (NSM ~ 1000) beyond which accuracy 
reduces sharply such that it drops below 30% for molecule density> 1 μm−2 (NSM > 104), regardless of image anal-
ysis method. The point at which the accuracy of an algorithm begins to sharply reduce represents the degree to 
which it can identify overlapping single molecules as spots go from being non-congested to being semi-congested 
then congested. It is not surprising that the non-peak fitting methods perform similarly with regard to the point 
at which accuracy falls as spots become semi-congested.

Analysing congested arrays.  Protein abundance in single cells can span several orders of magnitude, and 
due to cellular heterogeneity this can arise even for cells in a genetically identical population. The complication 
to single molecule approaches when performing single cell analyses is that a sufficiently high cellular concentra-
tion of a protein in a subset of cells, for example, would result in some microarray spots becoming congested due 
to the amount of analyte captured. Modifying the density of surface sites in a microarray to maintain a regime 
whereby single molecules can be resolved has been previously suggested30. Therefore, unless the distribution of 
expected signal is sufficiently narrow, spots of varying density would be required on the same microarray and is 
not necessarily the most straightforward approach. Furthermore, a reduction in the density of surface sites will 
likely increase the limit of detection of a microarray assay, which is undesirable for single cell protein assays7. 
Single molecules could by selectively identified in congested microarray data by photo-activated localisation 
microscopy31 or by the detect and bleach strategy20. In the absence of more elaborate methods, an estimate of NSM 
on congested microarray spots can be achieved by dividing the total integrated intensity by the average single 

Figure 2.  Non-congested arrays. The synthetic single molecule datasets are processed and the detection rate of 
each single molecule image analysis method, or algorithm for short, is assessed as the pre-defined number of 
single molecules in each image increases. Results show the performance of the algorithms to data with a signal 
molecule signal to noise ratio of (a) 5, (b) 7.5 (solid lines) and 10 (dashed lines). When the number of single 
molecules is low (<103 per image), the density of the single molecules in the microarray spot is relatively low 
(<0.127 single molecules μm−2) and they can individually be distinguished. As the number of single molecules 
per images increases, so does their density on spot, such that the degree of overlap becomes significant and 
accuracy drops as a result. The figure labels ‘No Filter’, ‘A Trous Wavelet’ and ‘Ricker Wavelet’ represent the 
results of the intensity thresholding algorithms with either no filters or pre-processing, or pre-processing with 
the ‘à trous’ or Ricker wavelet transforms, respectively. Similarly, the ‘PeakFit’ figure label represents the results 
of the peak fitting algorithm.
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molecule intensity. This strategy relies on the following experimental conditions: 1) the variation in the number of 
fluorescent labels per detection analyte is low; and 2) a low single molecule density, or non-congested, image may 
be acquired to accurately estimate single molecule intensity (ISM). Single molecules will accumulate on capture 
spots over time at a rate defined by the kinetics of binding. The second condition may be experimentally achieved 
by imaging spots as a function of time or, in order to minimise photobleaching, once at a sufficiently early time 
point and once when equilibrium has been achieved.

Single molecule intensity is first estimated using the methods described above. For non-peak fitting algo-
rithms, average single molecule intensity is estimated by summing thresholded pixel values and dividing by the 
number of identified peaks. For the peak fitting algorithm, each single molecule is fit to an isotropic 2D Gaussian 
profile which allows the full distribution of ISM to be determined per image; depending on which is more appro-
priate, an average or median ISM may be calculated. Images from the same datasets as above are intensity thresh-
olded based on the variation of the background pixel intensity (see Methods); to estimate NSM, the sum of the 
surviving pixel values is divided by the average ISM. Figure 3 shows the detection rate of the ‘congested’ image 
analysis method when using such estimates of ISM for SNR of 5, 7.5 and 10 (see Figure S3 for responses to all SNR).

The variation in detection rate relates to how the accuracy to which ISM is estimated and the relative contri-
butions of the background and single molecules to pixel intensity when summed across the image. For low SNR, 
intensity thresholding tends to identify more intense single molecules, systematically discriminating against low 
intensity molecules thus positively skewing the distribution. In absolute terms, the total single molecule intensity 
of these identified molecules is itself underestimated since there will be a proportion of the signal below threshold 
that is lost. Of course, the process of thresholding is a balance between the rejection of background and preserva-
tion of signal intensity. As confidence in background rejection increases (related to n) so does the amount of true 
signal which is undesirably rejected. This poses less of a problem for digital counting but becomes an issue for 
congested arrays as we must rely on an accurate estimate of single molecule intensity.

It is evident from Fig. 3 that methods of analysis for congested spots were also applied to non-congested spots 
(molecule density <1 μm−2, NSM <103). While in practice this would not be sensible, it does help us to under-
stand how inaccuracy arises in semi-congested and congested spots. For non-congested spots, the true count is 
predominantly underestimated. In these spots, the density of single molecules is low and the relative contribution 
of the background is high. Portions of each single molecule that fall below the threshold are discarded leading 
to an underestimation of the total signal intensity on spot (Ispot). This, in addition to the overestimation of the 
average ISM, leads to an overall underestimation of NSM per image, which is consistent for all algorithms analys-
ing non-congested spots. As single molecules accumulate, they will begin to raise the average intensity across 
the spot. At some point the average intensity will exceed the threshold intensity. As single molecules are further 
‘added’ to the spot, no proportion of a single molecule’s total intensity is any longer discarded by thresholding and 
the increase in total spot intensity is equal to the total intensity of the additional single molecule. As NSM increases 
in this regime, the detection rate will increase and accuracy improves. For very high NSM, the proportion of the 
thresholded intensity to the total spot intensity decreases and the detection rate will plateaux. The detection rate 
will tend toward a value which is the accuracy to which ISM is estimated.

Figure 3.  Congested arrays. In congested images, the number of single molecules is estimated by dividing the 
total array spot intensity by the average single molecule intensity, which is estimated using the single molecule 
algorithms described above on non-congested images. Results show the performance of the algorithms to 
data with a signal molecule signal to noise ratio of (a) 5, (b) 7.5 (solid lines) and 10 (dashed lines). The figure 
labels ‘No Filter’, ‘A Trous Wavelet’ and ‘Ricker Wavelet’ represent the results when using estimates of average 
single molecule intensity determined using the intensity thresholding algorithms with either no filters or pre-
processing, or pre-processing with the ‘à trous’ or Ricker wavelet transforms, respectively. Similarly, the ‘PeakFit’ 
figure label represents the results when using an estimate of average single molecule intensity determined using 
the peak fitting algorithm.
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In the cases of the intensity thresholding alone (No Filter) and the RW non-fitting algorithms, the number 
of molecules may be overestimated in some cases. This would arise due to the relative degrees by which Ispot and 
ISM are under- and overestimated, respectively. This is suppressed when using the ATW as the process denoises 
images and the effects due to the relative contribution of background intensity are suppressed. Peak fitting allows 
the 2D Gaussian profile of the single molecule to be known and therefore more reliably estimate the ISM. For 
SNR ≥ 10 the accuracy ‘profile’ flattens due to the relative contribution of the noise and any errors arising from 
thresholding becomes relatively small.

Accurately measuring single cell distributions.  Single molecule microarrays are well suited to quanti-
tative single cell analysis. Single cell protein abundance in a population of cells is well known to vary and datasets 
will reflect this information as a variation in the number of single molecules per microarray spot. Such data is 
important for models of gene expression29,32 and therefore an accurate measure of this variation is obviously 
desirable. With this goal in mind, synthetic datasets were generated whereby the number of single molecules 
per spot within a dataset followed a gamma distribution with known shape and scale parameters. The gamma 
distribution model is well known to faithfully describe cell to cell variation in protein expression33,34. The distri-
butions were formed by the same shape parameter (k = 2.0) and their scale parameter varied such that the distri-
butions were peaked in the non-congested (θ = 250 SMs, 3.18 × 10−2 μm−2), semi-congested (θ = 2.5 × 103 SMs, 
0.318 μm−2) and congested (θ = 2.5 × 105 SMs, 31.8 μm−2) regimes. For each of the 3 distributions, datasets were 
generated with different SNR, which varied from 5 to 20 (Figs 4 and 5).

As a control to test the competence of the fitting procedure, the ground truth distribution of known NSM is fit-
ted alongside the counted NSM (Fig. 4a). The shape and scale parameters were estimated by fitting for all distribu-
tion datasets. For the non-congested datasets, it was possible that the counted distribution qualitatively resembled 
the ground truth distribution. However, the fitting parameters of these distributions would numerically differ 
significantly from the input ground truth parameters. In general, parameter estimates become more accurate as 
SNR increases; however, for non-congested data there is a tendency to overestimate or underestimate the shape 
and scale parameters, respectively (Fig. 4b).

Here it is worth noting the relative performance of each algorithm in estimating NSM (Figs 2 and 3) and in pro-
ducing data to estimate the parameters of a distribution (Fig. 4b and c). When estimating the summary param-
eters of a gamma distribution, accuracy in the shape parameter may in some cases be prioritised over accuracy 
in the scale parameter. Errors in scale will arise predominantly to the counting accuracy deviating from 100%, 
whereas errors in shape will arise predominantly to non-linear ‘response’ in detection rate as evident in Figure S2 
for low SNR. This is exemplified by the shape parameter being best estimated when the distribution is peaked 
in the congested regime (Fig. 4c); an inspection of the detection rate of the analysis of congested arrays (Fig. 3) 
shows a ‘flat’ response over the range of values associated with the distribution (k = 2.0, θ = 2.5 × 105). Similarly, 
an inspection of the detection rate of the single molecule analysis methods of non-congested arrays does show 
a ‘flat’ response, albeit a shallow negative gradient (Fig. 2c). These features are able to explain the apparent bias 
observed when fitting non-congested data (Fig. 4b). It has been shown that in the case of single cell protein analy-
sis, microarrays may be calibrated using standard curves established using known concentrations of recombinant 
proteins. Such calibration curves would factor out any errors in scale but would not be capable of correcting 
errors in shape20. This exemplifies the necessity for a high degree of accuracy over a wide dynamic range.

Analysing synthetic data distributed in both the non-congested and congested regimes is straightforward 
whereas semi-congested data is more challenging as it is the region in which neither image analysis approach 
is best suited. This is exemplified in Figure S4, where the analysis of such data fails to faithfully reproduce the 
ground truth distribution. There is a propensity for the intensity thresholding alone (No Filter) and the RW 
non-fitting algorithms to perform poorly in non-congested images at low SNR and to generally overestimate NSM 
on congested spots at SNR > 5. Despite this, their estimation of spot and average single molecule intensity results, 
serendipitously, when calculating NSM from total ISM, in more accurate estimations in non- and semi-congested 
images. An argument based on the overall performance of both these approaches allows us to proceed in the 
enumeration of semi-congested data with the ATW non-fitting and peak fitting image analysis methods, only. 
The performance of the single molecule and congested image analysis methods were compared as the number of 
single molecules per spot was increased through each of the 3 regimes, noting the point at which the performance 
of the latter would exceed the former (Fig. 5a). This crossing point would help decide what image data is analysed 
with which method and is dictated by the density of single molecules on spot and the degree to which they are no 
longer individually distinguishable. In practise this may be difficult to determine without some measure of the 
proximity of single molecules to one another. Here, with the data presented it is justifiable to simply determine 
the numerically higher count as the more precise (Fig. 5a) and represents a, somewhat, best case scenario when 
applying these methods to real data. The semi-congested results in Fig. 5b show that the combined approach ena-
bles an estimation of distribution parameters with ~90% accuracy for shape (ATW SNR ≥ 5) and scale (PeakFit 
SNR ≥ 5).

The effect of varying the scale parameter and determining the response to other distribution types was not 
tested.

Single cell data was acquired using a microfluidic based single molecule microarray method4. MCF7 cells 
are removed from culture and a single cell suspension is created. Cells are flowed into a microfluidic device 
and isolated into individual analysis chambers; the chip used here comprised of 50 analysis chambers wherein 
a single antibody capture spot is located. The protein p53 was captured using a suitable capture antibody. Since 
p53 is unlabelled, a second detection antibody labelled with a fluorophore is present in the solution which binds 
to free p53 or the immobilised capture antibody-p53 complex at the surface. Spots are imaged by TIRF micros-
copy 90 min after cells are optically lysed to ensure binding equilibrium had been reached. The basal expression 
of p53 protein in MCF7 cells is such that captured protein on each spots typically results in a molecule density 
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of <0.1 μm−2 and therefore suitable for the non-congested methods of analysis detailed above. Figure 6 shows 
the resultant distributions of counted single molecules from cells using each of the image analysis methods. The 
distribution of the counts using peak fitting algorithm is clearly different than those produced by the intensity 
thresholding based methods. For example, the counted distribution of single molecules as a result of the RW 
non-fitting (k = 4.80 ± 0.94, θ = 27.9 ± 5.7) and peak fitting algorithms (k = 6.51 ± 1.30, θ = 62.0 ± 12.8) are fit 
by a gamma distribution. Numerically, and visually by inspection of the fits in Fig. 6, these are clearly different 

Figure 4.  Synthetic data to model single cell distributions. Synthetic image datasets are generated whereby 
the number of single molecules in the microarray spot follows an asymmetric gamma distribution. (a) Shown 
are the probability density function of histograms comparing the ground truth distribution (grey edges) of 
pre-defined single molecule number to the single molecule counts estimated using the peak fitting algorithm 
(purple edges). Overlaid is the continuous gamma function (dashed black line; k = 2.0, θ = 250) from which 
the ground truth distribution and image datasets are generated. The parameters tested here are such that the 
gamma distribution is peaked in the (b) non-congested (k = 2.0, θ = 250) or (c) congested (k = 2.0, θ = 2.5 × 105) 
regimes. Images were processed to estimate the number of single molecules, the distribution of which was 
fitted to estimate the parameters. The horizontal dashed black line indicates the ground truth parameter value. 
The error bars for each data point indicate the standard error of fitting. The grey rectangular region vertically 
centred on the dashed line indicates the standard error of the fit to the ground truth distribution values.
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counted single molecule distributions. The ground truth is unknown for the single cell single molecule image data 
and therefore an absolute measure of accuracy for each of the image analysis methods is not possible. The results 
from analysing the synthetic datasets would suggest that the peak fitting algorithm is likely to be the most accu-
rate. By testing these methods of image analysis on experimental data with unknown ground truth the necessity 
is further highlighted for a high accuracy to be maintained over a range of molecule densities on spot.

Discussion
The performance of a set of image analysis methods has been quantitatively assessed as applied to single molecule 
microarrays. Their performance is assessed using realistic synthetic data with known ground truth over a wide 
dynamic range and as SNR is varied; the absolute values of which are applicable to single cell protein analysis. 
This study has highlighted the importance of accurate single molecule enumeration when analysing data upon 
which quantitative models of systems biology increasingly relies. Synthetic datasets which serve to model the 
wide dynamic range of single cell protein expression and cellular heterogeneity were analysed. The image analysis 
method involving peak fitting performed with the highest accuracy, overall.

The results presented here show that peak fitting can maintain a detection rate in excess of 80% for molecule 
densities approaching 0.3 μm−2 and with the accurate estimate of single molecule intensity can effectively exceed 
103 μm−2 using the methods above. A number of approaches have been reported based on their ability to cope 
with high density data. Originally used in astronomy to analyse crowded stellar fields35, methods that fit popula-
tions of single molecules with multiple PSFs instead of just one can improve accuracy when detecting overlapping 
molecules. Holden et al. implemented this in DAOSTORM36. Zhu et al. reported a sparse recovery technique 
using compressed sensing and showed this could work with much higher molecule densities when compared 
to DAOSTORM37. In summary, single molecule fitting, DAOSTORM and compressed sensing were capable of 
maintaining a detection rate of 80% or higher up to densities of ~0.5 μm−2, ~2 μm−2 and ~10 μm−2, respectively, 
as estimated from published results using super resolution imaging systems36,37.

Figure 5.  Synthetic data to model single cell distributions. Synthetic datasets are generated whereby the 
number of single molecules in the microarray spot follows a gamma distribution with parameters such that 
it is peaked in the semi-congested (k = 2.0, θ = 2.5 × 103) regime. (a) Image analysis methods best suited to 
either non-congested or congested data were combined to maximise accuracy in this regime. (b) Results show 
the accuracy in estimating distribution parameters when using the ‘à trous’ wavelet transform and peak fitting 
image analysis algorithms. The horizontal dashed black line indicates the ground truth parameter value. The 
error bars for each fit indicate the standard error of fitting. The grey rectangular region vertically centred on the 
dashed line indicates the standard error of the fit to the ground truth distribution values.
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The density of single molecules is an important consideration to their reliable detection on microarray spots. 
While strategies to alleviate this, such as the reduction of binding site density, have been proposed they are not 
compatible with maintaining the requisite sensitivity necessary for measuring low abundance proteins in single 
cells7. Certainly, the digitisation of peak detection enables single molecule counting to be more robust to system-
atic variation. The accuracy of congested data is more prone to variations in systematic parameters such as laser 
intensity, emission collection efficiency, detection camera, amongst other factors. Of course, the accuracy of data 
in congested regions depends on the accurate measurement of single molecule intensity. The results quantitatively 
show how this affects the accurate estimate of the number of single molecules bound to a congested spot. It must 
be noted that in generating synthetic datasets, quenching was not taken into account and may be an issue for 
microarray spots with sufficiently high binding site density.

An effective alternative to reduce congestion, would be to adopt the use of photo-switchable fluorophores 
and super-resolution microscopy methods such as photo-activated localisation microscopy (PALM) or stochas-
tic optical reconstruction microscopy (STORM). Although, if appropriately implemented, such methods are in 
principle capable of effectively reducing imaged molecule density, there are a number of non-trivial challenges 
which limit the accurate estimation of single molecule numbers. These include photobleaching, fluorophores 
which are never activated and distinguishing the observation of the same fluorophores in multiple consecutive or 
non-consecutive frames. The detect and bleach (DAB) method has also been previously described to be capable 
of regaining single molecule counting in densely occupied spots20. DAB works by differencing subsequent frames 

Figure 6.  Testing experimental single cell data. (a) (i) Exemplar high-resolution image (0.26 μm per pixel) 
centred on a single microarray spot. Fluorescent single molecules represent the capture antibody–protein–
detection antibody complex of a sandwich assay. The protein is p53 captured from MCF7 cells using a 
microfluidic based method of single cell analysis using single molecule microarrays. (ii) Shown is the image 
in (i) processed with an overlay of detected single molecules. Scale bars are 20 μm. (b) The results of single 
cell pulldowns (n = 50) are analysed. Shown are the probability density function of histograms of the single 
molecule counts estimated using the image analysis methods under test. The dashed green and purple lines are 
fits of a gamma function to the histograms produced using the intensity thresholding algorithm (pre-processing 
with the Ricker wavelet transform) and the peak fitting algorithm, respectively.
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during continuous imaging of the spot and in the regime whereby molecular arrival or bleaching rate is low, single 
molecules which bind and others that are irreversibly bleached will be sparse and individually identifiable.

There are ongoing public challenges that exist to evaluate and benchmark new and existing techniques, with 
particular focus on localisation microscopy28. The methods of image analysis analysed here were assessed with 
quantitative single cell analysis in mind.

Methods
Single molecule detection.  Data synthesis.  Simulation images are generated with randomly located sin-
gle molecules inside and outside a circular area which demarcates the microarray spot area. Each generated 
dataset contains 65 512 × 512 pixel images: of which 55 are 512 × 512 pixel images that contain 10–107 randomly 
located on-spot single molecules in addition to 100 randomly distributed single molecules; a further 10 images 
contain 100 randomly distributed single molecules only and serve as background, or negative control, images. 11 
datasets were generated with varying signal to noise ratios (1, 2.5, 3, 4, 5, 6, 7.5, 10, 12.5, 15 and 20). Each image 
within a dataset are independent and represent different spots in a microarray. Each dataset is characterised by a 
different SNR and is generated independently so the pre-defined number of single molecules in each image have 
different coordinates.

Synthetic image parameters were selected to correspond with the microscope system reported in reference4. 
To begin, the point spread function of the system was measured by imaging 100 nm fluorescent beads (Invitrogen 
Molecular Probes, FluoSpheres 540/560). Each simulated single molecule was generated using a 2D isotropic 
Gaussian function where the width corresponds with the measure point spread function (equivalent to 1.6 pixels 
in the 512 × 512 pixel image).

The resultant synthetic images are 512 × 512 pixel but to begin with a higher ‘super’ resolution 2560 × 2560 
pixel image is generated. Uniformly distributed random numbers were used to generate single molecule coordi-
nates in each microarray spot in an image. The pixel intensity of the super resolution image was then binned using 
a square 5 × 5 binning kernel to produce a 512 × 512 image. Larger binning kernels may be used to down sample 
images to lower resolutions to simulate other microarray imaging systems25. Our single molecule imaging system 
incorporates objective-type TIRF so noise such as that from immersion oil autofluorescence and scatter from the 
excitation laser are taken account of by adding a mean background intensity to each pixel. The excitation intensity 
profile of our TIRF microscope system was imaged and normalised using the peak intensity. The simulated spot 
images were then multiplied by the normalised laser profile image to better simulate real data. Poisson noise was 
then applied. The signal-to-noise ratio (SNR) of the single molecules was defined as SNR = (S − B)/σ, where S is 
the peak single molecule pixel intensity and B and σ are the average and standard deviation of background pixel 
intensity, respectively.

To better capture systematic variations in microarray performance, spot diameter and capture density may be 
varied to experimentally determined degrees. Here, to focus on errors arising from image analysis, the simulated 
data is generated with no intra- or inter-spot variation in microarray spot quality. Microarray spots of constant 
100 μm diameter are modelled. The modelled microarray spot is centred in a 512 pixel × 512 pixel image, with 
pixel dimensions equivalent to a physical area of ~133 μm × 133 μm.

Synthetic single cell datasets.  The resulting distribution when measuring the protein abundance per 
single cell in a population of cells approximates the steady state protein abundance. To simulate single molecule 
microarray data from single cell experiments, images were synthesised as above whereby the number of single 
molecules on-spot were randomly generated from distributions with defined summary statistics. Datasets were 
generated whereby asymmetric gamma distributions with identical shape parameters (k = 2.0) are peaked in the 
non-congested (θ = 250 SMs), semi-congested (θ = 2.5 × 103 SMs) and congested (θ = 2.5 × 105 SMs) regimes and 
were used to assess the counting algorithms performance in faithfully measuring these distributions.

Image Analysis.  In summary, original images are field flattened, filtered then thresholded to produce images 
from which peak counting is performed. The methods employed here are computationally fast and datasets are 
typically processed within a few minutes.

Image filtering was performed using either the ‘à trous’ or Ricker wavelet transforms, which help to denoise 
images and enhance the signal. The ‘à trous’ wavelet-based filtering technique is a 2D isotropic undecimated 
wavelet transform38. The algorithm was implemented using the ‘ATrousJ_Filter’ plugin by Ihor Smal24 for ImageJ/
Fiji39 using a B-spline scaling function of third order. Each image is decomposed into planes of wavelet coeffi-
cients (see Figure S1). The first plane contains high frequency components and the plane containing most of the 
noise. The second and third planes contains structures best associated with single molecules whereas higher order 
planes contain increasing lower spatial frequencies and are better associated with coarser image details.

The Ricker wavelet, also known as the Mexican hat wavelet owing to the shape of its 2D processing kernel, 
is the application of a Laplacian of Gaussian to a 2D image (see Figure S1). This type of edge detection kernel is 
an established method for object detection, such as single molecules and biological cells40,41. The algorithm was 
implemented using the ‘Mexican Hat Filter’ plugin by Dimiter Prodanov for ImageJ/Fiji.

Single molecules were either detected by intensity thresholding or by fitting peaks using a 2D Gaussian func-
tion. When intensity thresholding, pixel values were set to zero for pixels whose intensity value was less than 
μ + nσ, where μ and σ are the mean and standard deviation of background pixel intensity, respectively, and n is 
an integer which defines the probability that a pixel ‘belongs’ to a single molecule. Pixels that survive thresholding 
are then retained based on cluster size, 4–36 pixel2, and circularity, greater than 0.5. The number of single mole-
cules is the number of remaining particles and the average single molecule intensity can be estimated.

To perform 2D Gaussian peak fitting, algorithms were implemented using the GDSC plugin by Alex Herbert42 
for ImageJ/Fiji. A PSF estimator first determines by optimisation the average Gaussian parameters of the single 
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molecules from intensity peaks in the dataset by least squares fitting. All peaks in each image are subsequently 
tested against this Gaussian profile and only counted as single molecules if they fall within a precision threshold 
for size and intensity. The total number of single molecules is simply the number of peaks in the image which 
converge to the 2D Gaussian profile.

For images where the density of single molecules results in a significant degree of overlap, single molecules 
become difficult to individually distinguish. The number of single molecules is then estimated from dividing the 
total intensity of a thresholded image by the average single molecule intensity.

Single Cell Analysis.  Cell culture.  MCF7 (ATCC) cells were cultured using high glucose Dulbecco’s 
Modified Eagles Medium (DMEM; ThermoFisher Scientific, UK) supplemented with 10% (v/v) foetal bovine 
serum (FBS; ThermoFisher Scientific, UK) in polystyrene flasks in a 5% CO2 37 °C cell incubator. Suspensions of 
single cells are prepared by detaching cells in culture using Accutase solution (Sigma, UK).

Single cell microarrays.  A microfluidic based method was used to facilitate single cell protein analysis 
based on previously reported work4. The PDMS microfluidic chip is fabricated using well known methods of 
soft-lithography43. It is formed of a main channel through which single cell suspensions are flowed to which an 
array of analysis chambers (n = 50) are connected. Each analysis chamber has dimensions 300 μm × 300 μm × 35 
μm resulting in an assay volume of 3.15 nL. The chip is sealed using a functionalised coverslip (Nexterion; Schott, 
Europe) upon which an anti-p53 antibody (Enzo Life Sciences, UK) microarray is printed using an OmniGrid 
Micro microarrayer (Digilab, UK). The microarray spotting solution contained the anti-p53 capture antibody 
mixed 1:1 with a print buffer formed of 3 × saline-sodium citrate buffer, 1.5 M betaine supplemented with 0.01% 
SDS; the final concentration of antibody in the spotting solution was 0.5 mg mL−1. The spots are printed at defined 
locations which allowed them to be aligned to the PDMS chip such that a single antibody spot is aligned to the 
centre of each analysis chamber. The chip is filled with a solution of 0.25 μg mL−1 fluorescent detection antibody 
(anti-p53 DO1 labelled with Alexa Fluor 488; Santa Cruz, USA) with 4% bovine serum albumin in phosphate 
buffered saline.

Platform and procedure.  The platform has been described in detail elsewhere4. An inverted microscope (Nikon 
Ti-E; Nikon, Japan) forms the basis of the experimental platform. Single cells are individually isolated into analy-
sis chambers using an optical trap (1070 nm YLM-5 Ytterbium fibre laser; IPG Photonics, UK). Once all analysis 
chambers are occupied, single cell lysis is achieved optically by launching a high energy laser pulse (6 ns pulse 
1064 nm Surelite SLI-10 Nd:YAG; Continuum, USA) into the medium immediately surrounding the cell. The 
pulse produces an expanding cavitation bubble which shears the cell membrane allowing intracellular contents 
to be released. Antibody spots are imaged using objective-based total internal reflection fluorescence (TIRF) 
microscopy (488 nm Versalase; Laser 2000, UK) and an electron-multiplied CCD camera (IXON DU-897E; 
Andor Technologies, Ireland). The acquired images are analysed using the methods above.
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