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Morphology of travel routes and the organization of
cities
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The city is a complex system that evolves through its inherent social and economic inter-

actions. Mediating the movements of people and resources, urban street networks offer a

spatial footprint of these activities. Of particular interest is the interplay between street

structure and its functional usage. Here, we study the shape of 472,040 spatiotemporally

optimized travel routes in the 92 most populated cities in the world, finding that their

collective morphology exhibits a directional bias influenced by the attractive (or repulsive)

forces resulting from congestion, accessibility, and travel demand. To capture this, we

develop a simple geometric measure, inness, that maps this force field. In particular, cities

with common inness patterns cluster together in groups that are correlated with their

putative stage of urban development as measured by a series of socio-economic and infra-

structural indicators, suggesting a strong connection between urban development, increasing

physical connectivity, and diversity of road hierarchies.
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The city is an archetype of a complex system, existing and
evolving due to the myriad socio-economic activities of its
inhabitants1–3. These activities are mediated by the acces-

sibility of urban spaces depending on the city topography and its
infrastructural networks4, a key component of which are the
roads. Indeed, different street structures result in varying levels of
efficiency, accessibility, and usage of the transportation infra-
structure5–11. Structural characteristics, therefore, have been of
great interest in the literature12–15 and many variants of struc-
tural quantities have been proposed and measured in urban
contexts, including the degrees of street junctions16, lengths of
road segments15, cell areas or shapes delineated by streets13,
anisotropies14, and network centrality17,18. Collectively, these
structural properties have uncovered unique characteristics of
individual cities as well as demonstrated surprising statistical
commonalities manifested as scale invariant patterns across dif-
ferent urban contexts19–21.

While these studies have shed light on the statistical structure
of street networks, there is limited understanding of the interplay
between the road structure and its influence on the movement of
people and the corresponding flow of socio-economic activity;
that is, the connection between urban dynamics and its associated
infrastructure22. One way to tease out this connection is to
examine the sampling of routes, that is an examination of how
inhabitants of a city potentially utilize the street infrastructure.
While a number of studies have been conducted on the empirical
factors behind the choice of routes23–27, much remains to be
done, in particular, understanding the morphological properties
of route choices.

Indeed, the morphology of a route is shaped by the embedded
spatial pattern of a city (land use and street topology) in asso-
ciation with dynamical factors such as congestion, accessibility,
and travel demand, which relate to various attendant socio-
economic factors. Analyzing the morphology of routes, therefore,
allows us to potentially uncover the complex interactions that are
hidden within the coarse-grained spatial pattern of a city.
Furthermore, the morphology also encodes the collective prop-
erty of routes, including their long-range functional effects. For
example, a single street, depending on its connectivity and loca-
tion, can have influence that spans the dynamics across the whole
city (Broadway in New York City for instance)5.

In particular, traffic patterns and the shape of routes have been
shown to be determined, among other factors, by two competing
forces24. On the one hand, one finds an increased tendency of
agglomeration of businesses, entertainments, and residential
concerns near the urban center, correspondingly leading to a
higher density of streets28,29 and thus attracting traffic and flows

toward the interior of the city (positive urban externality).
Conversely, this increasing density leads to congestion and
increase in travel times (negative urban externality) thus
necessitating the need for arterial roads or bypasses along the
urban periphery to disperse the congestion at the core. This has
the effect of acting as an opposing force, diverting the flow of
traffic away from the interior of the city.

Here, we investigate these competing effects through a detailed
empirical study of the shape of 472,040 travel routes between
origin–destination points in the 92 most populated cities in the
globe, representing all six inhabited continents. Each route con-
sists of a series of connected roads; accompanying information on
their geographical location, length, and speed limit retrieved from
the OpenStreetMap database30. We split our analysis between the
shortest routes (necessarily constrained by design limitations and
city topography) and the fastest routes (representing the effects of
traffic and dynamic route sampling), with the former representing
aspects of the city morphology, while the latter in some sense
representing the dynamics mediated by the morphology (see
Methods for details). Specifically, the shortest routes are a func-
tion of the bare road geographic structure, while the fastest routes
represent the effective geographic structure—a function of the
heterogeneous distribution of traffic velocity resulting from
varying transportation efficiency and congestion patterns31–34. To
uncover the functional morphology of these two categories of
routes, we define a geometric metric, which we term inness—a
function of both the direction and spatial length of routes—that
captures the tendency of travel routes to gravitate toward or away
from the city center. This metric serves as a proxy for the
geographical distribution of attractive forces that may be implicit
in the sampling of streets (as reflected in directional bias) and that
otherwise cannot be captured by existing measures. Our analysis
represents a step toward the very important challenge of
determining the spatial distribution of urban land-use and street
topology to balance the inherent negative and positive urban
externalities that result from rapid urbanization24.

Results
Definition of inness I. Figure 1 illustrates the forces related to a
city’s morphological patterns shaped by infrastructural and socio-
economic layouts. For the case of a square grid, as shown in
Fig. 1a, the shortest routes between any two points at a distance r
either correspond trivially to the line connecting them directly, or
are degenerate paths that traverse the grid in either direction.
Taking the average of the multiple paths cancels any directional
bias relative to the center of the grid. Yet, a small perturbation of

r

a b c

Fig. 1 Biasing forces found in urban morphology. Three schematic urban street arrangements share similar topological structure, but different geometric
layouts resulting in varying dynamics. a A grid structure where the shortest paths between points at the same radius show no directional bias. b Repulsive
forces relative to the origin (marked in blue) emerge as we break the grid symmetry by relocating the four outer points on the inner equidistant ring line.
Paths lying on this ring now have the shortest paths that traverse the periphery and avoid the center. c Further perturbing the topology by increasing
connectivity to the center (marked as four green lines) now leads to shortest paths that go through the center as if an attractive force is present (marked in
red)
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this regularity can change this neutral feature dramatically, as
shown in Fig. 1b, where we shift the four outermost points inward
as to place them on the second ring from the center. Points lying
on this ring have shortest routes that lie along the periphery, thus
introducing a dispersive force away from the center (marked as
blue arrows). In Fig. 1c, we further perturb the topology by
adding four lines from the outer ring to the inner ring (marked in
green) thus increasing connectivity toward the center. Shortest
paths between pairs on the outer ring traverse through the inner
ring and are curved toward the city center, resulting in an
attractive force (represented as red arrows). Beyond this simple
example, which is primarily a function of topology and is
applicable to shortest paths, other factors are in play such as
travel time and route velocity as considered in ref. 24, that will
necessarily affect the patterns seen in fastest paths. Furthermore,
the illustration assumes a single center of gravity, as it were,
whereas such an effect may manifest itself at multiple scales,
resulting in cancellation of any measurable force toward a puta-
tive city center.

To capture whether such an effect manifests itself at the scale of
the city, or is indeed neutral due to the “detuning” at smaller
scales, we define a metric called the inness I. Figure 2c illustrates
how a typical route between any origin–destination (OD) pair can
be divided into segments that are directionally biased toward or
away from the city center as measured relative to the geodesic
distance s between the pair. We label points lying closer to the

center than the geodesic inner points while those lying further
away are outer points. For example, in the schematic shown in
Fig. 2c, points located in the pink shaded area are inner points,
and those on the opposite side (shaded blue) are outer points. We
define an inner travel area delineated by the polygon of inner
points and the geodesic line, to which we assign a positive sign.
Conversely, an outer travel area is defined by the geodesic line
and the collection of outer points, whose sign is negative. Having
adopted this convention, I is the difference between the inner area
and outer travel areas:

I ¼ Ain � Aout; ð1Þ

which can be calculated using the shoelace formula for polygons
(see Methods). In Fig. 2d, we show three possible idealizations of
a route; one with only outer travel area (blue), one with only
inner travel area (red), and one with a mixture of both outer and
inner travel areas (combination of blue and red).

The inness of a node in the road network is a result of
aggregating characteristics of all possible routes that pass through
that point. Indeed, it reflects the structure of the network since it
is a metric influenced by topology and network connectivity.
However, in addition to this, it captures the geometric aspects of
the network since it is a measure based on the curvature of the
roads along a route and encodes structural information at both
the global and local scales. In that sense, one can consider it to
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Fig. 2 Data sampling and definition of inness I. a Thirty-six origin–destination (OD) pairs (spaced out at intervals of 10°) are assigned along the
circumference of circles at a distance of 2, 5, 10, 15, 20, and 30 km from the city center C. b For each OD pair, we query the Open Source Map API and
collect the shortest routes (red) and the fastest routes (blue) (shown here for a representative OD pair in Paris). c A typical OD pair with the straight line
connecting them representing the geodesic distance s; r is the radial distance from the center and θ is the angular separation relative to the center. We
define the inness (I) to be the difference between the inner travel area (polygon delineated by red inner point and straight line) and the outer travel area
(polygon delineated by blue outer point and straight line). d Three possible route configurations between multiple OD pairs. One with an exclusively outer
travel area (blue), one with an exclusively inner travel area (red), and one where there is some combination of both
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contain elements of various standard structural network metrics
(see Supplementary Note 2 for details and comparison with a
series of network metrics). We note that such metrics—
particularly those that are global measures such as the between-
ness centrality—have been previously used to classify cities.
Recent results, however, cast doubt on the efficacy of centrality
measures to distinguish between cities35. On the other hand, as
we will demonstrate, the inness, in addition to being a relatively
simple measure, encodes the geometric, infrastructural, geogra-
phical, and socioeconomic aspects of urban systems.

Average inness for shortest and fastest routes. We begin our
analysis by an examination of the qualitative trends of I. In
Fig. 3a–f, we plot the average inness Ih i (averaged over the 92 cities)
for both the shortest (green curve) and the fastest routes (purple
curve) as a function of the angular separation θ, for multiple radii r.
In the vicinity of the city center around 2–5 km (Fig. 3a, b), we see a
neutral trend for the shortest routes Ih i � 0ð Þ although fluctuations
increase with angular separation (80° ≤ θ ≤ 160°). The fluctuations
anticipate a clear inward bias that emerges at a distance of r ≥ 10 km
(Fig. 3c–f), visible as a pronounced positive peak in Ih i that grows
progressively sharp with increasing r. The qualitative trend of Ih i is
indicative of the presence of a core–periphery street network
structure present in varying degrees across all cities36 and suggests
that the attractive forces introduced in Fig. 1 tend to manifest
themselves at the scale of the entire city, pointing to the existence of
an effective center (on an average). Indeed, for fixed r, the geodesic
distance s between any OD pair is a monotonically increasing
function in θ. The longer the distance, the more likely it is for the
route to drift toward the center—due to greater connectivity in the
center compared to the periphery. This is a possible explanation for
the observed inward bias and is indicative of a progressively lower
density of streets in the periphery.

The roads in our dataset are organized in a hierarchical fashion
consisting of motorways, primary and trunk roads at the top of the
hierarchy and residential and service roads being at the lower levels
(Supplementary Fig. 2). The shortest paths considered so far are
primarily composed of secondary and residential roads (Supple-
mentary Fig. 3); conversely the fastest routes tend to use a smaller
subset of the overall network, primarily motorways that are in
general major highways with physical divisions separating flows in
opposite directions such as freeways and Autobahns (Supplemen-
tary Fig. 4). This heterogeneity in the road capacity is bound to
introduce differences in the inness profiles of the shortest and
fastest routes. Reflecting this, one sees an inward bias for the fast
routes emerging around 10 km, but markedly less pronounced than
seen for the shortest routes, although the qualitative trend of
increasing inward bias with r is maintained. The lower inward bias
of faster routes can be explained by the fact that the motorways are
typically located in the periphery of cities. Additionally, the angular
range of the observed inward bias is lower than that seen for the
shortest paths (45° ≤ θ ≤ 120°) and the fluctuations are significantly
larger. This is indicative of the heterogenous spatial distribution of
velocity profiles in the primary roads across cities (due to varying
levels of infrastructure), coupled with the fact that they are in
general longer than secondary roads.

The collective angular and radial dependences of Ih i are shown
as density plots for the shortest and fastest routes in Fig. 3g, h.
The monotonic increase of Ih i with r is apparent in both cases
particularly at r ~ 15 km (also shown explicitly in Supplementary
Fig. 5a). The differences in angular dependence can be clearly
seen with the fastest routes having a sharp Ih i at a lower angular
range than the shortest paths. Notable is the absence of any
outward bias (negative values of Ih i) at any radial or angular
range.

Dimensionless inness Î . The observed trends of the inness do not
take into account the effects of varying travel areas at different
distances from the center, or the variation in urban size across the
studied cities. To account for these effects, we note that the travel
area (averaged across cities) increases roughly quadratically with
the geodesic distance s (Supplementary Fig. 5k), a trend also
observed in ref. 23 where the characteristic shapes of city routes
had travel areas of O(s2). Therefore, to account for any bias from
variations in travel area within and across cities, we define a
rescaled inness

Î ¼ I
s2
: ð2Þ

In Fig. 3i, j, we plot Î
� �

for the shortest and fastest routes
finding that the inness effect is robust to potential biases due to
length or area of trips. While the qualitative behavior is similar to
that seen for Ih i, the inward tendency of routes is present over a
broader r and θ for both the shortest and fastest routes. For
instance, inward biases are apparent at distances of 5 km from the
city center, an effect suppressed in Ih i due to the correspondingly
smaller travel area. Furthermore, we now find a relatively more
homogeneous distribution with a comparatively weaker depen-
dence on r and θ. The trend for Î

� �
continues to support an

average core–periphery structure in the cities we study (and
therefore a city center), in combination with a smoothly
decreasing density distribution of streets away from this center.
The weaker angular dependence, in particular, hints at an
isotropic variation in density of street junctions.

The distribution of Î
� �

is comparatively less homogeneous for
fastest routes, primarily due to the predominance of the high-
capacity roads (Supplementary Fig. 2) adding, therefore, more
variation to the inness profile. Across a wide range of r and θ, Î

� �
is generally lower than the shortest routes, while there is sharp
increase at 15 ≤ r ≤ 30 and 40 ≤ θ ≤ 100. This is likely due to some
of the motorways being specialized structures such as ring roads
or bypasses that serve as attractors for traffic in the city periphery.
This is confirmed by plotting the ratio Î

� �
f= Î
� �

s in Fig. 3k, where
one sees a factor of two or more inward bias in the fastest routes
as compared to the shortest routes near the city periphery (~25
km).

Inness distribution for individual cities. Having examined the
properties of average directional biases across urban areas, we
now turn our attention to the patterns in individual cities. Indeed,
as the fluctuations in Fig. 3a–f show, there is variability in the
inness pattern across cities, reflecting the differences in the level
of road hierarchies and organization. The composition of the
shortest and fastest routes in terms of different road hierarchies
varies significantly from city to city. For example, in some cities
(Atlanta, Houston, Madrid) the fastest routes tend to be through
motorways, whereas in others (Luanda, Kolkata, and Pune) they
tend to be composed of primary roads (Supplementary Fig. 4);
these differences are likely to affect their respective inness profiles.

To investigate the effect of these differences, we plot each city
as a function of the standard deviation and the average of Î for
the shortest paths (Fig. 4a–c). Most cities are in the range 0:0 �
Î
� � � 0:08 with some outliers at both positive and negative
values. Ignoring the outliers for the moment, roughly speaking,
we identify three regions: low average and low standard deviation
(LL), low average and high standard deviation (LH), and high
average and high standard deviation (HH). (See Supplementary
Figs. 6 and 7 and Supplementary Note 5 for details on individual
and outlier cities.) Each city is also colored according to three
metrics reflecting infrastructural and geographical features: in 4a,
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we show the total length of roads within 30 km from the city
center; in Fig. 4b, we show a measure of geographical constraints
(GC) that captures the presence and size of barriers such as rivers,
coastlines, mountains, or industrial facilities; finally in Fig. 4c, we
show a measure of peripheral connectivity acting as a proxy for
the presence of ring roads in the city (details for each metric in
Supplementary Note 4). In Fig. 4d–f, we show a selection of cities

from each region, along with the density plot of Î from a
representative city shown as inset.

It appears that cities within each region tend to share some
common features with respect to these metrics and their inness
profiles. Those in the LL group tend to have longer total length of
roads, fewer geographic constraints, and strong peripheral
connectivity, indicating high levels of infrastructural
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ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/s41467-017-02374-7

6 NATURE COMMUNICATIONS |8:  2229 |DOI: 10.1038/s41467-017-02374-7 |www.nature.com/naturecommunications

www.nature.com/naturecommunications


development. The inness profile is typically neutral (as can be
seen for Berlin), indicating no discernible center of the city to
which routes are drawn. On the other hand, cities in the HH
group tend to have shorter road lengths, limited connectivity in
the periphery (indicating relatively lower levels of infrastructural
development), and more geographical constraints than the LL
group. These cities also have a markedly positive inness profile
(shown for Kolkata) suggesting that the navigability of the city
passes through a central core. The LH group appears to show a
combination of high and low values in terms of the infrastructural
metrics, yet is notable in showing markedly higher geographical
constraints than the cities in the other regions. This is reflected in
a rather peculiar inness profile which manifests itself positively at
short distances, yet is negative at longer ranges.

To investigate these trends further, we plot the spatial
distribution of Î on a geographic map of a representative city
from each region. The spatial distribution is generated by
considering every intermediate point in a city route, and
calculating the average Î of all routes that pass through this
particular location. In Fig. 4g, we show the spatial distribution of Î
for Berlin. Throughout a swathe of Berlin, we find a homo-
geneous distribution of moderately positive (almost neutral)
inness (red), with roads near the city boundary showing a
marginally negative inness value (blue). Similar patterns are
observed in other large urban agglomerations such as Tokyo and
Paris (Supplementary Fig. 10a, c). By and large these cities are
large urban areas with advanced infrastructure and strong levels
of connectivity.

Next, we focus on the LH group of cities, those with a mix of
inward and outward bias in the route patterns. In Fig. 4h, we
show the spatial profile for Mumbai which displays two distinct
regions with inner and outer bias. The two regions are separated
by the Arabian Sea, and connected by (a few) bridges. The left-
hand side of the map corresponds to the more densely connected
part of Mumbai (its economic center), thus most routes within
this region have an inward bias. The appearance of the outward
bias in the other region is due to the lack of direct connectivity
with the economic center, as the routes have to pass through one
of the few bridges that connect the island to the mainland and are
thus subject to considerable detour. A similar pattern is seen in
other cities in this group, almost all of which have geographic
barriers (rivers, seas, hills, mountains) that either spread out
across the city, or divide the city into distinct regions.
Additionally there are cities in this group with no geographical
barriers, but artificial barriers attributing a similar effect on route
profiles. A notable example of this is Miami which has a
prominent rock-mining industrial site in the Western Miami-
Dade County (see Supplementary Fig. 10e, g for this and other
examples).

Finally, we examine the spatial distribution of Î for Kolkata as a
city in the HH category, shown in Fig. 4i. It is apparent that the
profile is more distinct than that seen for Berlin. There is a hub
and spoke-type pattern with the spokes showing high levels of
inness, presumably due to its function connecting outer regions
to the city center. Indeed, a clear city center is apparent with
limited to no connections across the periphery. A similar pattern
is seen for other cities in this group (Cairo, Medan, Supplemen-
tary Fig. 10i, k). There are at least two possible causes for this:
either these cities have a relatively smaller effective urban area
(regions of strong connectivity), or they are large urban
agglomerations with limited or underdeveloped infrastructure.

Differences between shortest and fastest routes in cities. The
measured connection of inness profiles with infrastructural
indicators suggests that more information can be gleaned by

studying the differences between shortest and fastest routes.
Indeed, while the former is more connected to spatial and geo-
graphical constraints, the latter shares a more natural connection
with developmental indicators. To better quantify this difference,
we measure the Pearson correlation coefficient ρ between Î

� �
f

and Î
� �

s, for each city, shown in Fig. 5e in increasing order from
negative to positive values. Shown as dashed vertical lines are the
results of using K-means clustering and Jenks natural breaks
optimization to partition the cities into three groups with both
methods producing nearly identical divisions. (Alternative clus-
tering approaches revealed similar results, see Supplementary
Note 6.)

To investigate this partitioning, we pick a representative city
from each end of the spectrum: Berlin with ρ< 0 and Mumbai
with ρ ≈ 1. Figure 5a, b show the spatial distribution of Î in Berlin
for the shortest and fastest routes. Unlike the neutral inness seen
for shortest routes, fastest routes display a strong outward bias
starting from a radial distance of 15 km, which seems to be a
consequence of ring-like arterial roads dispersing traffic away
from the center. Indeed, this supports our metaphor of competing
forces sketched in Fig. 1; the high connectivity of streets in the
center of Berlin tends to draw flow toward the city (witnessed by
the mildly positive inness profile of the shortest routes) while the
faster roads push routes outward. A similar trend is seen for all
cities with a negative correlation (Tokyo and Paris shown in
Supplementary Fig. 10a–d), with the presence of arterial ring
roads (built presumably to alleviate congestion) near the city
periphery being the main driver of the differences (in line with
higher values of peripheral connectivity measured earlier). A
majority of these cities, that are members of partition Type I,
correspond to those seen in the LL group in Fig. 4d.

Unlike Berlin, Mumbai exhibits virtually identical profiles of
inness between shortest and fastest routes, as seen in Fig. 5c, d,
with fewer arterial roads or bypasses that can divert traffic away
from the city center. In the case of Mumbai, this is due to salient
geographic constraints, but a similar pattern is also seen in other
cities like Kolkata, which also lack peripheral roads. Thus, cities
that either suffer from some kind of geographic constraint or
relatively underdeveloped infrastructure tend to show a higher
correlation between the two types of routes. These cities in
partition Type III include the majority of cities in the HH group
and a few from LH groups in Fig. 4.

Cities with intermediate correlation in partition Type II tend to
be those with a profile seen in the LH group in Fig. 4. The
behavior seen here seems to be some combination of what drives
the trends seen in Type I and Type III cities. As it happens,
however, there is the exceptional case of New York. The city
shares the same features as Type I cities, i.e., it is a large urban
area, with a highly developed infrastructure; yet, there appears to
be a strong correlation between the fastest and shortest routes
(Supplementary Fig. 14). This is likely due to the unique
geography of motorways in the New York metropolitan urban
area, which unlike typical Type I cities does not have ring-like
motorways in the periphery. Instead, New York consists of a
series of radial and grid-like motorways whose overall effect is to
cancel any observable directional bias.

Advanced levels of infrastructure are typically reflected in
improvements across a variety of socio-economic indices. To
examine whether the measured behavior of the inness captures
any of this, we consider three socio-economic indicators: the
productivity index sourced from the city prosperity index (CPI)
created by the UN (http://cpi.unhabitat.org/download-raw-data),
the infrastructure development index (also sourced from CPI),
and finally the GDP-per-capita sourced from https://www.lloyds.
com/cityriskindex/locations. In Fig. 5f–h, we plot these metrics as
a function of the correlation coefficient ρ that was used to cluster
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the cities. In all three cases, there is a clean monotonic decrease in
the indicators with increasing ρ, suggesting that inness also
encodes information on socio-economic development. A rela-
tively clear pattern emerges whereby the majority of Type I cities
are large urban agglomerations with advanced infrastructure and
strong socio-economic indicators, Type III cities by and large
have comparatively limited infrastructural and socio-economic
development, and finally Type II cities share a combination of
these features.

Discussion
The networks of streets and roads are the primary facilitators of
movement in urban systems, allowing residents to navigate the
different functional components of a city. Since navigability is a
key ingredient of socio-economic activity, street networks repre-
sent one of the key (if not the most important) infrastructural
components. In particular, the utilization of street networks
captures the complex interactions between people, and the flow of
goods and services in urban systems. However, there is relatively
limited understanding of this facet as existing macroscopic or
microscopic measures are not able to fully capture its properties
and associated effects. Part of the challenge is the limited avail-
ability of detailed and high-resolution data of dynamics taking
place on such networks, necessitating a choice for investigative
studies to be made in terms of granularity or scale. In this
manuscript we erred on the side of the latter, and conducted a

systematic mesoscale analysis of street morphology—representing
a proxy for the potential dynamics—through the introduction of
a metric that we term inness. The inness encapsulates the
direction, orientation, and length of routes, thus revealing the
morphology of connectivity in street networks, including the
implicit infrastructural and socio-economic forces that may
inform routing choices.

The average inness pattern points toward the existence of a
core–periphery structure across the majority of cities with a high
density of streets in the city center with a progressively lower
density as one moves toward the periphery. This pattern is par-
ticularly seen among Type III cities mostly corresponding to
those in Fig. 4f and Supplementary Fig. 10i–l. These happen to be
the most numerous in our sample, and therefore dominate the
average statistics. Their spatial distribution is characterized by a
hub–spoke structure, with Kolkata being an archetype (Fig. 4i),
and have a strong correlation between the patterns of fastest and
shortest routes. Given that many (but not all) cities in this cate-
gory are in developing countries (as confirmed by GDP-per-
capita and prosperity indices), this feature seems to indicate a
relatively underdeveloped infrastructure (confirmed by lower
values of infrastructural development index) with the absence of
bypasses, highways, or ring-roads that disperses traffic more
efficiently.

Interestingly, these qualitative features capture certain elements
of the classical hypothesis of central place theory advanced by
Christaller37. The theory postulates that cities are organized into a
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and fastest routes for each city. Cities are categorized into three groups (marked by vertical dashed lines) based on a K-means clustering and Jenks natural
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hierarchy of cores that perform specific economic functions
depending on their position in the hierarchy38. As the core at the
highest level of the hierarchy (which is usually located near the
city center) has the most diverse and complex economic func-
tions, lower cores that perform less complex functions need to
connect to the higher core to meet the demand of some of the
activities in the higher core. Furthermore, cores at the lower levels
of the hierarchy have minimal interactions between them.

An alternative version advanced by Lösch39 claims instead that
cores at the same level develop specialized and symbiotic func-
tions and thus develop interactions with each other, having the
effect of dispersing activity from the center. Indeed, this feature
seems to be present in our Type I cities which compose the
majority in Fig. 4d and Supplementary Fig. 10a–d. These are
predominantly large urban areas with high levels of infra-
structural and socio-economic development (Fig. 5f–h). Cities
such as Berlin, Paris, and London display a relatively neutral
inness trend across locations, pointing toward a uniform density
of streets across the city. In particular, a comparison of the spatial
distribution of inness for the fastest and shortest routes reveals
the presence of ring roads connecting the peripheral areas of the
city, and dispersing traffic away from the city center (Fig. 5a, b).
Considering one of the purposes of building peripheral roads is
facilitating material movement around the city, the observed
discrepancy between the shortest and fastest routes might reveal
that a developed urban area decouples material (resource)
movement from human movement via the introduction of per-
ipheral roads. This is in line with the assertion that cities tend to
transform their social and economic functionality into demater-
ialized operations as they develop40–42.

A number of cities fall between the spectrum of these two levels
of categorization. These are predominantly Type II cities, the
majority of which are in the LH group in Fig. 4e and Supplementary
Fig. 10e–h. Most (but not all) have geographical or artificial con-
straints within the city (Mumbai and Rio de Janeiro being notable
examples), leading to a mixture of dense and poor connectivity
between different locations. Indeed, some have advanced infra-
structure (Miami), while others less (Medan) and they also differ in
terms of the size of the urban areas. These lie somewhere in
between the Christallerian and Löschian classification; although one
can take the argument only so far, absent other detailed dynamical
information on socio-economic activity and land use pattern, as
well as historical data on their evolution.

One must note that inness assumes the existence of a unique
city center. Cities that show a strong positive value of inness may
thus be considered monocentric in the sense that there is a
measurable center through which the majority of routes pass,
while those with neutral inness are polycentric, in that there is no
such center. Centricity in this case has to be interpreted in the
morphological sense reflecting the hierarchical organization and
spatial patterns of roads. Cities, in general, however, exist in a
continuum between mono and polycentricity, depending on how
one defines these terms. Generally, centricity in cities has been
measured on the basis of locations of high population density or
spatial patterns of land use43,44, with no dominant quantitative
definition for what constitutes the type of centricity45. Indeed, the
notion of whether cities are monocentric or not depends on the
specific feature being investigated. It is notable, however,
that some Type I cities considered to be polycentric in terms
of our definition are also similarly classified based on
completely different metrics such as types of employment and
their density patterns43–45. Though one must be careful with the
analogy, given the limited basis of comparison, inness may be also
interpreted as a parsimonious and easily measured metric of
centricity in cities, given its simple definition and intuitive
interpretation.

In summary, it appears that inness as a simple metric encodes a
surprising amount of geometric, infrastructural, and socio-
economic information of cities. Indeed, the observed connec-
tions between inness, road hierarchies, differences in fast and
direct routes, geographical accessibility, centricity in cities, socio-
economic indicators, and developmental stage, in combination,
provide a rather comprehensive picture of urban organization.
The results presented here invite more integrated analysis and
interpretation, with respect to existing geographical, historical,
morphological, and transport-planning studies for individual
cities and their development trajectories.

Methods
Sampling routing pairs. For each of our 92 cities, a city center is defined by
referencing the coordinates from latlong.net and the travel routes are sampled
according to a choice of OD pairs relative to the center and measured in spherical
coordinates (distance from center r, and angular separation relative to center θ). To
avoid any sample bias, and to systematically investigate the dependence of route
morphology on distance from the urban center, we only consider OD pairs at a
fixed radius r.

Furthermore, at each r we section the circumference of the circle at intervals of
10° for a total of 36 points (with the minimal angular separation chosen to avoid
effects of noise). We then vary the radius over the range 2, 5, 10, 20, and finally 30
km (roughly corresponding to a city boundary) and enumerate over all OD pairs

by connecting the 36 points at a given radius r for a total of 5 ´ 36
2

� �
¼ 3150 total

OD pairs.
Finally, we query the OpenStreetMap API for the suggested travel routes

connecting each of the pairs. In fact, for a better characterization of the functional
features of the systems (e.g., road capacities) and the role of their hierarchical
organizations, we obtained two different kinds of routes between all these pairs: the
shortest, based on lengths of road segments, and the fastest that accounts for both
the length and the travel time based on flow capacity of the roads (i.e., speed limits,
number of lanes, etc.). A visual representation of our methodology in segmenting
the city is shown in Fig. 2a and typical examples of the shortest and fastest route for
a given city is shown in Fig. 2b. (For more details on our data samples, see
Supplementary Note 1, Supplementary Tables 1 and 2.)

Calculation of inness. The inness I is calculated by summing over the areas of the
number of polygons in the route by using the shoelace formula, thus

I ¼ 1
2

Xm
i¼1

sgnðiÞ
Xn
j¼1

det
xi;j xi;jþ1

yi;j yi;jþ1

� ������
�����: ð3Þ

Here n is the number of vertices of the polygon, m is the total number of polygons
in the route, (xi,j, yi,j) corresponds to the coordinate of j’th vertex of polygon i, and
sgn(i) accounts for our adopted convention for inner and outer points.

Data availability. All data needed to evaluate the conclusions are present in the
paper and/or the Supplementary Materials. Additional data related to this paper
may be requested from the authors and are also available at https://github.com/
mlee96/inness_research.
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