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Recombinant influenza H9N2 
virus with a substitution of H3 
hemagglutinin transmembrane 
domain showed enhanced 
immunogenicity in mice and 
chicken
Yun Zhang   , Ying Wei, Kang Liu, Mengjiao Huang, Ran Li, Yang Wang, Qiliang Liu,  
Jing Zheng, Chunyi Xue & Yongchang Cao

In recent years, avian influenza virus H9N2 undergoing antigenic drift represents a threat to poultry 
farming as well as public health. Current vaccines are restricted to inactivated vaccine strains and their 
related variants. In this study, a recombinant H9N2 (H9N2-TM) strain with a replaced H3 hemagglutinin 
(HA) transmembrane (TM) domain was generated. Virus assembly and viral protein composition were 
not affected by the transmembrane domain replacement. Further, the recombinant TM-replaced 
H9N2-TM virus could provide better inter-clade protection in both mice and chickens against H9N2, 
suggesting that the H3-TM-replacement could be considered as a strategy to develop efficient subtype-
specific H9N2 influenza vaccines.

H9N2 avian influenza virus was first isolated in turkeys in 19661. Since then, it became prevalent in poultry 
farming worldwide, resulting in egg production reduction and high mortality when co-infected with other path-
ogens2,3. Also, it could cross host-species barrier and cause human infections as reported in China4,5. Though it is 
not highly pathogenic as H5N1, researches revealed that it could re-assort with multiple other influenza subtypes 
and thus be “gene donor” for H5N1 and H7N9 viruses6–8. Therefore, control of the H9N2 influenza virus is of 
great concern.

Vaccination utilizing vaccine strains and their relevant variants is the main strategy to control H9N2 pan-
demics in the poultry industry of China. However, the vaccine strains and their antigenic variants undergoing 
antigenic drift were responsible for the outbreak of H9N2 in the poultry farming of China during 2010–20139. 
Lack of cross-immune protection in the existing vaccines becomes a severe problem of effective protection against 
the virus. Thus, a broad-spectrum vaccine which can provide cross-protection against different antigenic H9N2 
variants is in urgent need.

The genome of avian influenza virus contains a single-stranded, negative-sense segmented RNA that encodes 
12 proteins including hemagglutinin (HA)10. Hemagglutinin (HA) is recognized as the major surface antigen. It 
is critical for viral attachment and membrane fusion. These are key steps for virus’s entre into cells and critical to 
further process of virus infection11,12. Transmembrane (TM) domain of the HA protein serves as an anchor site 
and plays an important role in supporting viral fusion to the target membrane13. In acidic environment, substi-
tution of the TM domain showed an abolishment of receptor binding and membrane fusion, leading to a failure 
of virus entry into the cells14,15. In addition, this domain was found to be important for biological characteristics 
of the influenza viruses, such as viral replication, virulence and pathogenicity16–18. Our previous research showed 
that substitutions of cysteines in the HA TM domain and a replacement with the H3-HA transmembrane (TM) 
domain could enhance heterosubtypic protection (hetero-protection) in mice19. And an inactivated recombinant 
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H7N9 vaccine with the TM-replacement presented broadened protection with promoted HI titers in vaccinated 
animals using antiserum. Furthermore, the level of IFNγ was also increased, when inactivated H7N9 viruses 
were used as stimulant20. Therefore, the HA TM domain is considered to be a potential candidate site for vaccine 
development.

In this study, we generated a recombinant H9N2 wild type strain (H9N2-WT) and a recombinant H9N2 strain 
with a H3-TM domain replacement (H9N2-TM) utilizing reverse genetics system. The biological characteristics 
and immunogenicity between the two viruses were compared. Our results showed that the replacement of trans-
membrane (TM) domain did not affect the virus assembly and viral protein composition in the recombinant 
H9N2 viruses. However, the biological characteristics, such as virus growth, ratio of trimer, thermal stability, 
acidic resistance and fusion activity were altered, suggesting an important role of the TM domain in viral replica-
tion and pathogenicity. Furthermore, the TM-replaced H9N2-TM strain exhibited better protection in both mice 
and chicken when challenged against different phylogenetic H9N2 clades.

Results
Replacement of H3 HA TM domain did not affect the assembly and viral protein compositions 
of recombinant H9N2 viruses.  To understand whether change of transmembrane (TM) domain can affect 
virus structure, we first observed the morphology of TM-replaced viruses rescued by reserve genetics. Applying 
electron microscope, the recombined TM-replaced virus (H9N2-TM) showed typical surface spikes as the recom-
bined wildtype (H9N2-WT) (Fig. 1B), suggesting the replacement of the transmembrane (TM) domain did not 
change the surface structure of the virus. SDS-PAGE showed that the expression levels of HA0, HA1, HA2, NP, 
and M1 proteins were comparable in the two viruses (Fig. 1C). Full-length blot is presented in Supplementary 
Figure 1A. These results suggest that the replacement of H3 HA transmembrane (TM) domain does not affect the 
assembly and viral protein compositions of recombinant H9N2 viruses.

TM-replaced virus showed reduced viral growth rate and better adaptation to chicken 
embryos.  To further investigate whether the biological characteristics of the recombinant viruses were 
changed through the transmembrane (TM) domain replacement, MDCK cells were infected with the two recom-
binant viruses. We found the TM-replaced virus (H9N2-TM) formed smaller plaques than the recombinant wild-
type virus (H9N2-WT) (Fig. 2A), suggesting a slow viral replication due to the transmembrane (TM) domain 
replacement in cells. This was further confirmed when growth curves was measured that the pfu titers of recom-
binant H9N2-TM were lower than that of H9N2-WT (Fig. 2B). The pfu titers of H9N2-TM were significantly 
decreased at 24 h (p < 0.01), 36 h (p < 0.05) and 48 h (p < 0.05) post-infection, suggesting TM-replacement may 
have an effect on delaying virus replication. When inoculated in chicken embryos, the H9N2-WT showed 8.17 
log10EID50/0.1 ml for virus titer, while the recombinant H9N2-TM showed 6.5 log10EID50/0.1 ml (Fig. 2C), indi-
cating a low infectivity of H9N2-TM in chicken embryos. Furthermore, our data suggest that the delay of the 
virus replication may affect virulence of the virus in chicken embryos.

Figure 1.  TM-replacement did not alter the assembly and viral protein compositions. (A) Structural schematics 
of influenza hemagglutinin (HA) proteins. The replaced transmembrane (TM) domain is marked grey. (B) 
Electron images of negatively stained purified H9N2-WT and rH9N2-TM virus particles. Scale bar is 100 nm. 
(C) SDS-PAGE of viral components of H9N2-WT and H9N2-TM.
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To summarize, the replacement of H3 HA TM domain impeded recombinant H9N2 virus growth in MDCK 
cells. Moreover, the TM-replaced recombinant virus showed a reduced infectivity when inoculated in chicken 
embryos.

TM-replaced viruses reduced fusion ability and increased thermal and acidic resistances.  In 
influenza viruses, the stalk domain (HA2) is crucial for the stabilization of the HA trimer, in which its transmem-
brane (TM) domain plays an important role in virus anchor. To further investigate whether TM-replacement 
may affect the stability of the HA trimer, we analyzed content of covalent bond-linked trimers of the HA protein 
through non-reducing western blot. The result showed that the recombinant H9N2-TM had an increased trimeric 
composition of the HA under non-reducing condition, comparing to H9N2-WT (Fig. 3A,B). Full-length blot is 
presented in Supplementary Figure 1B.

The trimeric HA is important for receptor binding and membrane fusion activity. To analyze whether the fusion 
activity of recombinant viruses was altered, we utilized virus-induced erythrocyte hemolysis assay. At low pH (5–6), the 
trimeric HA undergoes conformational changes that trigger membrane fusion. There was no difference in fusion ability 
at pH5.2 to pH5.8 between the H9N2-WT and H9N2-TM recombinant viruses. However, H9N2-TM showed poorer 
fusion activity than that of H9N2-WT in the pH ranging from 4.6 to 5.2 (P < 0.05) (Fig. 3C). This data suggests that the 
TM domain plays an important role in restricting the virus-induced membrane fusion activity in acidic environment.

To further investigate whether the alteration of fusion ability is due to a change in viral biological charac-
teristics such as thermal or acidic resistances, we incubated the recombinant viruses at different temperature 
from 50 °C to 62 °C. The recombinant viruses H9N2-WT and H9N2-TM had similar thermal resistance under 
56 °C. And their HA titers decreased gradually while the temperatures increased. From 56 °C, the HA titers of 
the recombinant H9N2-WT declined more than the H9N2-TM and the difference was significant (P < 0.05) 
(Fig. 3D). This data indicates that the recombinant H9N2-TM virus had an increased thermal resistance.

We next examined the infectivity of the recombinant viruses in MDCK cells in acid environment (pH 5.0, 5.2, 
7.4). Fluorescent labeled viruses could be detected in each sample at pH 7.4 (Fig. 3E), suggesting that the infec-
tivity of recombinant viruses remained normal at a neutral environment. The fluorescence receded rapidly at pH 
5.2 in both groups. At pH 5.0, the fluorescence of the recombinant H9N2-WT could be barely detected, while 
the fluorescence of H9N2-TM could be still detected though the signal was weak. These data suggest that the 
recombinant H9N2-TM remains acid resistance at low pH (5.0), thus is still infectious under acid environment.

Taken together, the increased thermal and acidic resistances of the recombinant H9N2-TM virus suggest 
that the substitution in the transmembrane (TM) domain can affect the stability of the HA, therefore alters viral 
biological characteristics.

Recombinant H9N2-TM elicited higher antibodies and provided cross-protection in mice.  To 
explore whether the increased HA trimers and increased thermal and acidic resistances could result in better 
immune responses thus providing better protection in mice, we first vaccinated six-week-old mice with inacti-
vated recombinant H9N2-WT and H9N2-TM viruses twice to check antibody responses. A significant increase of 
the serum HA-specific IgG antibody titers was observed in the H9N2-TM group (p < 0.05) (Fig. 4A).

To determine the level of protection against challenges of homologous H9N2 virus, mice were then challenged 
with 3x MLD50 of mouse-adapted wild-type A/Chicken/Guangdong/YYS01/2012 (H9N2) virus in a different clade 
(Fig. 5). All mice in the control group succumbed to infection by day 9 post infection, while all animals were com-
pletely protected in the H9N2-TM vaccinated group (Fig. 4B). Comparing to the H9N2-TM vaccinated group, mice 
immunized with H9N2-WT showed significant weight loss as the PBS group from day 3 post infection (Fig. 4C). 
These data indicate that TM-replacement could provide better cross-protection against inter-clade challenge in mice.

Figure 2.  Reduced viral growth rate of TM-replaced viruses. Plaque phenotypes of H9N2-WT and H9N2-TM. 
(B) Virus growth curve of H9N2-WT and H9N2-TM recombinant viruses at different time points. Error bars 
represent the standard deviation from triplicate experiments. *Indicates p < 0.05; **indicates p < 0.01. (C) 
Growth properties and virulence of H9N2-WT and H9N2-TM viruses in vivo.
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H9N2-TM elicited higher HI titer and provided cross-protection in chickens.  Since H9N2 is an 
avian originated virus, we next explored whether a better immune responses could be induced by H9N2-TM in 
chickens. We performed ELISA assay and HI assay to analyze the antibody responses in vaccinated chickens. In 
ELISA, H9 HA protein was utilized as antigen. Similar as the antibody response results in mice, we found that the 
IgY titers of H9N2-TM vaccinated group were significantly higher, comparing to that of the H9N2-WT group 
(p < 0.05) (Fig. 6A). In HI assay, inactivated H9N2 viruses of different clades (h9.4.2.1, h9.4.2.4, h9.4.2.5 and 
h9.4.2.6) were utilized as antigens (Fig. 5). When viruses from clades 4.2.4 and 4.2.6 were used as antigens, The 
HI titers of H9N2-TM vaccinated chicken sera were comparable with the H9N2-WT vaccinated group. However, 
when viruses from clades 4.2.1 and 4.2.5 were used as antigens, the HI titer of H9N2-TM group was significant 
higher than that of H9N2-WT (p < 0.05) (Fig. 6B).

Figure 3.  Analysis of HA trimer content, thermal and acidic resistances of the TM-replaced recombinant 
H9N2-TM virus. Western-blot of H9N2-WT and H9N2-TM under non-reducing conditions. (B) 
Quantification of HA trimer content in H9N2-WT and H9N2-TM. **Indicates p < 0.01. (C) Fusion activity 
in erythrocytes of H9N2-TM and H9N2-WT at different pH values. *Indicates p < 0.05; **indicates p < 0.01. 
(D) Thermal resistance of H9N2-WT and H9N2-TM at a temperature ranging from 50 to 62 °C. Error bars 
represent the standard deviation from triplicate experiments. *Indicates p < 0.05; **indicates p < 0.01. (E) 
Acidic resistance of H9N2-WT and H9N2-TM in environments of pH 5.0, 5.2, and 7.4 at 37 °C using indirect 
immunofluorescene assay (IFA).

Figure 4.  Mice immunized with H7N9-TM showed higher survival rate and less body weight loss. (A) 
Anti-HA serum IgG titers against H9N2-WT and H9N2-TM. (B) Survival rates of immunized mice challenged 
with heterologous H9N2-YYS01 strain. *Indicates p < 0.05; **indicates p < 0.01. n = 5. (C) Body weight loss of 
immunized mice challenged with heterologous H9N2-YYS01 strain. * indicates p < 0.05; **indicates p < 0.01. 
n = 5.
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To further investigate the cross-protection reaction through TM replacement, chickens were challenged 
using different phylogenetic H9N2 viruses from clade 4.2.4, 4.2.5 and 4.2.6 (Table 1) (Fig. 5). Virus shedding 
determined by HA titers was utilized to elucidate protection provided by vaccines. Chickens immunized with 
H9N2-WT and H9N2-TM showed complete protection challenge by clade 4.2.5. Virus shedding was found in 
all groups immunized with PBS. No virus shedding was found in all groups immunized with H9N2-TM. At 
day 3 post infection, the shedding rates of H9N2-WT groups was 20% (virus shedding was found in 3 out of 15 
chickens) and 13.3% (virus shedding was found in 2 out of 15 chickens), which are more than the H9N2-TM 
vaccinated groups, when challenged with viruses from branch 4.2.6 or branch 4.2.4 respectively. Furthermore, 
the HA titers of virus shedding in H9N2-WT vaccinated group was significantly higher (p < 0.05) than that of 

Figure 5.  Phylogeny of HA genes of H9N2 strains of different clades. The scale bar represents a 1% nucleotide 
change. H9N2 strain labeled with black triangle was used for virus rescue and TM-replacement. H9N2 strains 
labeled with black squares were used in HI test and challenge assay.

Figure 6.  Analysis of Anti-H9 HA IgY and HI titers in SPF chicken. (A) Anti-HA serum IgY titers against 
H9N2-WT and H9N2-TM. (B) HI titers of H9N2 viruses of different phylogenetic H9N2 clades. (C) HA titers 3 
d.p.i. of different clades of H9N2 (4.2.4, 4.2.5 and 4.2.6). (D) HA titers 5 d.p.i. of different clades of H9N2 (4.2.4, 
4.2.5 and 4.2.6). Error bars represent arithmetic mean antibody titers ± standard errors. *Indicates p < 0.05.
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the H9N2-TM group, at 3 d.p.i when challenged with viruses from clade 4.2.6 (Fig. 6C). The HA titers of 5 d.p.i 
were comparable in all H9N2-WT and H9N2-TM vaccinated groups (Fig. 6D). The differences in virus shedding 
suggest a better inter-clade cross-protection when the recombinant H9N2-TM virus was used as vaccine.

In conclusion, our data suggest that the recombinant TM-replaced H9N2-TM recombinant virus can provide 
better inter-clade cross-protection than the wild type.

Discussion
One characteristic of influenza A virus is that it undergoes rapid antigenic variation, especially under immuno-
logical pressure. Mutations on hemagglutinin (HA) and neuraminidase (NA) usually cause antigenic drift and 
antigenic shift, thus resulting in virus immune escape. Therefore, it is difficult for the existing avian influenza 
inactivated vaccines to deal with the new strains, due to lack of cross-immune protection. Take H9N2 viruses 
in China for instance, which was previously considered to share similar antigenicity profiles2,21, vaccine strains 
and their relevant variants are mainly used for H9N2 virus protection in China. However, current existing vac-
cines could not fulfill their task to prevent the outbreaks of H9N2 in 2011–2013 in poultry farming of China22. 
Moreover, recent studies found that some H9N2 influenza viruses were originated from the vaccine strains 
through antigenic drift and these antigenic variants finally caused the catastrophe in poultry industry of China 
in 2011–2013, even under the long-term vaccination programs9. Therefore, to prevent next outbreaks of further 
antigenic H9N2 variants caused by immunological pressure, an effective, safe and subtype-specific H9N2 vaccine 
which can provide cross-protection is required.

The HA stem has recently drawn attention to be a new potential influenza candidate site for universal vac-
cine development. Since the discovery of a series of broadly neutralizing monoclonal antibodies, the majority of 
which target to highly conserved region of HA stem, researchers began to discuss the potential to induce broad 
protective immunity23–26. Various attempts were conducted to stabilize the HA stem in order to induce broad 
protective immunity. The stability and immunogenicity of the stabilized HA proteins through fusion with trimer-
ization sequences have shown increased broad protective immunity. For instance, researchers showed when the 
HA protein was fused to the foldon domain of fibritin from bacterial phage T4 or GCN4p trimerization repeat, 
the fusion proteins showed increased stability and cross-reactive immunity27,28. Further researchers showed that 
fused ectodomain of HA protein to ferritin could form nanoparticles and the nanoparticle vaccine could improve 
the potency and breadth of influenza virus immunity29, suggesting the importance of HA protein stability in 
enhancing cross-protection. This plausible correlation of the major surface antigen stability and cross-immunity 
was also supported by other researches using S protein of SARS virus that the trimerized forms could elicit higher 
levels of neutralizing antibodies30. The biological significance of HA stability remains unclear and future work is 
required.

Our previous studies found that the transmembrane domain of H3 subtype HA protein had a unique micro-
domain, which was related to the stability and cross-immunity of influenza virus19,31–33. Furthermore, we found 
that H3-WT TM-dependent cross-protection could be transferred to other subtypes by replacing their TMs with 
H3-WT TM19, suggesting a plausible correlation of HA stability and cross-immunity. Recently, we developed a 
TM-replaced H7N9 vaccine. Mice vaccinated with H7N9-TM vaccine strain showed increased cross-reactive 
antibodies and were well protected against interclade H7N9 viruses20. Consistent with the previous studies, our 
data indicated that TM replacement could actually alter the physical and chemical characteristics of H9N2 virus. 
The delayed virus replication in TM-replaced viruses may contribute to low pathogenesis. The increased thermal 
and acidic resistances suggest that a modification on transmembrane (TM) domain might lead to structural 
change of the HA protein, thus leading to an alteration of the biological characteristics in the recombinant virus.

When used as a vaccine, the recombined TM-replaced H9N2 strain (H9N2-TM) could perform better 
subtype-specific protection and inter-clade cross-protection against different phylogenetic H9N2 viruses com-
pared to that of recombinant H9N2-WT in both mice and chickens, suggesting the TM-replaced H9N2 vaccines 
are efficient in different species. The elicited HA-specific antibody level was comparable in both H7N920 and 
H9N2 viruses, when TM-replacement was introduced in the vaccine strains. Therefore, our results have suggested 
a universal technique to improve the existing influenza H9N2 inactivated virus vaccine. Furthermore, according 
to our researches, this technique could be used to develop vaccines of various types of avian influenza viruses. 
This TM-replacement technique suggests a way to improve the existing vaccine immune broad-spectrum activity, 

Strains for challenge Recombinant virus for immunity

Virus shedding

Day3 p.i. Day5 p.i.

H9N2-Branch4.2.5

H9N2-WT 0/15 0/15

H9N2-TM 0/15 0/15

PBS 5/5 5/5

H9N2-Branch4.2.4

H9N2-WT 3/15 0/15

H9N2-TM 0/15 0/15

PBS 5/5 5/5

H9N2-Branch4.2.6

H9N2-WT 2/15 0/15

H9N2-TM 0/15 0/15

PBS 5/5 5/5

Table 1.  Virus shedding after challenge with different H9N2 viruses.
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prolong the shelf life of the vaccine. And therefore, it is a good candidate for prevention of avian influenza and the 
development of new generation of vaccines in the future.

In conclusion, in this study, our results demonstrated that inter-clade cross-protection could be enhanced with 
TM replacement and therefore further suggested a plausible correlation of HA stability and cross immunity. Our 
results demonstrate that the TM-replaced vaccine could be a more effective influenza vaccine candidate and thus 
suggest a strategy to develop effective subtype-specific H9N2 vaccine or even heterosubtypic vaccines against 
influenza viruses. Other questions like whether the effect of TM-replacement is H3 specific, which segment is 
responsible for transmembrane domain function, whether TM-replacement changes the virus structure and how 
TM-replacement influences virus’s biological characteristics still remain unknown. And future work is required 
to answer these questions.

Materials and Methods
Cells and viruses.  Human embryonic kidney cells (293 T) and Madin-Darby Canine Kidney (MDCK) cells 
were cultured in Dulbecco’s modified Eagle’s medium (DMEM) supplemented with 10% fetal bovine serum 
(FBS) (Thermo Scientific), penicillin (100 units/ml), streptomycin (100 μg/ml) in an atmosphere of 5% CO2 at 
37 °C. H9N2 strains A/Chicken/Guangdong/69/2009 (H9N2) (GenBank accession no. KF514116.1), A/Chicken/
Guangdong/YYS01/2012 (H9N2) (GenBank accession no. KJ768995.1), A/Chicken/Henan/2/98 (H9N2) 
(GenBank accession no. AF461517.1) and A/ Hebei/218/2010 (H9) (GenBank accession no. KC296446.1) were 
isolated in Guangdong Province, China. The handling of experiments with live viruses was conducted in a 
biosafety 2 plus facility under the guidelines issued by China authority.

Virus rescue and reverse genetics.  The plasmid pHW2000 was used for reserve genetics as described 
previously34. To construct recombinant H9N2 virus containing a TM from H3 HA, strain A/Chicken/
Guangdong/69/2009 (H9N2) (GenBank accession no. KF514116.1) was selected and the TM domain was 
replaced with a TM from H3 HA using overlap PCR (Fig. 1A). For virus rescue, 293T cells were transfected 
with eight genome-sense plasmids using X-tremeGENE 9 DNA transfection reagent (Roche) according to 
manufacturer’s instruction. Thirty six hours after transfection, TPCK-treated trypsin (Sigma) was added to the 
cells with a final concentration of 0.5–1 μg/ml. The transfected cell culture supernatant was collected at 48–60 h 
post-transfection and used to passage onto 10-day-old SPF embryonated chicken eggs for the propagation of the 
recombinant viruses. The rescued recombinant virus containing WT HA was designated as H9N2-WT, whereas 
the rescued virus containing H3 HA was designated as H9N2-TM.

Virus propagation and purification.  Both recombinant H9N2-WT and H9N2-TM viruses were propa-
gated in 10-day-old SPF embryonated chicken eggs. After 72 h, the allantoic fluids were collected and inactivated 
with 0.1% β-propiolactone (BPL) at 4 °C for 24 h. The inactivated viruses were tested by performing serial pas-
sages on SPF embryonated chicken eggs. The purification was performed by centrifugation on 20–50% sucrose 
density gradients as described previously35.

Western blot and electron microscopy.  DS-polyacrylamide gel electrophoresis (SDS-PAGE) was per-
formed to validate the purified virions. Non-reducing western blot was performed as previously described32. 
Anti-H9N2 mouse serum (1:3000) was used as a primary antibody. The negative staining of purified recombinant 
virions was done as described previously36. Briefly, virions were stained by the phosphotungstic acid buffer and 
the shape was photographed on JEM-100 CX-II electron microscope (JEOL).

Virus growth and plaque assay.  MDCK cells were cultured in 24-well plates and inoculated with viruses 
(m.o.i. = 0.001) for 1 h. Supernatants were collected every 12 h until 72 h post-infection. The viral titers in the 
supernatants were determined by plaque assay in MDCK cells. Briefly, MDCK cells in 12-well plates were infected 
with serial tenfold dilutions of the recovered viruses for 1 h at 37 °C. Then the infected cells were washed three 
times with PBS and incubated at 37 °C for 3 days with MEM-2% agarose medium containing 2 μg/ml of trypsin 
(Sigma). Cells were stained with neutral red and the formed plaques were photographed.

Thermal and acidic resistance assays.  The resistance assay was performed as described before31. Briefly, 
the viruses with the same HA titer were incubated at a temperature ranging from 50 to 62 °C for 20 min. The HA 
titres were measured subsequently when viruses were cooled down to room temperature. In the acidic resistance 
assay, the viruses with the same pfu were incubated in an acidic buffer (10 mM HEPES, 10 mM MES in PBS) at pH 
7.4, 5.2, and 5.0 at 37 °C for 30 min. The solutions were then adjusted to pH 7.0. MDCK cells were infected with 
the recombinant viruses in 24-well plates at an m.o.i. of 2 for 30 min at 37 °C, then the media were replaced with 
serum-free media containing 2 μg/ml TPCK-trypsin. The infected plates were fixed with 4% paraformaldehyde, 
permeabilized with 0.2% Troton X-100 in PBS, and stained with the FITC-labeled mAb against NP (Abcam). The 
cell images were taken under inverted fluorescence microscope (Zeiss).

Virus-cell fusion assay.  According to standard protocol described previously37, viruses standardized to 256 
HA units were mixed with 2% chicken red blood cells (RBC). The pH was adjusted from 5.8 to 4.6 with addi-
tion of the sodium citrate buffer. After 30 min incubation, supernatants were transferred to an ELISA plate for 
determination of NADPH content by optical density measurement (340 nm) with a Bio-Tek ELISA plate reader 
(Bio-Tek Instruments). Baseline NADPH activity values were derived from samples without viruses that under-
went identical treatment.
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Animal challenge.  15-day-old SPF chickens were housed in individual isolators under positive pressure 
and randomly divided into three groups. Each group (n = 15) was subcutaneously immunized together with 
mineral oil adjuvant once. Blood samples were then collected two weeks after immunization. Three weeks after 
immunization, vaccinated chickens were challenged intranasally with a dose (100 × EID50) of the following 
H9N2 viruses, A/Chicken/Guangdong/YYS01/2012 (H9N2) (GenBank accession no. KJ768995.1), A/Chicken/
Henan/2/98 (H9N2) (GenBank accession no. AF461517.1) and A/ Hebei/218/2010 (H9) (GenBank accession 
no. KC296446.1). Swabs of the larynx and cloaca were collected at 3 and 5 days post infection to inoculate SPF 
chicken embryos subsequently. Allantoic fluid were collected after 72 hours incubation at 37 °C to determine HA 
titres. Samples were regarded as expelling viruses when titers ≥ 24.

Six-week-old female BALB/c mice were selected and intramuscularly immunized by inactivated H9N2-TM 
and H9N2-WT viruses, with Freund’s incomplete adjuvant respectively, twice on week 0 and 2. Blood samples 
were collected at week 4.Three weeks after booster immunization, mice were challenged intranasally with mouse 
adapted A/Chicken/Guangdong/YYS01/2012 (H9N2) (3 × MLD50). Survival rate and weight loss were moni-
tored daily after the challenge.

ELISA for anti-HA IgG antibodies.  HA-specific anti-chicken immunoglobulin Y (IgG) isotype antibody 
titers in chicken sera and IgG antibody titers in mice sera were determined using enzyme-linked immunosorbent 
assay (ELISA). H9 HA protein with a concentration of 3 μg/ml were coated, incubated with serial dilutions of 
each serum sample(37 °C for 1 h) and detected by HRP-conjugated goat anti-chicken IgG (Proteintech) and 
HRP-conjugated goat anti-mouse IgG antibodies (Proteintech). Optical densities were read at 450 nm using a 
spectrophotometer (Bio-Tek).

Hemagglutination inhibition assay.  25 μl of each influenza virus of four HA units was used in the HI 
assay. Each sample was treated with receptor destroying enzyme (RDE) and diluted in a 2-fold serial. The highest 
dilution of the serum able to inhibit hemagglutination was defined as the HI titer.

Ethics statement.  The virus propagation studies in embryonated eggs were approved by the Institutional 
Animal Care and Use Committee of Sun Yat-sen University. Animal experiments were approved by the 
Institutional Animal Care and Use Committee of Sun Yat-sen University and performed in accordance with 
the guidelines of the Sun Yat-sen University Institutional Animal Care and Use Committee. Research was con-
ducted in the compliance with guidelines of the Ordinance on Laboratory Animals Management set by the State 
Scientific and Technological Commission of China.

Statistical analysis.  Data were presented as mean ± SEM from at least three independent experiments. 
Unless otherwise noted, statistical analyses were performed using Student’s two-tailed t test. Difference was con-
sidered statistically significant at P < 0.05.

Data Availability.  The datasets generated during and/or analyzed during the current study are available from 
the corresponding author on reasonable request.

Conclusion
Taken together, our data indicate that H3 TM domain is critical for biological characteristics and inter-clade 
cross-protection of influenza viruses, and subtype-specific H9N2 cross-protection can be enhanced with H3-TM 
replacement. Our results suggest a plausible correlation of HA stability and immunity. Therefore, TM-replaced 
vaccine can be a more broad-spectrum influenza vaccine candidate.
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