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Transcriptional signatures of schizophrenia in
hiPSC-derived NPCs and neurons are concordant
with post-mortem adult brains
Gabriel E. Hoffman 1,2, Brigham J. Hartley3,4, Erin Flaherty4,5, Ian Ladran3,4, Peter Gochman6,

Douglas M. Ruderfer1,2,7, Eli A. Stahl1,2, Judith Rapoport6, Pamela Sklar1,3,4,5 & Kristen J. Brennand 1,2,3,4

The power of human induced pluripotent stem cell (hiPSC)-based studies to resolve the

smaller effects of common variants within the size of cohorts that can be realistically

assembled remains uncertain. We identified and accounted for a variety of technical and

biological sources of variation in a large case/control schizophrenia (SZ) hiPSC-derived

cohort of neural progenitor cells and neurons. Reducing the stochastic effects of the differ-

entiation process by correcting for cell type composition boosted the SZ signal and increased

the concordance with post-mortem data sets. We predict a growing convergence between

hiPSC and post-mortem studies as both approaches expand to larger cohort sizes. For studies

of complex genetic disorders, to maximize the power of hiPSC cohorts currently feasible, in

most cases and whenever possible, we recommend expanding the number of individuals even

at the expense of the number of replicate hiPSC clones.
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A growing number of studies have demonstrated that
human induced pluripotent stem cells (hiPSCs) can serve
as cellular models of both syndromic and idiopathic forms

of a variety of neurodevelopmental disorders (reviewed in ref. 1).
We and others have previously shown that hiPSC-derived neural
progenitor cells (NPCs) and neurons generated from patients
with schizophrenia (SZ) show altered gene expression2–4, which
may underlie observed in vitro phenotypes such as aberrant
hiPSC-NPC polarity5 and migration6, as well as deficits in hiPSC-
neuron connectivity and function3,7. Altogether, such hiPSC-
based approaches seem to capture aspects of SZ biology identified
through post-mortem studies and animal models8. Nonetheless,
mechanistic studies to date have tended to focus on rare
variants3–5; the ability of an hiPSC-based approach to resolve the
much smaller effects of common variants remained uncertain.

We established a case-control SZ cohort structure designed to
capture a broad range of rare and common variants that might
underlie SZ risk, in order to address and quantify the intra- and
inter-individual variability inherent in this approach and uncover
to what extent hiPSC-based models can identify common path-
ways underlying such different genetic risk factors. Because
hiPSC-neurons are likely best suited for the study of disease
predisposition6, we applied this methodology to a childhood-
onset SZ (COS) cohort, a subset of SZ patients defined by onset,
severity and prognosis. COS patients have a more salient genetic
risk, with a higher rate of SZ-associated copy number variants
(CNVs)9 and stronger common SZ polygenic risk scores10.
Overall, across 94 RNA-Seq samples, we observed many sources
of variation reflecting both biological (i.e., reprogramming and
differentiation) and technical effects. By systematically accounting
for covariates and adjusting for heterogeneity in neural differ-
entiation, we improved our ability to resolve the disease-relevant
signal. Our bioinformatic pipeline reduces the risk of false posi-
tives arising from the small sample sizes of hiPSC-based
approaches and we hope it can help guide data analysis in
similar hiPSC-based disease studies.

Results
Transcriptomic profiling of COS hiPSC-NPCs and hiPSC-
neurons. Individuals with COS, as well as unaffected, unrelated
healthy controls were recruited as part of a longitudinal study
conducted at the National Institute of Health9,10 (see Supple-
mentary Data 1 for available clinical information). This cohort is
comprised of nearly equal numbers of cases and controls
(Fig. 1a–c); 16 cases were selected representing a range of SZ-
relevant CNVs, including 22q11.2 deletion, 16p11.2 duplication,
15q11.2 deletion, and NRXN1 deletion (2p16.3)11 and/or idio-
pathic genetics with a strong family history of SZ, 12 controls
were identified as being most appropriately matched for sex, age,
and ethnicity (Fig. 1d; Supplementary Data 1).

We used an integration free approach to generate genetically
unmanipulated hiPSCs from COS patients (14 of 16 patients, 88%
reprogrammed) and unrelated age- and sex-matched controls (12
of 12 controls, 100% reprogrammed) (Fig. 1b). Briefly, primary
fibroblasts were reprogrammed by sendai viral delivery of KLF4,
OCT4, SOX2, and cMYC; presumably clonal lines were picked
and expanded 23–30 days following transduction. Following
extensive immunohistochemistry, fluorescent activated cell sort-
ing (FACS), quantitative polymerase chain reaction (qPCR) and
karyotype assays to assess the quality of the hiPSCs (Fig. 1b, e, f),
we selected two to three presumably clonal hiPSC lines per
individual (n = 40 COS, n = 35 control, Table 1; Supplementary
Data 1). A subset of these hiPSCs has been previously reported2.

Using dual-SMAD inhibition, three to five forebrain hiPSC-
NPC populations were differentiated from each validated hiPSC

line via an embryoid body intermediate6, once hiPSCs had been
passaged ~10 times. hiPSC-NPCs with normal morphology and
robust protein levels of NESTIN and SOX2 by FACS and/or
immunocytochemistry (Fig. 1g, h) (n = 32 COS, n = 35 control
hiPSC-NPCs representing 67 unique hiPSC lines reprogrammed
from 12 unique COS and 12 unique control individuals) were
selected for further differentiation to 6-week-old forebrain
neuron populations (Table 1; Supplementary Data 2). We have
previously demonstrated that hiPSC-NPCs can be directed to
differentiate into mixed populations of excitatory neurons,
inhibitory neurons and astrocytes7. hiPSC-neurons have neuronal
morphology, undergo action potentials, release neurotransmit-
ters, show evidence of spontaneous synaptic activity, and
resemble the gene expression of fetal forebrain tissue.

Because it required nearly 4 years to generate and differentiate
all hiPSCs, hiPSC-NPCs, and hiPSC-neurons, it was not possible
to fully apply standardized conditions across all cellular
reprogramming and neural differentiations. Media reagents,
substrates, and growth factors for fibroblast expansion, repro-
gramming, hiPSC differentiation, NPC expansion, and neuronal
differentiation, as well as personnel and laboratory spaces, varied
over time. Although individual fibroblast lines were repro-
grammed and differentiated to hiPSC-NPCs in the order in
which they were received, multiple randomization steps were
introduced at the subsequent stages, particularly the thaw,
expansion, and neuronal differentiation of validated hiPSC-
NPCs in preparation for RNA sequencing (RNA-Seq) (see
Supplementary Data 2 for available batch information). Only
validated hiPSC-NPCs that yielded high quality populations of
matched hiPSC-NPCs and hiPSC-neurons in one of three batches
of thaws were used for RNA-Seq (Supplementary Data 1, 2).

RNA-Seq data were generated from 94 samples (n = 47 hiPSC-
NPC, n = 47 hiPSC-neurons; n = 46 COS, n = 48 controls;
representing 42 unique hiPSC lines reprogrammed from 11
unique COS and 11 unique control individuals) following
ribosomal RNA (rRNA) depletion (Table 1; Supplementary
Data 2). The median number of uniquely mapped read pairs
per sample was 42.7 million, of which only a very small fraction
were rRNA reads (Supplementary Fig. 1; Supplementary Data 3).
In total 18,910 genes (based on ENSEMBL v70 annotations) were
expressed at levels deemed sufficient for analysis (at least 1 CPM
in at least 30% of samples); 11,681 were protein coding, 879 were
lncRNA, and the remaining were of various biotypes (Supple-
mentary Data 4).

Since six COS patients were selected based on CNV status, we
examined gene expression in the regions affected by the CNVs.
Despite the noise inherent to RNA-Seq and the high level of
biologically driven expression variation in samples without
CNVs, we identified corresponding hiPSC-NPC and hiPSC-
neuron expression changes in some CNV regions (Supplementary
Fig. 2).

In addition to SZ diagnosis-dependent effects, gene expression
between hiPSC-NPCs and hiPSC-neurons was expected to vary as
a result of technical12, epigenetic13, and genetic14 differences15.
Unexpectedly, we also observed substantial variation in cell type
composition (CTC) between populations of hiPSC-NPCs and
hiPSC-neurons. In the following sections, we discuss our strategy
to address these sources of variation.

Addressing technical variation in RNA-Seq data. We imple-
mented an extensive quality control pipeline to detect, minimize
and account for many possible sources of technical variation
(Fig. 1i). Samples were submitted and processed for RNA-Seq in
only one batch; RNA isolation, library preparation, and sequen-
cing were completed under standardized conditions at the New
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York Genome Center. Errors in sample mislabeling and cell
culture contamination were identified, allowing us to correct
sample labeling when possible and remove samples from further
analysis when not. Batch effects in both tissue culture and RNA-
Seq sample processing were corrected for and samples with

aberrant X-inactivation16 and/or residual Sendai virus expression
were flagged.

Expression patterns of genes on the sex chromosomes can
identify the sex of each sample, confirm sample identity, and also
measure the extent of X-inactivation in females. Using XIST on
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chrX and the expression of six genes on chrY (USP9Y, UTY,
NLGN4Y, ZFY, RPS4Y1, TXLNG2P), this analysis identified 2
mislabeled males that show a female expression pattern and 15
female samples that have expression patterns intermediate
between males and females (Supplementary Fig. 3A), consistent
with either contamination or aberrant X-inactivation.

Samples with mislabeling and/or cross-individual contamina-
tion, whether during cell culture and/or RNA library preparation,
were identified through genotype concordance analysis. Verify-
BamID17 was used to compare the genotype of the source
fibroblast samples with variants called from RNA-Seq data from
the respective hiPSC-NPCs and hiPSC-neurons. In total,
76 samples (81%; n = 38 hiPSC-NPC, n = 38 hiPSC-neurons;
n = 36 COS, n = 40 controls, from 10 unique COS and 9 unique
control individuals) were validated for subsequent analysis
(Table 1; Supplementary Data 2; Supplementary Fig. 3B).

Residual Sendai virus expression was assessed using Inchworm
in the Trinity package18, which performed de novo assembly of
reads that did not map to the human genome. Comparisons of
these contigs to the Sendai virus genome sequence (GenBank:
AB855655.1) quantified the number of reads corresponding to
residual Sendai expression in each NPC and neuron sample.
Although Sendai viral vectors are widely assumed to be lost
within 11 hiPSC passages19, and that on average our hiPSCs were
passaged > 10–15 times and our hiPSC-NPCs > 5 times, we
identified Sendai viral transcripts in a subset of our samples.
While the majority (70 of 87, 80%) (75 of the total 94, 79.8%) of
RNA-Seq samples did not contain any reads that mapped to the
Sendai viral genome, 17 (or 19 of total) samples (Supplementary
Data 2; Supplementary Fig. 4) showed evidence of persistent
Sendai viral expression at > 1 count per million. Differential
expression analysis identified 2768 genes correlated with Sendai
expression at FDR< 5% (Supplementary Data 5). We note that
this signal is not driven by outliers since quantile normalized
Sendai expression values were used in this analysis. In fact, these
genes are highly enriched for targets ofMYC (OR = 3.75, p< 6.4e-
38) (Supplementary Data 6, Supplementary Fig. 5A). Although
MYC is one of the four transcription factors (along with SOX2,
KLF4, and OCT4) used in hiPSC reprogramming, expression of
these four genes was not associated with Sendai expression
(Supplementary Fig. 5B). The correlation of residual Sendai
expression with activation of MYC targets suggests that this could
be a potential source of transcriptional and phenotypic variation
in hiPSCs; however, neither incorporating Sendai expression
as a covariate nor dropping samples with Sendai expression
from downstream expression meaningfully impacted overall
findings.

Overall, our rigorous bioinformatic strategy adjusted for
technical variation and batch effects, eliminated spurious samples,
and flagged samples that were contaminated or had aberrant X-
inactivation. This extensive analysis was motivated by the high
level of intra-donor expression variation (see below), and
eliminating these factors as possible explanations for this

expression variation ultimately improved our ability to resolve
SZ-relevant biology in our data set.

COS RNA-Seq data cluster with existing data sets. To assess the
similarity of our hiPSC-NPCs and hiPSC-neurons to other hiPSC
studies (by ourselves and others), as well as to post-mortem brain,
we compared our data set to publicly available hiPSC, hiPSC-
derived NPCs/neurons, and post-mortem brain homogenate
expression data sets (Fig. 2). Hierarchical clustering indicated that
similarity in expression profiles is largely determined by cell type
(Fig. 2a). hiPSC-NPC and hiPSC-neuron data sets were more
similar to prenatal samples than postnatal or adult post-mortem
samples20–22, which is consistent with previous reports6,23–26.
hiPSC-NPCs and hiPSC-neurons, as well as post-mortem brain
samples, cluster separately from hiPSCs, ESCs, fibroblasts
and whole blood12,20,27. Despite being reprogrammed and dif-
ferentiated through different methodologies, hiPSC-NPCs and
hiPSC-neurons from the current study cluster with hiPSC-NPCs
and hiPSC-neurons, respectively, generated previously in the
same lab2,28 and with hiPSC-NPCs and hiPSC-neurons from
others29, although some hiPSC-neurons3 are more similar to
prenatal brain samples from multiple brain regions22. Consistent
with a differentiation paradigm from hiPSC to NPC to neuron,
multidimensional scaling analysis (Fig. 2b) indicated that
hiPSC-NPCs more resemble hiPSCs/hESCs than do hiPSC-
neurons.

Genome-wide, hiPSC-NPCs and hiPSC-neurons express a
common set of genes, so that expression differences between
these cell types appear as changes in expression magnitude rather
than activation of entirely different transcriptional modules
(Supplementary Fig. 6). Yet this observation is also consistent
with continuous variation in CTC, whereby the transcriptional
signature of each cell type is present in each population at varying
levels. Moreover, for both hiPSC-NPCs and hiPSC-neurons,
genes that show high variance across donors in each cell type are
enriched for brain eQTLs (Supplementary Fig. 7). Taken together,
these two insights justified case-control comparisons within and
between both hiPSC-NPCs and hiPSC-neurons.

Large heterogeneity in cell type composition. Given the sub-
stantial variability we observed between hiPSC-NPCs and hiPSC-
neurons, even from the same individual (Supplementary Fig. 8),
it seemed likely that inter-hiPSC and inter-NPC differences in
differentiation propensity led to unique neural compositions in
each sample. hiPSC-NPCs show extensive cell-to-cell variation
in the expression of forebrain and neural stem cell markers6 and
6-week-old neurons are comprised of a heterogeneous mixture of
predominantly excitatory neurons, but also inhibitory and rare
dopaminergic neurons, as well as astrocytes7. We hypothesized
that CTC could be inferred using existing single cell RNA-Seq
data sets and would enable us to (partially) correct for variation in
differentiation efficiencies and account for some of the intra-
individual expression variation.

Fig. 1 COS hiPSC cohort reprogramming and differentiation. a Validated hiPSCs (from 14 individuals with childhood-onset-schizophrenia (COS) and 12
unrelated healthy controls) and NPCs (12 COS; 12 control individuals) yielded 94 RNA-Seq samples (11 COS; 11 control individuals). b Schematic illustration
of the reprogramming and differentiation process, noting the yield at each stage. c Sex breakdown of the COS-control cohort. d Breakdown of SZ-
associated copy number variants in the 11 COS patients with RNA-Seq data. e Representative qPCR validation of NANOG, NESTIN, and SYN1 expression in
hiPSCs (white bar), NPCs (light gray) and 6-week-old neurons (dark gray) from three individuals. f FACS analysis for pluripotency markers TRA-1-60 (left)
and SSEA4 (right) in representative control (blue, n= 17) and COS (red, n= 16) hiPSCs. g FACS analysis for NPC markers SOX2 (left) and NESTIN (right)
in control (blue, n= 34) and COS (red, n= 37) NPCs. h Representative images of NPCs (left) and 6-week-old forebrain neurons (right) from control (top)
and COS (bottom). NPCs stained with SOX2 (red) and NESTIN (green); neurons stained with MAP2 (red). DAPI-stained nuclei (blue). Scale bar=50 μm.
i Computational workflow showing quality control, integration with external data sets, computational deconvolution with Cibersort, decomposition multiple
sources of expression variation with variancePartition, coexpression analysis with WGCNA, differential expression and concordance analysis
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Bulk RNA-Seq analysis reflects multiple constituent cell types;
therefore, we performed computational deconvolution analysis
using CIBERSORT30 to estimate CTC scores for each hiPSC-NPC
and hiPSC-neuron sample (Fig. 3). A reference panel of single-
cell sequencing data from mouse brain31, mouse cell culture of
single neural cells32 and bulk RNA-Seq from hiPSC27 was
applied.

Overlaying CTC scores on a principal component analysis
(PCA) of the expression data indicates that hiPSC-NPCs and
hiPSC-neurons separate along the first principal component
(PC), explaining 25.8% of the variance, and that the cell types
have distinct CTC scores (Fig. 3a–c). As expected, hiPSC-neuron
samples had a higher neuron CTC score than hiPSC-NPCs (mean
increase = 0.06, p< 1.05e-6 by linear model) (Fig. 3a), while
hiPSC-NPCs had a higher hiPSC CTC score (mean increase =
0.20, p< 1.49e-31 by linear model), consistent with a “stemness”
signal (a neural stem cell profile was lacking from our reference)
(Fig. 3b). Unexpectedly, hiPSC-neurons had a higher fibroblast1
score (mean increase = 0.09, p< 1.1e-6 by linear model) (Fig. 3c).
Rather than imply that there are functional fibroblasts within the
hiPSC-NPC populations, we instead posit that this fibroblast
signature is instead marking a subset of unpatterned, potentially
non-neuronal cells32. Analysis of external NPC and neuron data
sets indicates that these observations were reproducible, although
there is substantial variability in CTC scores across data
sets (Supplementary Fig. 9). Correction for CTC improved our

ability to distinguish hiPSC-NPC and hiPSC-neuron populations;
nonetheless, there remained substantial variability within
both the hiPSC-NPCs and hiPSC-neurons that corresponded to
CTC (Fig. 3d).

Not only is there significant overlap between fibroblast,
mesenchymal and neural crest gene expression signatures
(reviewed33), but both skin fibroblast preparations34 and
hiPSC-derived NPCs35–37 show evidence of mesenchymal and/
or neural crest contaminants. Therefore, it is important to
consider the fibroblast1 and fibroblast2 signatures only as a tool
with which to assess the variability in differentiation quality; high
values for the “fibroblast signature” may well imply the presence
of non-fibroblast contaminant(s) such as neural crest and/or
mesenchymal cells. Supplementary Fig. 10 plots the expression of
key neural crest38,39 and mesenchymal40 genes in our hiPSC-
NPC and hiPSC-neuron data sets, as well as the reference panels.

The effect of CTC heterogeneity, likely due to the variation in
differentiation efficiency, can be reduced by including multiple
CTC scores in a regression model and computing the residuals.
Using an unbiased strategy, we systematically evaluated which
CTC score(s), when included in our model, most explained the
variance in our samples. PCA on the residuals from a model
including fibroblast1 and fibroblast2 CTC scores showed a
markedly greater distinction between cell types, such that the
first PC now explained 45.3% of the variance (Fig. 3e). Moreover,
accounting for the CTC scores increased the similarity between
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Table 1 Number of individuals and cell lines at each step of experimental workflow

Experimental workflow Total individuals Total hiPSC lines Total NPC lines Total neurons

control COS control COS control COS control COS

Fibroblasts 12 16 – – – – – –
hiPSCs 12 14 35 40 – – – –
NPCs 12 12 35 32 35 32 – –
RNA submitted 11 11 20 22 24 23 24 23
RNA-Seq QC passed 9 10 17 18 20 18 20 18
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the multiple biological replicates generated from the same donor
and resulted in less intra-individual variation within each cell type
(Fig. 3f, Supplementary Fig. 11). Finally, accounting for CTC was
necessary in order to see concordance with one of the adult post-
mortem cohorts (see below).

Characterizing known sources of expression variation. As dis-
cussed above, gene expression (in our data set and others) is
impacted by a number of biological and technical factors. By
properly attributing multiple sources of expression variation, it is
possible to (partially) correct for some variables. To decompose
gene expression into the percentage attributable to multiple bio-
logical and technical sources of variation, we applied var-
iancePartition41 (Fig. 4). For each gene we calculated the
percentage of expression variation attributable to cell type, donor,
diagnosis, sex, as well as CTC scores for both fibroblast sets. All
remaining expression variation not attributable to these factors
was termed residual variation. The influence of each factor varies
widely across genes; while expression variation in some genes is
attributable to cell type, other genes are affected by multiple
factors (Fig. 4a). Overall, and consistent with the separation of
hiPSC-NPCs and hiPSC-neurons by the first PC, cell type has the

largest genome-wide effect and explained a median of 13.3% of
the observed expression variation (Fig. 4b). Expression variation
due to diagnosis (i.e., between SZ and controls) had a detectable
effect in a small number of genes. Meanwhile, variation across the
sexes was small genome-wide, but it explained a large percentage
of expression variation for genes on chrX and chrY. Technical
variables such as hiPSC technician, hiPSC date, NPC generation
batch, NPC technician, sample name, NPC thaw and RIN
explained little expression variation (Supplementary Fig. 12),
especially compared to technical effects observed in previous
studies12,41.

Variation attributable to cell type heterogeneity across the CTC
scores had a larger median effect than the variation across the 22
donors (fibroblast1: 3.3%, fibroblast2: 3.2%). The median observed
variation across donor is 2.2%, substantially lower than reported
in other data sets from hiPSCs12,42 and other cell types41. By
considering CTC in our model, the percentage of variation
explained by donor significantly increased (median increase to
2.4%, p< 5.8e-62, one-sided paired Wilcoxon), indicating that
cell type heterogeneity is an important source of intra-donor
expression variation that obscures some inter-donor variation
(i.e., case/control differences) of particular biological interest.
Critically, there is no apparent diagnosis dependent variation in
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CTC (Supplementary Fig. 13). By compensating for CTC, we
prevent variation in neuronal differentiation between hiPSCs
from overriding some of the donor-specific gene expression
signature that is the central focus of patient-derived cell culture
models.

The percentage of expression variation explained by each factor
has a specific biological interpretation. PRRX1 is known to
function in fibroblasts43,44 and variation in the fibroblast1 CTC
score explains 38.3% of expression variant in this gene (Fig. 4c).
Expression of CNTN4 is driven by an eQTL in brain tissue that
corresponds a risk locus for SZ21. In our data, CNTN4 has 67.4%
expression variation across donors suggesting that this variation

is driven by genetics (Fig. 4d). Genes that vary across diagnosis
correspond to differentially expressed genes, including FZD6, a
WNT signaling gene linked to depression45, (Fig. 4e) and QPCT,
a pituitary glutaminyl-peptide cyclotransferase that has been
previously associated with SZ46 (Fig. 4f).

Genes that vary across donors were enriched for eQTLs
detected in post-mortem brain tissue21 (Fig. 4g), meaning that
observed inter-individual expression variation reflected genetic
regulation of expression. Conversely, genes with expression
variation attributable to cell type (CTC scores) are either neutral
or depleted for genes under genetic control, indicating that
variation in CTC was either stochastic or epigenetic, but did not
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reflect genetic differences between individuals. Finally, the high
percentage of residual variation not explained by factors
considered here suggests that there are other uncharacterized
sources of expression variation, including stochastic canalization
effects or unexplained variation in CTC.

WGCNA analysis identifies modules enriched for SZ and CTC.
Genes with similar functions are known to share regulatory
mechanisms and so are often coexpressed47. We used weighted
gene coexpression network analysis (WGCNA)48 to identify
modules of genes with shared expression patterns (Fig. 5, Sup-
plementary Data 7). Genes were clustered into modules of a
minimum of 20 genes, and each module was labeled with a color
(Supplementary Fig. 14). Genes that did not form strong clusters
were assigned to the gray module. Analysis was performed
separately in hiPSC-NPCs and hiPSC-neurons; each module was
evaluated for enrichment of genes for multiple biological pro-
cesses. Many modules were highly enriched for genes that were
significantly correlated with CTC scores at FDR< 5%, under-
scoring the genome-wide effects of cell type heterogeneity. Genes
that were differentially expressed between cases and controls in
this study (see below) were enriched in the gray modules in
both hiPSC-NPCs (OR = 1.99, p< 1.45e-5) and hiPSC-neurons
(OR = 3.44, p< 5.04e-12, hypergeometric test), indicating that in
this data set, differentially expressed genes did not form a
coherent structure but are instead widely distributed. Genes
identified by genetic studies (i.e., common variants, CNVs, rare
loss of function and de novo variants) and case/control signatures
from two post-mortem data sets (the CommonMind Consortium
(CMC)21 and the NIMH Human Brain Collection core (HBCC))
showed moderate enrichment in many modules, but did not
strongly overlap with the gray modules enriched for differentially
expressed genes from this study. Finally, gene sets corresponding
to the neural proteome show the strongest enrichment in the
brown module from hiPSC-neurons, including, the targets of
FMRP (OR = 4.06, p< 2.84e-40) and genes involved in post-
synaptic density (OR = 3.35, p< 5.45e-22).

Differential expression between COS and control hiPSC-NPCs
and hiPSC-neurons. The central objective of this study was to

determine if a gene expression signature of SZ could be detected
in an experimentally tractable cell culture model (Fig. 6). Due to
the “repeated measures” study design where individuals are
represented by multiple independent hiPSC-NPC and hiPSC-
neuron lines, we used a linear mixed model by applying the
duplicateCorrelation function in our limma/voom analysis49.
This approach is widely used to control the false positive rate in
studies of repeated measures and its importance in hiPSC data
sets was recently emphasized15.

Differential expression analysis between cases and controls in
hiPSC-NPCs (Fig. 6a) identified 1 gene with FDR< 10% and 5
genes with FDR< 30%; analysis in hiPSC-neurons (Fig. 6b)
identified 1 gene with FDR< 10% and 5 genes with FDR< 30%
(Supplementary Data 8).

While plausible candidates such as FZD6 and QPCT were
differentially expressed, gene set enrichment testing did not
implicate a coherent set of pathways (Supplementary Data 9). As
SZ is a highly polygenic disease and this data set is underpowered
due to the small sample size21, we expected the disease signal to
be subtle and distributed across many genes. Despite performing
extensive analysis using sophisticated statistical methods built on
top of the limma/voom framework50 that incorporated genes that
were not genome-wide significant and using permutations to
empirically set the significance cutoff (see Methods), we failed to
identify a coherent biological enrichment. Nonetheless, there was
an unexpected concordance in the differential expression analysis
between COS and control hiPSC-NPCs and hiPSC-neurons,
which showed remarkably similar log2 fold changes (Fig. 6c).
Moreover, no genes had log2 fold changes that were statistically
different in the two cell types, although we were underpowered to
detect such differences.

Overall, our differential expression analysis demonstrated that
case-control hiPSC-based cohorts remain under-powered to
resolve biologically coherent SZ-associated processes. None-
theless, the concordance in the disease signature identified in
hiPSC-NPCs and hiPSC-neurons implies that future studies could
focus on just one cell type.

Concordant differential gene expression with post-mortem
data sets. While it is well-understood that all hiPSC-based studies
of SZ remain under-powered due to small sample sizes and
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polygenic disease architecture, what is less appreciated is that
post-mortem approaches are similarly constrained. Using allele
frequencies from the Psychiatric Genetics Consortium data, the
median number of subjects needed to obtain 80% power to
resolve genome-wide expression differences in SZ cases was
estimated to be ~28,500, well beyond any existing data set21.
Nonetheless, we evaluated the concordance of our data set with
the findings of two much larger post-mortem studies, CMC:
RNA-Seq from 537 donors; NIMH HBCC, microarrays from 307
donors) by computing the correlation in t-statistics from the
differential expression analysis between cases and controls.

The Spearman correlation between our hiPSC-NPC results and
the CMC and NIMH HBCC results were 0.108 and 0.0661,
respectively; for the hiPSC-neurons results, the correlations were
0.134 and 0.0896, respectively (Fig. 6d, Supplementary Figs. 15
and 16). These correlations were highly statistically significant
(Fig. 6e) for both hiPSC-NPCs: p< 4.6e−40 and 7.8e−12 for CMC
and HBCC, respectively; and for hiPSC-neurons: p< 6.7e−61 and
1.6e−20 respectively (Spearman correlation test). Similar results
were obtained by using Pearson correlation and by evaluating the
concordance using the log2 fold changes from each data set
(Supplementary Figs. 15 and 16). This stronger concordance of

hiPSC-neurons (relative to hiPSC-NPCs) with post-mortem
findings is consistent with the hypothesis that neurons are the
cell type most relevant to SZ risk51, but our ability to resolve it is
perhaps surprising in that neurons are estimated to comprise a
minority of the cells in brain homogenate52. To a lesser extent,
this concordance was also detected in ASD and BD post-mortem
data sets, but not in other neuropsychiatric disorders53 such as
alcoholism and major depression disorder, or a variety of cancer
types54 (Fig. 6f), indicating the specificity of our results.

While the concordance with CMC was observed when
correcting for any set of CTC scores (or none), the concordance
with HBCC was only apparent when correcting for the fibroblast1
CTC score (Supplementary Fig. 17). This illustrates the
importance of accounting for CTC and the fact that concordance
can be obscured by biological sources of expression variation. The
genes for which the differential expression signal was boosted by
accounting for the fibroblast1 score were enriched for brain and
synaptic genesets, including specific biological functions such as
FMRP and mGluR5 targets (Supplementary Figs. 18 and 19).

Given the degree of concordance in the SZ differentially
expressed genes between the hiPSC-NPCs, hiPSC-neurons, CMC
and NIMH HBCC data sets (Fig. 6d, e), the lack of enrichment of
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the CMC or NIMH HBCC differentially expressed genes in the
“gray module” of our coexpression analysis (Fig. 5) is noteworthy.
Although the concordance and coherence of the signal between
hiPSC-NPCs and hiPSC-neurons with two post-mortem data sets
was relatively low, we believe this reflects the small sample size
and low power of our current study and predict that both will
increase with expanding sample sizes in future studies.

Discussion
SZ is a complex genetic disease arising through a combination of
rare and common variants. Recent large-scale genotyping studies
have begun to reveal the extent to which SZ risk reflects rare copy
number variants (CNVs)11 and coding mutations55, as well as
common single nucleotide polymorphisms (SNPs) with small
effect sizes56. The strongest finding to date from these genetic
studies is that SZ-associated variants are enriched for pathways
primarily associated with synaptic biology55,57. Although > 50
post-mortem gene expression studies of SZ have been reported,
the results have been inconsistent, likely owing to the small
sample sizes involved21. The largest of these, comparing brain
tissue from 258 subjects with SZ and 279 controls did not find
evidence for case–control differential expression among the
implicated SZ risk genes; moreover, by modeling both the allele
frequencies and the predicted allelic effects on gene expression,
they predicted the median number of subjects needed to obtain
genome-wide power (80%) to be ~28,50021. This issue of small
sample sizes is not unique to post-mortem studies, and may be

exacerbated in hiPSC-based experiments through the variability
that arises as a result of the reprogramming and differentiation
processes. We established an hiPSC cohort of COS patients58–62,
testing our ability to model gene expression changes associated
with both common and rare variants in vitro. While other studies
have focused on SZ cohorts comprised of relatively few indivi-
duals with rare mutations3–5, we sought to determine to what
extent a larger cohort captured the expression signature of
polygenic SZ, focusing on COS due to the higher genetic burden
of both rare and common variants in these patients.

The goal of studying patient-derived cell culture models is to
develop an experimentally tractable platform that recapitulates a
donor-specific gene expression signature. Retaining this donor-
specific signature is essential to studying case-control differences.
In two recent studies of hiPSCs, variance across donors explained
a median of ~655 and 48.8%12 of expression variation, while the
effect of donor was much smaller (2.2%) in this study. We
hypothesize that donor effects are reduced due to stochastic noise
in the differentiation from hiPSCs to neurons; it remains to be
established whether different hiPSC-derived cell types will retain
more or less donor signal over the course of differentiation. In our
data set, while genes with high expression variation across donors
were enriched for eQTLs detected in post-mortem brain, sub-
stantial expression variation within donors obscured some bio-
logical signal. In order to identify biological or technical
variations that explained this intra-donor expression variation, we
implemented a quality control pipeline to detect sample mis-
labeling, cell culture contamination, residual Sendai virus
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expression, incomplete X-inactivation and batch effects in sample
processing; however, it was only accounting for variation in CTC
that significantly decreased intra-donor variation.

The persistent expression of exogenous reprogramming factors,
particularly c-MYC, despite the use of sendai viral non-integrative
methods has been previously reported63,64 and may reflect the
variation of vector replication between cell lines, as well as a
potential growth advantage of c-MYC expressing cells64.
Although standard non-integrative methodologies rely upon
passive and inefficient omission for the loss of sendai viral
vectors64, new methods, such as auto-erasable Sendai virus
vectors65, should facilitate the generation of truly transgene-free
hiPSCs.

Given the challenges of low statistical power, substantial intra-
donor variation, and the range of complicating factors that can
obscure the disease signal, future hiPSC-based studies of human
disease should be carefully designed to maximize power. One
particular challenge affecting many studies is the tradeoff between
increasing the number of biological replicates and increasing the
number of donors. The statistical concept of “effective sample
size” (ESS) addresses this issue directly and indicates that the
tradeoff is dependent on the cost per donor and per hiPSC line in
addition to the fraction of expression variation explained by
donor (Supplementary Note 1). When a study includes multiple
correlated samples from the same donor, the ESS is defined as the
sample size of a study with equivalent power composed of only
independent samples (Fig. 7). When the cost for each donor and
each additional replicate are equal, adding an additional donor
will increase the ESS by one unit (Fig. 7a), while adding an
additional sample from an existing donor will increase the ESS by
only a fraction of a unit because a sample correlated with it is
already in the data set. The contribution of each additional
sample is determined by the donor effect. Therefore, when bio-
logical replicates from the same donor are very correlated, the
increase in ESS can be small. Conversely, adding replicates when
there is high intra-donor variability (i.e., a low donor effect) can
have a larger increase on ESS. The fact that the donor effect in the
current study is lower than in previous hiPSC studies12,42 affects
the contribution of each additional sample to the ESS (Fig. 7b).
When the costs for an additional hiPSC line are less than the cost
of an additional donor, the calculus changes in favor of including
additional biological replicates (Fig. 7c, d). We have developed a
public website (http://gabrielhoffman.shinyapps.io/design_ips_-
study/) that computes the ESS in order to design a study to
maximize power. These calculations consider constraints on
either total budget or number of donors, as the relative cost and
donor effect change. Overall, our conclusion is that the best way
to maximize ESS, while controlling the false positive rate, is often
to use one hiPSC line per donor and increase the number of
donors, rather than using multiple replicate clones from a smaller
set of donors15,66,67.

In addition to maximizing cohort ESS, future studies will
benefit from decreasing intra-donor expression variation by
optimizing neuronal differentiation/induction protocols to focus
on decreasing cellular heterogeneity (rather than increasing total
yield). The generation of single-cell sequencing data sets from
hiPSC-NPCs and/or hiPSC-neurons will further yield a custom
reference panel with which to improve CTC deconvolution. In
fact, our results suggest that to maximize ESS while minimizing
associated costs, it may be sufficient to focus on a single cell type,
hiPSC-neurons rather than hiPSC-NPCs. Given our improved
understanding of the inherent challenges associated with studying
highly polygenic diseases as well as the biological constraints
encountered with hiPSC-based models here, disease signal will be
further improved by reducing disease heterogeneity through
focusing on cohorts of patients with shared genetic variants and/

or the genetic engineering of isogenic hiPSC lines to introduce or
repair SZ-relevant variants.

Despite our relatively small sample size, we were able to
identify a subtle but statistically significant concordance between
both COS hiPSC-NPCs and hiPSC-neurons with two recent SZ
post-mortem cohorts21, an effect that was strongest in hiPSC-
neurons. Yet this shared biology did not yield enrichments at the
pathway or network level in the diagnosis-dependent differen-
tially expressed genes observed between hiPSC-NPCs and hiPSC-
neurons with either post-mortem data set. Moving forward,
increasing the sample size of hiPSC-based cohorts may improve
this concordance and biological coherence. Alternatively, it is
possible that many SZ-associated processes are not present in
simple monolayer hiPSC-NPC and hiPSC-neuron populations;
relevant aspects of SZ biology may only be detected through
activity-dependent processes arising from complex neuronal cir-
cuitry, following oligodendrocyte myelination, astrocyte support
or microglia pruning, or after exposure to neuroinflammation or
environmental stimuli. While the best strategy to improve bio-
logical significance is to strive to enhance the complexity of
hiPSC-based models, the surest approach to improve the power
of case-control comparisons is to integrate a growing number of
post-mortem and hiPSC studies. In either case, to facilitate
improved sharing between stem cell laboratories, all hiPSCs have
already been deposited at a repository. We urge widespread
sharing of all RNA-Seq data and reproducible scripts, and so
make ours available.

Methods
hiPSC derivation and differentiation. Description of COS cohort: Childhood-
onset-schizophrenia (COS) is reliably diagnosed in children using unmodified
DSM criteria68; there is no clinical, neuroimaging, pharmacological or genetic
evidence to suggest that COS is a distinct disorder (reviewed69–71). This is an
unusually well-characterized cohort, with medication-free in-patient observation
used for diagnosis72. The following clinical information was collected: gender, age
at biopsy, developmental history, age of symptom onset, IQ, number of hospita-
lizations as a measure of disease severity, positive and negative symptom scale,
diagnostic screening by Comprehensive Assessment of Symptoms and History
(CASH), attention tests, current antipsychotic treatment, clozapine responsiveness,
and substance abuse history.

Patients with COS, unaffected family members, and unrelated controls were
recruited into a longitudinal study by Dr Judith Rapoport at the NIMH9,10; many
had skin biopsies completed. The Rapoport laboratory generously provided
fibroblasts, from which 14 cases and 12 controls were reprogrammed. COS cases:
NSB499 (male), NSB581 (male), NSB676 (female), NSB1251 (male), NSB1275
(female), NSB1358 (male), NSB1442 (male), NSB1804 (female), NSB2011 (female),
NSB2476 (female), NSB2484 (female), NSB2513 (male), NSB2620 (male), NSB2962
(male). Controls: NSB553 (male), NSB690 (male), NSB2607 (male), NSB3084
(male), NSB3113 (female), NSB3121 (female), NSB3130 (male), NSB3158 (female),
NSB3182 (female), NSB3183 (female), NSB3188 (female), NSB3234 (male). All
fibroblast samples had IlluminaOmni 2.5 bead chip genotyping9,10, PsychChip and
exome sequencing completed. The PsychChip genotyping data were used to
calculate the polygenic risk score for each individual in this study; polygenic risk
scores and SZ-relevant CNVs are listed in Supplementary Data 1 and 2. All adult
subjects (and parents of minor subjects) provided written and informed consent for
skin biopsies, hiPSC reprogramming and genetic analyses. Minor subjects provided
written and informed assent. All work was reviewed by the Internal Review Board
of the Icahn School of Medicine at Mount Sinai. This work was also reviewed by
the Embryonic Stem Cell Research Oversight Committee at the Icahn School of
Medicine at Mount Sinai.

HFs were cultured on 0.1% (w/v) gelatin coated plates in HF medium (DMEM
(ThermoFisher Scientific), 20% (v/v) FBS (Corning)). Replicating 90% confluent
HFs were reprogrammed using a modified protocol; briefly, HFs were transduced
with Cytotune® Sendai viruses (ThermoFisher Scientific) expressing OCT4, SOX2,
KLF4 and c-MYC, as per lot specifications. Cells from a single well of a six-well
plate were split 1:2, 1:3 and 1:10 onto 10-cm plates containing 1×106 mouse
embryonic fibroblasts (mEFs; GlobalStem). Cells were switched to hiPSC media
(DMEM/F12, 20% KO-Serum Replacement (v/v), 1% (v/v) GlutaMAX, 1% (v/v)
nonessential amino acids (NEAA), 55 μM β‐mercaptoethanol (β‐me) (all
ThermoFisher Scientific) and 20 ng ml−1 FGF2 (R & D Systems, 233-FB-10)) and
fed daily. hiPSC colonies were manually picked and clonally plated onto 24-well
mEF-coated plates. hiPSC lines were maintained on mEFs in hiPSC media; at early
passages, hiPSCs were split using manual passaging and at higher passages, hiPSC
were enzymatically passaged with Collagenase (1 mg/ml in DMEM) (Sigma) until
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cryopreservation in cold freezing media (hiPSC media containing 10% DMSO).
Individual hiPSC lines were validated using TRA-1-60 and SSEA-4 flow cytometry
and NANOG, TRA-1-60, SOX2 and OCT4 immunocytochemistry. G-banded
karyotyping was performed by WiCell Cytogenetic Services. The differentiation
potential of the hiPSCs derived in this study was confirmed by RT-PCR for
markers of the three germ layers following spontaneous differentiation of a subset
of the lines into embryoid bodies. Routine (every 2–4 weeks) mycoplasma testing
was conducted using the MycoAlert Mycoplasma detection kit (Lonza); all cells
used in this study and were found to be negative.

NPCs were generated from unique hiPSC lines with had normal karyotypes,
and then passed NPC quality control based on immunocytochemistry and FACS
for SOX2 and NESTIN levels. NPCs were derived, as previously described6 and
maintained at high density, grown either growth factor reduced Matrigel (BD
Biosciences) coated plates in NPC media (Dulbecco’s Modified Eagle Medium/
Ham’s F12 Nutrient Mixture (ThermoFisher Scientific), 1x N2, 1x B27-RA
(ThermoFisher Scientific) and 20 ng ml−1 FGF2 and split 1:3 every week with
Accutase (Millipore, Billerica, MA, USA). NPCs were dissociated with Accutase
and plated at 2.0×105 cells per cm−2 in NPC media onto growth factor reduced
Matrigel-coated plates. For neuronal differentiation, media was changed to neural
differentiation medium (DMEM/F12, 1xN2, 1xB27-RA, 20 ng ml−1 BDNF
(Peprotech), 20 ng ml−1 GDNF (Peprotech), 1 mM dibutyryl-cyclic AMP (Sigma),
200 nM ascorbic acid (Sigma) and 1 μg ml−1 laminin (ThermoFisher Scientific)
1–2 days later. NPC-derived neurons were differentiated for 6 weeks.

FACS. hiPSCs were labeled with TRA-1-60-488 (5 μl per 1×106 cells, BioLegend
#330613) and SSEA4-647 (5 μl per 1×106 cells, BioLegend #33407) in 1% (w/v)
BSA for 45 min at 4 °C before being washed with 1× PBS and resuspended in FACS
buffer (1× PBS (no Mg2+/Ca2) containing 1% (v/v) BSA and TO-PRO®3 (1 μM,
ThermoFisher Scientific) and filtered using a 40 μm filter (BD Biosciences). NPCs
were dissociated using Accutase, fixed for 10 min in 4% paraformaldehyde (PFA),
permeabilized and blocked with 0.5% (v/v) Triton (Sigma)/1% (w/v) bovine serum
albumin (BSA, Sigma) in PBS and labeled with NESTIN-647 (20 μl per 1×106 cells,
BD Biosciences #560393) and SOX2-488 (0.25 μg per 1×106 cells, BioLegend
#656110) antibodies overnight at 4 °C before being washed with PBS and resus-
pended in FACS buffer (1× PBS (no Mg2+/Ca2) containing 1% (v/v) BSA and TO-
PRO®3 (1 μM, ThermoFisher Scientific) and filtered using a 40 μm filter (BD
Biosciences). Cytometry was performed using a LSR-II or FACS Canto (BD
Biosciences) and analysis was performed using Flowjo (v8.7.3, Treestar).

qPCR. Total RNA was extracted using Trizol following the manufactures
instructions. Transcript analysis was carried out using a QuantStudio™ 7 Flex
Real-Time PCR System using the Power SYBR green RNA-to-Ct RT-qPCR kit for
primers (all ThermoFisher Scientific). Around 50 ng of RNA template was added to
the PCR mix. (ThermoFisher Scientific). qPCR conditions were as follows, 48 °C
for 15 min, 95 °C for 10 min followed by 40 cycles (95 °C for 15 s, 60 °C for 60 s).
Primers used as follows: NANOG (f: CAGTCTGGACACTGGCTGAA, r:
CTCGCTGATTAGGCTCCAAC), NESTIN (f: GAAACAGCCATA-
GAGGGCAAA, r: TGGTTTTCCAGAGTCTTCAGTGA), SYN1 (f: GCA AGG
ACG GAA GGG ATC ACA TCA, r: CCTGAGCCATCTTGTTGACCACGA),
ACTIN (f: TGTCCCCCAACTTGAGATGT, r: TGTGCACTTTTATT-
CAACTGGTC), GAPDH (f: AGGGCTGCTTTTAACTCTGGT, r: CCCCACTT-
GATTTTGGAGGGA). Data were analyzed using GraphPad PRISM 6 software.
Values are expressed as mean ± SEM.

RNA sequencing. RNA Sequencing libraries were prepared using the Kapa Total
RNA library prep kit with ribo-depletion and strand specific cDNA library con-
struction (Kappa Biosystems). Paired-end sequencing reads (125 bp) were gener-
ated on an Illumina HiSeq2000 platform (New York Genome Center).

RNA-Seq processing. RNA-Seq reads were aligned to GRCh37 with STAR
v2.4.0g173. Uniquely mapping reads overlapping genes were counted with fea-
tureCounts v1.4.474 using annotations from ENSEMBL v70. All analysis used log2
counts per million (CPM) following TMM normalization75 implemented in edgeR
v3.14.076 unless stated otherwise. Genes with over > 1 counts per million in at least
30% of the experiments were retained.

Identity checking. Variant concordance analysis was performed to identify
instances where samples labeled as being from the same donor are discordant based
on variant calls. Variants were called from the RNA-Seq BAM files using GATK
3.477 following best practices to produce gVCF files. These files were merged using
the GATK CombineVCFs functionality. The resulting VCF was then merged with
variants from whole exome sequencing and PsychChip array from the same
donors. Variant concordance between all pairs of samples was evaluated with
bcftools v1.3. Discordant samples were relabeled when possible, otherwise they
were excluded from downstream analysis.

Contamination analysis. VeryifyBamID17 compares a BAM file from a sequencing
experiment (i.e., RNA-Seq, or whole exome sequencing) to a set of reference

genotypes to identify sample contamination. The software estimates the con-
tamination percentage for each sample using a sophisticated statistical model. Each
RNA-Seq BAM file was analyzed with verifyBamID using a VCF from either the
PsychChip and whole exome sequencing data as the reference set. Results from
both analyses were very similar. This method was originally designed for DNA
sequencing where variants calls have a much lower error rate than from RNA-Seq.
For this reason, multipotency data are expected to have increased contamination
estimates even under the null model of no contamination.

Analysis of gene expression within CNV regions. CNV coordinates where
stored in a BED file and genes overlapping these regions were identified in R. Gene
expression residuals were computed by fitting log2 CPM for each in a linear model
in order to remove the effect of cell type. Z-scores for each gene were computed by
subtracting the mean and dividing by the standard deviation for each gene.
Expression outliers were identified based on extreme z-scores.

Sendai virus detection and quantification. Reads that did not map to the human
genome with STAR were saved in a separate FASTQ file and Trinity18 was used to
perform de novo assembly of these reads. Trinity was run with flags—no_r-
un_chrysalis—no_run_butterfly and otherwise with default settings were used.
This produced a FASTA file of de novo contigs for each RNA-Seq experiment.
Bowtie2 v2.1.078 was used to index this FASTA file and TopHat2 v2.0.679 was used
to align reads from the RNA-Seq FASTQ to the de novo contigs. This step
quantifies how many reads correspond to each contig. Next, each contig was
aligned to a database of complete viral genes from NCBI using BLAST80. The
results were filtered to retain only contigs aligning to the Sendai virus genome
sequence (GenBank: AB855655.1). Note that the specific Sendai virus used in the
iPSC reprogramming has been engineered to incorporate four human transcription
factors, and the genome sequence is not available. Therefore we used AB855655.1
as a proxy. Finally, reads corresponding to contigs that align to the Sendai genome
were counted for each RNA-Seq experiment and these values were included in
downstream analysis.

Cell composition analysis. Cell type composition scores were computed using
CIBERSORT v1.0430 using default settings on the web interface. CIBERSORT uses
a machine learning approach to estimate the cellular composition of each sample
based on the expression profiles of a set of reference cell types. The reference set
was constructed based on biological expectations of the constituent cell types.

● Single cell RNA-Seq from mouse brain31: Astrocytes, Neuron, Oligodendrocyte
Precursor Cell, Newly Formed Oligodendrocyte, Myelinating Oligodendro-
cytes, Microglia, Endothelial Cells

● Single cell RNA-Seq from mouse cell culture from direct reprogramming from
mouse embryonic fibroblast to neuron32. We included untreated mouse
embryonic fibroblast (here termed fibroblast2). Cells were transformed with
Ascl1, Brn2 and Myt1l and cultured for 22 days. Single cells were sequenced,
clustered computationally, and annotated based on characterizing gene
expression patterns. Cells with annotated based on expression of know genes
as either: Neuron, Myocyte, Fibroblast (here termed fibroblast1).

● Bulk RNA-Seq from hiPSC27.

Since single-cell expression data can be very noise, multiple examples of each
cell type were included in the reference panel and the component scores were
summed for each cell type. This analysis was performed multiple times with
different representatives of each cell type included each time to ensure the results
were robust.

For each sample, CIBERSORT reports the estimated percent composition for
each cell type in the reference panel. However, the scale of these percentages is
sensitive to the other cell types included in the panel and is often not biologically
plausible. For example, while the hiPSC composition of NPCs is estimated to be
~35–57%, this not biologically realistic because (i) hiPSCs cannot survive in NPC
culture conditions, (ii) hiPSCs replicate more quickly than NPCs, (iii) colonies of
hiPSCs would be immediately visually obvious in NPC or neuron cultures, and (iv)
NPCs do not show strong expression of critical hiPSC markers such as NANOG,
OCT4 or TRA-1-60. Instead, we treat these results as “composition scores” and
ignore the scale, focusing on comparing scores for a given cell type across all
samples. In this context, the high hiPSC composition score for NPCs likely
indicates a “stemness” signal that would be expected to be evident in NPCs and be
much lower in neurons.

Linear mixed model analysis. The expression variance for each gene was parti-
tioned into the variance attributable to each variable using a linear mixed model
implemented in variancePartition v1.5.341. The results were visualized using the
package’s build-in functions. Categorical variables (i.e., cell type, donor, diagnosis,
sex) were modeled as random effects and continuous variables (i.e., cell compo-
sition scores) were modeled as fixed effects. Each gene was considered separately
and the results for all genes were aggregated afterwards.
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Integration of RNA-Seq data sets. RNA-Seq data sets were obtained from GTEx
(http://www.gtexportal.org), CommonMind (http://www.synapse.org/CMC),
BrainSpan (http://www.brainspan.org/), and GEO (https://www.ncbi.nlm.nih.gov/
geo/). Gene-level counts for Entrez or HGNC symbols were assigned to the cor-
responding ENSEMBL identifier. Genes with > 1 count per million in 10% of the
samples in each data set were retained. This left 12,670 genes in common across all
data sets. All expression values were converted to log2 RPKM. Quantile normal-
ization was performed on all samples using normalizeBetweenArrays in the limma
package50.

Concordance analysis. The correlation between t-statistics from differential
expression analysis of SZ donors compared to controls in hiPSC-NPCs and hiPSC-
neurons in the current analysis compared to differential expression t-statistics from
five psychiatric diseases53 and nine cancer types (ref. 54 and Broad Institute TCGA
Genome Data Analysis Center (2016): Analysis-ready standardized TCGA data
from Broad GDAC Firehose 2016_01_28 run. Broad Institute of MIT and Harvard.
Data set. https://doi.org/10.7908/C11G0KM9). Only cancers with at least 30 RNA-
Seq experiments were considered.

Multidimensional scaling. Analysis was performed using cmdscale function in R
based on the distance matrix computed from the pairwise correlation matrix based
on all genes in the merged data set.

Hierarchical clustering. Hierarchical clustering was implemented in R using
complete linkage clustering. A pairwise distance matrix was computed for all
samples, and the median distance between all samples in each category were used
to create a summary distance matrix using to perform the final clustering.

Principal components analysis. PCA was performed on the log2 CPM values for
the each cell type separately, the combined NPC+neuron data set, and the residuals
from the combined NPC+neuron data set after removing the effect cell type
composition scores.

Removing effects of heterogeneity in cell type composition. The gene
expression data were adjusted for heterogeneity in cell type composition using a
linear model by including the cell type composition score as a covariate. Residuals
computed using fibroblast and MEF CTC-scores were used in principal compo-
nents analysis.

eQTL enrichment analysis. The overlap between eQTL genes from the Com-
monMind Consortium21 and genes exceeding a variance percentage cutoff for a
particular variable in the current analysis is computed. This overlap is then com-
pared to the overlap computed from randomly permutated variance percentages.
Each gene is assigned a value based on the percentage of variance explained by a
particular variable in the variancePartition analysis. At each of 40 cutoff values, the
overlap between genes with values exceeding this cutoff and the 2000 genes with
the smallest p-values from cis-eQTL analysis is evaluated. The overlap was com-
puted for the observed data and 10,000 data sets with the variance percentages
randomly permutated. At each cutoff where > 100 genes are represented, the fold
enrichment is computed as

fold enrichment ¼ overlapobserved
overlappermutated

:

The mean enrichment value and the 90% confidence interval are shown in the
plot. Since the most genes (80%) have genome-wide significant eQTLs in the
CommonMind data set due to the large sample size, only a set of top genes were
considered for enrichment. The top 2000 genes were used here, but the results are
not sensitive to varying this number as long as ≲ 10,000 genes are used.
Permutation and overlap calculations were performed using regioneR81.

Differential expression analysis. Differential expression analysis was performed
with limma/voom v3.28.1749,50 using duplicateCorrelation to account for mea-
suring multiple samples per donor. Hypothesis testing was performed using the
Empirical Bayes procedure in limma. Analysis was corrected for multiple testing
using qvalue82. Standard error of the log2 fold change estimates were computed by
dividing the log2 fold change by the moderated t-statistic. Analysis included sex
and the cell type composition scores as described above.

Evaluation of gene set enrichment. Standard gene set enrichment tests was
performed with a hypergeometric test using gene sets from MSigDB83, MAGMA84

and additional sets from Fromer et al.21

Due to the polygenic nature of COS and the lower power of this study due to its
relatively small sample size, changes in gene expression are expected to by subtle
and distributed across many genes. The differential expression analysis between SZ
and controls did not produce strong results, so we performed extensive enrichment
analysis downstream in order extract biological insight. The simplest analysis uses a

hard cutoff and considers only genes that pass a given FDR threshold. Genes with
FDR< 30% in either cell type were tested with EnrichR85.

Alternatively, more powerful enrichment analyses do not use a cutoff but
instead consider the t-statistics of a differential expression test. These tests evaluate
enrichment based on genes that are not genome-wide significant, and identify sets
of genes for which the distribution of t-statistics differs from expectation.
Moreover, these tests can use empirical permutations to address the multiple
testing problem and determine the significance of gene set enrichments. This
permutation approach increases power in small sample sizes with complex
correlation structure between genes compared to the standard statistical methods
for differential expression and multiple testing correction. This family of tests is
well suited to a study of polygenic disease in an underpowered data set. These
methods are available in the limma package50 and work directly on the result of a
standard voom analysis49.

ROAST is a self-contained test that evaluates whether the t-statistics of genes in
a given set are higher, lower or deviate from zero in either direction more than
expected. ROMER is similar to GSEA83, but uses a sophisticated permutation
approach within a linear model framework to increase power.

We modified the standard R code for these methods in order to enable
parallelized analysis on a multicore machine and increase the number of
permutations. This allows us to run 10,000 permutations for ROAST and 100,000
permutations for ROMER.

Coexpression analysis. Analysis was performed with WGCNA48 on the log2 CPM
values for each cell type. NPC and forebrain neuron samples were analyzed
separately and the results were combined downstream. Following standard pro-
cedure to ensure an approximately scale-free network, pairwise correlation
matrices were raised to a power 9 for both cell types. Topological overlap matrices
were computed for each cell type. Coexpression modules were identified with
average linkage clustering followed by dynamic brank pruning using the cutree-
Dynamic function using the “tree” method with a minimum module size of 20
genes. Enrichment tests for gene sets in each coexpression model were performed
with a hypergeometric test.

Data availability. All hiPSCs have already been deposited at the Rutgers University
Cell and DNA Repository (study 160; http://www.nimhstemcells.org/). RNA-Seq
data and reproducible scripts are available at www.synapse.org/hiPSC_COS, as well
as GSE106589. Owing to constraints reflecting the original patient consents, the
raw RNA-Seq data will be made available by the authors upon reasonable request
and IRB approval.

Received: 11 August 2017 Accepted: 20 November 2017

References
1. Soliman, M. A., Aboharb, F., Zeltner, N. & Studer, L. Pluripotent stem cells in

neuropsychiatric disorders. Mol. Psychiatry 22, 1241–1249 (2017).
2. Topol, A. et al. Dysregulation of miRNA-9 in a subset of schizophrenia patient-

derived neural progenitor cells. Cell Rep. 15, 1024–1036 (2016).
3. Wen, Z. et al. Synaptic dysregulation in a human iPS cell model of mental

disorders. Nature 515, 414–418 (2014).
4. Lin, M. et al. Integrative transcriptome network analysis of iPSC-derived

neurons from schizophrenia and schizoaffective disorder patients with 22q11.2
deletion. BMC Syst. Biol. 10, 105 (2016).

5. Yoon, K. J. et al. Modeling a genetic risk for schizophrenia in iPSCs and mice
reveals neural stem cell deficits associated with adherens junctions and polarity.
Cell Stem Cell 15, 79–91 (2014).

6. Brennand, K. et al. Phenotypic differences in hiPSC NPCs derived from patients
with schizophrenia. Mol. Psychiatry 20, 361–368 (2015).

7. Brennand, K. J. et al. Modelling schizophrenia using human induced
pluripotent stem cells. Nature 473, 221–225 (2011).

8. Haggarty, S. J., Silva, M. C., Cross, A., Brandon, N. J. & Perlis, R. H. Advancing
drug discovery for neuropsychiatric disorders using patient-specific stem cell
models. Mol. Cell Neurosci. 73, 104–115 (2016).

9. Ahn, K. et al. High rate of disease-related copy number variations in childhood
onset schizophrenia. Mol. Psychiatry 19, 568–572 (2014).

10. Ahn, K. An, S. S., Shugart, Y. Y., Rapoport, J. L. Common polygenic variation
and risk for childhood-onset schizophrenia. Mol. Psychiatry 21, 94–96 (2016).

11. Marshall, C. et al. Contribution of copy number variants to schizophrenia from
a genome-wide study of 41,321 subjects. Nat. Genet. 49, 27–35 (2016).

12. Carcamo-Orive, I. et al. Analysis of transcriptional variability in a large human
iPSC library reveals genetic and non-genetic determinants of heterogeneity. Cell
Stem Cell 20, 518–532 (2017).

13. Ma, H. et al. Abnormalities in human pluripotent cells due to reprogramming
mechanisms. Nature 511, 177–183 (2014).

NATURE COMMUNICATIONS | DOI: 10.1038/s41467-017-02330-5 ARTICLE

NATURE COMMUNICATIONS |8:  2225 |DOI: 10.1038/s41467-017-02330-5 |www.nature.com/naturecommunications 13

www.nature.com/naturecommunications
www.nature.com/naturecommunications


14. Ruiz, S. et al. Analysis of protein-coding mutations in hiPSCs and their possible
role during somatic cell reprogramming. Nat. Commun. 4, 1382 (2013).

15. Germain, P. L. & Testa, G. Taming human genetic variability: transcriptomic
meta-analysis guides the experimental design and interpretation of iPSC-based
disease modeling. Stem Cell Rep. 8, 1784–1796 (2017).

16. Tomoda, K. et al. Derivation conditions impact X-inactivation status in female
human induced pluripotent stem cells. Cell Stem Cell 11, 91–99 (2012).

17. Jun, G. et al. Detecting and estimating contamination of human DNA samples
in sequencing and array-based genotype data. Am. J. Hum. Genet. 91, 839–848
(2012).

18. Grabherr, M. G. et al. Full-length transcriptome assembly from RNA-Seq data
without a reference genome. Nat. Biotechnol. 29, 644–652 (2011).

19. Schlaeger, T. M. et al. A comparison of non-integrating reprogramming
methods. Nat. Biotechnol. 33, 58–63 (2015).

20. Consortium, G. T. Human genomics. The Genotype-Tissue Expression (GTEx)
pilot analysis: multitissue gene regulation in humans. Science 348, 648–660
(2015).

21. Fromer, M. et al. Gene expression elucidates functional impact of polygenic risk
for schizophrenia. Nat. Neurosci. 19, 1442–1453 (2016).

22. Kang, H. J. et al. Spatio-temporal transcriptome of the human brain. Nature
478, 483–489 (2011).

23. Mariani, J. et al. Modeling human cortical development in vitro using induced
pluripotent stem cells. Proc. Natl Acad. Sci. USA 109, 12770–12775 (2012).

24. Pasca, A. M. et al. Functional cortical neurons and astrocytes from human
pluripotent stem cells in 3D culture. Nat. Methods 12, 671–678 (2015).

25. Qian, X. et al. Brain-region-specific organoids using mini-bioreactors for
modeling ZIKV exposure. Cell 165, 1238–1254 (2016).

26. Nicholas, C. R. et al. Functional maturation of hPSC-derived forebrain
interneurons requires an extended timeline and mimics human neural
development. Cell Stem Cell 12, 573–586 (2013).

27. Choi, J. et al. A comparison of genetically matched cell lines reveals the
equivalence of human iPSCs and ESCs. Nat. Biotechnol. 33, 1173–1181 (2015).

28. Topol, A. et al. Altered WNT signaling in human induced pluripotent stem cell
neural progenitor cells derived from four schizophrenia patients. Biol.
Psychiatry 78, e29–e34 (2015).

29. Srikanth, P. et al. Genomic DISC1 disruption in hiPSCs alters Wnt signaling
and neural cell fate. Cell Rep. 12, 1414–1429 (2015).

30. Newman, A. M. et al. Robust enumeration of cell subsets from tissue expression
profiles. Nat. Methods 12, 453–457 (2015).

31. Zhang, Y. et al. An RNA-sequencing transcriptome and splicing database of
glia, neurons, and vascular cells of the cerebral cortex. J. Neurosci. 34,
11929–11947 (2014).

32. Treutlein, B. et al. Dissecting direct reprogramming from fibroblast to neuron
using single-cell RNA-seq. Nature 534, 391–395 (2016).

33. Weston, J. A. et al. Neural crest and the origin of ectomesenchyme: neural fold
heterogeneity suggests an alternative hypothesis. Dev. Dyn. 229, 118–130
(2004).

34. Alt, E. et al. Fibroblasts share mesenchymal phenotypes with stem cells, but lack
their differentiation and colony-forming potential. Biol. Cell 103, 197–208
(2011).

35. Lee, D. R. et al. PSA-NCAM-negative neural crest cells emerging during neural
induction of pluripotent stem cells cause mesodermal tumors and unwanted
grafts. Stem Cell Rep. 4, 821–834 (2015).

36. Yuan, S. H. et al. Cell-surface marker signatures for the isolation of neural stem
cells, glia and neurons derived from human pluripotent stem cells. PLoS ONE 6,
e17540 (2011).

37. Muratore, C. R., Srikanth, P., Callahan, D. G. & Young-Pearse, T. L.
Comparison and optimization of hiPSC forebrain cortical differentiation
protocols. PLoS ONE 9, e105807 (2014).

38. Prescott, S. L. et al. Enhancer divergence and cis-regulatory evolution in the
human and chimp neural crest. Cell 163, 68–83 (2015).

39. Simoes-Costa, M. & Bronner, M. E. Establishing neural crest identity: a gene
regulatory recipe. Development 142, 242–257 (2015).

40. Turley, E. A., Veiseh, M., Radisky, D. C. & Bissell, M. J. Mechanisms of disease:
epithelial-mesenchymal transition–does cellular plasticity fuel neoplastic
progression? Nat. Clin. Pract. Oncol. 5, 280–290 (2008).

41. Hoffman, G. E. & Schadt, E. E. variancePartition: interpreting drivers of
variation in complex gene expression studies. BMC Bioinf. 17, 483 (2016).

42. Kilpinen, H. et al. Common genetic variation drives molecular heterogeneity in
human iPSCs. Nature 546, 370–375 (2017).

43. McKean, D. M. et al. FAK induces expression of Prx1 to promote tenascin-C-
dependent fibroblast migration. J. Cell Biol. 161, 393–402 (2003).

44. Ocana, O. H. et al. Metastatic colonization requires the repression of the
epithelial-mesenchymal transition inducer Prrx1. Cancer Cell 22, 709–724
(2012).

45. Wilkinson, M. B. et al. A novel role of the WNT-dishevelled-GSK3beta
signaling cascade in the mouse nucleus accumbens in a social defeat model of
depression. J. Neurosci. 31, 9084–9092 (2011).

46. Ripke, S. et al. Genome-wide association analysis identifies 13 new risk loci for
schizophrenia. Nat. Genet. 45, 1150–1159 (2013).

47. Zhang, B. & Horvath, S. A general framework for weighted gene co-expression
network analysis. Stat. Appl. Genet. Mol. Biol. 4, https://doi.org/10.2202/1544-
6115.1128 (2005).

48. Langfelder, P. & Horvath, S. WGCNA: an R package for weighted correlation
network analysis. BMC Bioinf. 9, 559 (2008).

49. Law, C. W., Chen, Y., Shi, W. & Smyth, G. K. voom: precision weights unlock
linear model analysis tools for RNA-seq read counts. Genome Biol. 15, R29
(2014).

50. Ritchie, M. E. et al. limma powers differential expression analyses for RNA-
sequencing and microarray studies. Nucleic Acids Res. 43, e47 (2015).

51. Skene, N. G. et al. Genetic identification of brain cell types underlying
schizophrenia. Preprint at bioRxiv https://www.biorxiv.org/content/early/2017/
06/02/145466 (2017).

52. Sherwood, C. C. et al. Evolution of increased glia-neuron ratios in
the human frontal cortex. Proc. Natl Acad. Sci. USA 103, 13606–13611
(2006).

53. Gandal, M. J. et al. Shared molecular neuropathology across major psychiatric
disorders parallels polygenic overlap. Preprint at bioRxiv https://www.biorxiv.
org/content/early/2016/02/18/040022 (2016).

54. Samur, M. K. RTCGAToolbox: a new tool for exporting TCGA Firehose data.
PLoS ONE 9, e106397 (2014).

55. Fromer, M. et al. De novo mutations in schizophrenia implicate synaptic
networks. Nature 506, 179–184 (2014).

56. Schizophrenia Working Group of the Psychiatric Genomics Consortium.
Biological insights from 108 schizophrenia-associated genetic loci. Nature 511,
421–427 (2014).

57. Purcell, S. M. et al. A polygenic burden of rare disruptive mutations in
schizophrenia. Nature 506, 185–190 (2014).

58. Sporn, A. et al. 22q11 deletion syndrome in childhood onset schizophrenia:
an update. Mol. Psychiatry 9, 225–226 (2004).

59. Shaw, P. et al. Childhood-onset schizophrenia: a double-blind, randomized
clozapine-olanzapine comparison. Arch. Gen. Psychiatry 63, 721–730 (2006).

60. McCarthy, S. E. et al. Microduplications of 16p11.2 are associated with
schizophrenia. Nat. Genet. 41, 1223–1227 (2009).

61. Gogtay, N. et al. Dynamic mapping of human cortical development during
childhood through early adulthood. Proc. Natl Acad. Sci. USA 101, 8174–8179
(2004).

62. Eckstrand, K. et al. Sex chromosome anomalies in childhood onset
schizophrenia: an update. Mol. Psychiatry 13, 910–911 (2008).

63. Congras, A. et al. Non integrative strategy decreases chromosome instability
and improves endogenous pluripotency genes reactivation in porcine induced
pluripotent-like stem cells. Sci. Rep. 6, 27059 (2016).

64. Fusaki, N., Ban, H., Nishiyama, A., Saeki, K. & Hasegawa, M. Efficient
induction of transgene-free human pluripotent stem cells using a vector based
on Sendai virus, an RNA virus that does not integrate into the host genome.
Proc. Jpn Acad. Ser. B Phys. Biol. Sci. 85, 348–362 (2009).

65. Nishimura, K. et al. Simple and effective generation of transgene-free induced
pluripotent stem cells using an auto-erasable Sendai virus vector responding to
microRNA-302. Stem Cell Res. 23, 13–19 (2017).

66. Jostins, L., Pickrell, J. K., MacArthur, D. G. & Barrett, J. C. Misuse
of hierarchical linear models overstates the significance of a reported
association between OXTR and prosociality. Proc. Natl Acad. Sci. USA 109,
E1048 (2012).

67. Pinheiro, J. & Bates, D. Mixed-Effects Models in S and S-Plus (Springer, New
York, 2000).

68. McKenna, K., Gordon, C. T. & Rapoport, J. L. Childhood-onset schizophrenia:
timely neurobiological research. J. Am. Acad. Child. Adolesc. Psychiatry 33,
771–781 (1994).

69. Gordon, C. T. et al. Childhood-onset schizophrenia: an NIMH study in
progress. Schizophr. Bull. 20, 697–712 (1994).

70. Rapoport, J. L., Giedd, J. N. & Gogtay, N. Neurodevelopmental model of
schizophrenia: update 2012. Mol. Psychiatry 17, 1228–1238 (2012).

71. Rapoport, J. L., Addington, A. M., Frangou, S. & Psych, M. R. The
neurodevelopmental model of schizophrenia: update 2005. Mol. Psychiatry 10,
434–449 (2005).

72. Greenstein, D. et al. Childhood onset schizophrenia: cortical brain
abnormalities as young adults. J. Child. Psychol. Psychiatry 47, 1003–1012
(2006).

73. Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29,
15–21 (2013).

74. Liao, Y., Smyth, G. K. & Shi, W. featureCounts: an efficient general purpose
program for assigning sequence reads to genomic features. Bioinformatics 30,
923–930 (2014).

75. Robinson, M. D. & Oshlack, A. A scaling normalization method for
differential expression analysis of RNA-seq data. Genome Biol. 11, R25
(2010).

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/s41467-017-02330-5

14 NATURE COMMUNICATIONS | 8:  2225 |DOI: 10.1038/s41467-017-02330-5 |www.nature.com/naturecommunications

https://doi.org/10.2202/1544-6115.1128
https://doi.org/10.2202/1544-6115.1128
https://www.biorxiv.org/content/early/2017/06/02/145466
https://www.biorxiv.org/content/early/2017/06/02/145466
https://www.biorxiv.org/content/early/2016/02/18/040022
https://www.biorxiv.org/content/early/2016/02/18/040022
www.nature.com/naturecommunications


76. Robinson, M. D., McCarthy, D. J. & Smyth, G. K. edgeR: a bioconductor
package for differential expression analysis of digital gene expression data.
Bioinformatics 26, 139–140 (2010).

77. DePristo, M. A. et al. A framework for variation discovery and genotyping
using next-generation DNA sequencing data. Nat. Genet. 43, 491–498 (2011).

78. Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat.
Methods 9, 357–359 (2012).

79. Kim, D. et al. TopHat2: accurate alignment of transcriptomes in the presence of
insertions, deletions and gene fusions. Genome Biol. 14, R36 (2013).

80. Altschul, S. F. et al. Gapped BLAST and PSI-BLAST: a new generation of
protein database search programs. Nucleic Acids Res. 25, 3389–3402 (1997).

81. Gel, B. et al. regioneR: an R/Bioconductor package for the association analysis
of genomic regions based on permutation tests. Bioinformatics 32, 289–291
(2016).

82. Storey, J. D. A direct approach to false discovery rates. J. R. Stat. Soc.: Ser. B 64,
479–498 (2002).

83. Subramanian, A. et al. Gene set enrichment analysis: a knowledge-based
approach for interpreting genome-wide expression profiles. Proc. Natl Acad.
Sci. USA 102, 15545–15550 (2005).

84. de Leeuw, C. A., Mooij, J. M., Heskes, T. & Posthuma, D. MAGMA:
generalized gene-set analysis of GWAS data. PLoS Comput. Biol. 11, e1004219
(2015).

85. Kuleshov, M. V. et al. Enrichr: a comprehensive gene set enrichment analysis
web server 2016 update. Nucleic Acids Res. 44, W90–W97 (2016).

Acknowledgements
K.J.B. is a New York Stem Cell Foundation—Robertson Investigator. This work was
partially supported by National Institute of Health (NIH) grants R01 MH101454 (K.J.B.),
R01 MH106056 (K.J.B. and P.S.), R01 MH109897 (P.S.) and F31 MH112285 (E.F.), a
Brain and Behavior Young Investigator Grant (K.J.B.), and the New York Stem Cell
Foundation (K.J.B.). We thank the FACS core at Icahn School of Medicine at Mount
Sinai. This work was supported in part through the computational resources and staff
expertize provided by Scientific Computing at the Icahn School of Medicine at Mount
Sinai. Thanks to Gang Fang, Laura Huckins, Noam Beckmann and David Panchision for
critical reading of the manuscript. Jamie Simon drew the original illustrations used in the
schematic shown in Fig. 1b. Data were generated as part of the CommonMind Con-
sortium. The CommonMind Consortium includes: Menachem Fromer, Panos Roussos,
Solveig K. Sieberts, Jessica S Johnson, Douglas M. Ruderfer, Hardik R. Shah, Lambertus
L. Klei, Kristen K. Dang, Thanneer M. Perumal, Benjamin A. Logsdon, Milind C.
Mahajan, Lara M. Mangravite, Hiroyoshi Toyoshiba, Raquel E. Gur, Chang-Gyu Hahn,
Eric Schadt, David A. Lewis, Vahram Haroutunian, Mette A. Peters, Barbara K. Lipska,
Joseph D. Buxbaum, Keisuke Hirai, Enrico Domenici, Bernie Devlin, Pamela Sklar.
Funding for the CommonMind Consortium was provided from Takeda Pharmaceuticals
Company Limited, F. Hoffman-La Roche Ltd and NIH grants R01MH085542,
R01MH093725, P50MH066392, P50MH080405, R01MH097276, RO1-MH-075916,
P50M096891, P50MH084053S1, R37MH057881 an R37MH057881S1,

HHSN271201300031C, AG02219, AG05138 and MH06692. Brain tissue for the study
was obtained from the following brain bank collections: the Mount Sinai NIH Brain and
Tissue Repository, the University of Pennsylvania Alzheimer’s Disease Core Center, the
University of Pittsburgh NeuroBioBank and Brain and Tissue Repositories and the
NIMH Human Brain Collection Core. CMC Leadership: Pamela Sklar, Joseph Buxbaum
(Icahn School of Medicine at Mount Sinai), Bernie Devlin, David Lewis (University of
Pittsburgh), Raquel Gur, Chang-Gyu Hahn (University of Pennsylvania), Keisuke Hirai,
Hiroyoshi Toyoshiba (Takeda Pharmaceuticals Company Limited), Enrico Domenici,
Laurent Essioux (F. Hoffman-La Roche Ltd), Lara Mangravite, Mette Peters (Sage Bio-
networks), Thomas Lehner, Barbara Lipska (NIMH).

Author contributions
K.J.B., B.J.H., G.E.H., P.S. contributed to experimental design. K.J.B., B.J.H., I.L. com-
pleted all cell culture experiments. E.F. conducted microscopy experiments. P.G. and J.R.
developed the cohort. D.R. and E.A.S. analyzed genetic data. G.E.H. performed RNA-Seq
analysis. K.J.B. and G.E.H. wrote the manuscript.

Additional information
Supplementary Information accompanies this paper at https://doi.org/10.1038/s41467-
017-02330-5.

Competing interests: The authors declare no competing financial interests.

Reprints and permission information is available online at http://npg.nature.com/
reprintsandpermissions/

Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this license, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2017

NATURE COMMUNICATIONS | DOI: 10.1038/s41467-017-02330-5 ARTICLE

NATURE COMMUNICATIONS |8:  2225 |DOI: 10.1038/s41467-017-02330-5 |www.nature.com/naturecommunications 15

https://doi.org/10.1038/s41467-017-02330-5
https://doi.org/10.1038/s41467-017-02330-5
http://npg.nature.com/reprintsandpermissions/
http://npg.nature.com/reprintsandpermissions/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
www.nature.com/naturecommunications
www.nature.com/naturecommunications

	Transcriptional signatures of schizophrenia in hiPSC-derived NPCs and neurons are concordant with post-mortem adult brains
	Results
	Transcriptomic profiling of COS hiPSC-NPCs and hiPSC-neurons
	Addressing technical variation in RNA-Seq data
	COS RNA-Seq data cluster with existing data sets
	Large heterogeneity in cell type composition
	Characterizing known sources of expression variation
	WGCNA analysis identifies modules enriched for SZ and CTC
	Differential expression between COS and control hiPSC-NPCs and hiPSC-neurons
	Concordant differential gene expression with post-mortem data sets

	Discussion
	Methods
	hiPSC derivation and differentiation
	FACS
	qPCR
	RNA sequencing
	RNA-Seq processing
	Identity checking
	Contamination analysis
	Analysis of gene expression within CNV regions
	Sendai virus detection and quantification
	Cell composition analysis
	Linear mixed model analysis
	Integration of RNA-Seq data sets
	Concordance analysis
	Multidimensional scaling
	Hierarchical clustering
	Principal components analysis
	Removing effects of heterogeneity in cell type composition
	eQTL enrichment analysis
	Differential expression analysis
	Evaluation of gene set enrichment
	Coexpression analysis
	Data availability

	References
	Acknowledgements
	Author contributions
	Competing interests
	ACKNOWLEDGEMENTS




