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ABSTRACT Cytoskeletal motor proteins are essential to the function of a wide range of intracellular mechano-systems. The
biophysical characterization of their movement along their filamentous tracks is therefore of large importance. Toward this end,
single-molecule, in vitro stepping-motility assays are commonly used to determine motor velocity and run length. However,
comparing results from such experiments has proved difficult due to influences from variations in the experimental conditions
and the data analysis methods. Here, we investigate the movement of fluorescently labeled, processive, dimeric motor proteins
and propose a unified algorithm to correct the measurements for finite filament length as well as photobleaching. Particular
emphasis is put on estimating the statistical errors associated with the proposed evaluation method, as knowledge of these
values is crucial when comparing measurements from different experiments. Testing our approach with simulated and experi-
mental data from GFP-labeled kinesin-1 motors stepping along immobilized microtubules, we show 1) that velocity distributions
should be fitted by a t location-scale probability density function rather than by a normal distribution; 2) that the impossibility to
measure events shorter than the image acquisition time needs to be taken into account; 3) that the interaction time and run
length of the motors can be estimated independent of the filament length distribution; and 4) that the dimeric nature of the motors
needs to be considered when correcting for photobleaching. Moreover, our analysis reveals that controlling the temperature dur-
ing the experiments with a precision below 1 K is of importance. We believe our method will not only improve the evaluation of
experimental data, but also allow for better statistical comparisons between different populations of motor proteins (e.g., with
distinct mutations or linked to different cargos) and filaments (e.g., in distinct nucleotide states or with different posttranslational
modifications). Therefore, we include a detailed workflow for image processing and analysis (including MATLAB code), serving
as a tutorial for the estimation of motility parameters in stepping-motility assays.
INTRODUCTION
Cytoskeletal motor proteins are essential for long-range
intracellular transport (1), the malfunction of which can
cause a number of pathologies including neurodegenerative
diseases (2). The precise characterization of motor proteins
with regard to their intrinsic function and the investigation
of factors that influence their behavior thus constitutes an
important part of medical and biophysical research. To
study motor proteins in minimal in vitro systems, fluores-
cence imaging of single motors (stepping along their fila-
mentous tracks) remains at the forefront of biophysical
tools (3–6). However, quantitative estimation of the crucial
motility parameters, namely velocity, interaction time, and
run length, proves to be challenging owing to fundamental
limitations in the experimental design. Because the proces-
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sive run of a motor may be prematurely terminated by the
end of a filament or the motor may be rendered invisible
due to photobleaching of the attached fluorescent marker,
so-called censored events will be part of any experimental
data (7). As these censored events are prone to significantly
bias the results, reliable correction methods are needed.
Although corrections for finite filament length and photo-
bleaching have been investigated individually in the past
(8–12), the field still lacks a unified methodology. Here,
we suggest an approach that addresses the above-mentioned
challenges. Besides evaluating experimental data obtained
from the motility of single, GFP-labeled kinesin-1 motors,
we perform numerical simulations using a priori known pa-
rameters to show how statistical analysis allows for charac-
terizing the certainty of a given measurement. Knowledge
of the latter is of crucial importance when data from
different measurements are to be compared. Along with
our findings, we emphasize the importance of a precise
temperature control during the measurements and describe
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a detailed workflow that facilitates the analysis of experi-
mental data.
MATERIALS AND METHODS

Motor proteins and filaments

Histidine-tagged, truncated (1–430 amino acids) rat kinesin-1 labeled with

eGFP (rKin430-eGFP) was expressed and purified as previously described

(13). Porcine tubulin was purified from porcine brain (Vorwerk Podemus,

Dresden, Germany) using established protocols (14). Microtubules were

grown for 2 h at 37�C from a 80 mL BRB80 (80 mM PIPES; Sigma-Aldrich,

St. Louis, MO), pH 6.9 adjusted with KOH (Merck, Kenilworth, NJ), 1 mM

EGTA (Sigma-Aldrich), and 1 mM MgCl2 (Merck) solution supplemented

by 2 mM tubulin (75% unlabeled and 25% rhodamine-labeled TAMRA;

Thermo Fisher Scientific, Waltham, MA), 1 mM GMP-CPP (Jena Biosci-

ence, Jena, Germany), and 1 mMMgCl2. A quantity of 80 mL of the micro-

tubule solution was centrifuged in a Beckman Airfuge (A95 rotor; Beckman

Coulter, Brea, CA) at 10,0000� g for 5 min. The pellet was resuspended in

a volume of 200 mL BRB80T (BRB80 supplemented by 1 mM taxol;

Sigma-Aldrich). The solution was kept at room temperature overnight

and the 200 mL microtubule solution was centrifuged and resuspended

(in 200 mL BRB80T) again before the experiment.
Single molecule stepping assay

The employed stepping assays using total internal reflection fluorescence

microscopy have been extensively described by Korten et al. (15). Briefly,

we performed the experiments in flow channels (16), self-built from two

glass coverslips (22 � 22 mm2 and 18 � 18 mm2; Corning, Corning,

NY) that were cleaned in piranha solution (H2O2/H2SO2, 3:5; both pur-

chased from Sigma-Aldrich), silanized with 0.05% dichlorodimethylsilane

in trichloroethylene (Sigma-Aldrich) and glued together by heated pieces of

Parafilm M (Pechiney Plastic Packaging, Chicago, IL). The flow sequence

was as follows: 1) the flow channel was filled with a solution of TetraSpeck

microspheres (diameter 100 nm; Thermo Fisher Scientific) diluted 200-fold

in BRB80 that were used for drift and color correction (17). 2) After 2 min,

the solution was exchanged with a BRB80 solution containing 77.5 mg/mL

anti-b-tubulin antibodies (SAP4G5; Sigma-Aldrich). 3) After 5 min, the

surface was blocked with a solution with 1% Pluronic F-127 (Sigma-

Aldrich) in BRB80 for 15 min. 4) Microtubules diluted 10-fold to prevent

microtubule intersections were incubated for 5 min to bind to the tubulin

antibodies. 5) The microtubule solution was finally replaced by the motility

solution—BRB80 containing 10 mM taxol, 0.04 mM glucose (Sigma-

Aldrich), 0.2 mg/mL glucose oxidase (SERVA Electrophoresis, Heidelberg,

Germany), 0.02 mg/mL catalase (Sigma-Aldrich), 10 mMDTT (Fermentas/

Thermo Fisher Scientific), 0.1 mg/mL casein (Sigma-Aldrich), and 10 mM

Mg-ATP (Sigma-Aldrich)—supplemented by 4 mg/mL rKin430-eGFP. For

bleaching time estimation, undiluted sparsely labeled microtubules were

used (10� less rhodamine labeling) and ATP was replaced with 10 mM

AMP-PNP (Sigma-Aldrich) in all solutions.
Optical imaging

Fluorescence imaging was performed using an inverted fluorescence micro-

scope (Observer Z1; Zeiss, Jena, Germany) with a 100� oil immersion

objective (APOCHROMAT; numerical aperture 1.46; Zeiss) and an addi-

tional 1.33� magnifying Optovar (custom-build). The final pixel size was

117 nm. Microtubules were observed by epifluorescence using a Lumen

200 metal arc lamp (Prior Scientific Instruments, Fulbourn, United

Kingdom) with a TRITC filter set (excitation 534/30, emission 593/40,

dc R561; Chroma Technology, Rockingham, VT). rKin430-eGFP motor

proteins were observed in total internal reflection fluorescence mode by
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using a PhoxX 488 nm Laser (Omicron-Laserage, Rodgau-Dudenhofen,

Germany) with a GFP filter set (excitation 470/40, emission 525/50, dc

495; Zeiss) filter set. Image acquisition was performed at 100 ms exposure

time in streaming mode by an electron-multiplied charge-coupled device

camera (iXon Ultra DU-897U; Andor, Belfast, Northern Ireland) in

conjunction with a MetaMorph imaging system (Universal Imaging, Down-

ingtown, PA). The temperature was measured directly in the flow channel

with a small temperature sensor (IT-23; Physitemp Instruments, Clifton,

NJ) connected to a multipurpose thermometer (BAT-10; Physitemp Instru-

ments). Temperature control was implemented using a custom-made hollow

brass ring (MPI-CBG Mechanical Workshop, Dresden, Germany) around

the objective connected to a water bath with combined cooling and heating

unit (F25-MC Refrigerated/Heating Circulator; JULABO, Seelbach, Ger-

many). Although the electric components of the microscope setup usually

increase the room temperature as well as the temperature of the microscope

body, our temperature control kept the temperature in the flow channel sta-

ble within 0.5 K over hours. See the Supporting Material for further exper-

imental considerations.
Single molecule analysis

Single kinesin-1 molecules and microtubules were tracked using FIESTA

(18). Molecules that showed any pauses or stalling were disregarded. After

drift and color offset correction, the molecule position was projected on

the microtubule centerline (see the Supporting Material for detailed instruc-

tions on tracking with FIESTA). The resulting distance along the centerline

as well as the detachment position was utilized for further evaluation in

differentMATLAB scripts (TheMathWorks, Natick,MA). For velocity sim-

ulations, a Monte Carlo simulation of a Poisson stepper was used, and to

create exponential distributions, the MATLAB function ‘‘exprnd’’ was em-

ployed. Renormalization of the probability density function (PDF) was

donewith the SymbolicMath Toolbox ofMATLABand integration to obtain

the cumulative distribution function (CDF) with the functions ‘‘int’’ and

‘‘matlabFunction’’. The evaluation of the cumulative distribution function

utilized ‘‘ecdf’’, which also includes the optional Kaplan–Meier estimator;

for least-square fitting, ‘‘fit’’ was used; and for maximum likelihood estima-

tion, ‘‘mle’’ was employed. Bootstrapping was donewith ‘‘parfor’’, included

in the Parallel Computing Toolbox ofMATLAB. TheMATLAB code for the

simulations as well as for the evaluation can be found within a compressed

file in the Supporting Material (see description there).
Bootstrapping method

The statistical error of an evaluation method with a limited number of mea-

surements can be estimated using a bootstrapping method (4). Briefly, from

the data set, individual measurements are randomly selected with replace-

ment. Here, the complete data set is always available when picking the mea-

surement, which means that any measurement can also be selected more

than once. Now, the new randomly selected data set is analyzed using the

desired evaluation method. The procedure is repeated for sufficient number

of repetitions (e.g., n¼ 100) with randomly selected data sets. The resulting

bootstrapping distribution can be described by a normal distribution with

the mean denoting the actual result and its SD describing the statistical er-

ror. This statistical error is only the result from random sampling and de-

scribes the error that is to be expected when repeating the experiment.
RESULTS

Single motor protein stepping assay

Motor proteins moving along their filaments can be
described theoretically as Poisson steppers (Fig. 1). A
simplified model of the motor protein kinesin-1 stepping



FIGURE 1 Single-motor stepping assay. (A) Shown here is a schematic

depiction of a stepping assay. GFP-labeled kinesin-1 motors move along

rhodamine-labeled microtubules that are immobilized by antitubulin anti-

bodies to a glass surface. (B) Shown here is a typical kymograph (experi-

mental data) of a stepping assay with kinesin-1. The red box shows a

single motor that is measurable (interaction time t ¼ 1.3 s); the blue box

shows a motor with an interaction time that is too short for a reliable

measurement. In the latter case, it is unclear whether the motor moved proc-

essively along the microtubule or interacted only unspecifically. To see this

figure in color, go online.
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along microtubules (MTs) is shown in Fig. 1 A. Whereas
the attachment rate kon ¼ k0on $[Kinesin] is influenced by
the motor protein concentration [Kinesin] in solution, the
detachment rate koff only depends on the motor-filament
interaction. This interaction is described by 1) the motor
velocity v, which can be used to derive the stepping-rate
kstep ¼ v/d with d denoting the step size; 2) the interaction
time t, which can be used to derive the detachment rate
koff ¼ 1/t; and 3) the run length R, which can be used to
link the detachment rate koff to the mechano-chemical cycle
of the motor protein (e.g., R ¼ v , t). The first challenge in
the determination of these parameters can be seen in the
experimental kymograph in Fig. 1 B. There, clear linear mo-
tion can be observed for some motors (e.g., red box), but it is
unclear if short interactions are actual movement or unspe-
cific interactions (e.g., blue box). In our analysis, we there-
fore require a motor to be visible for five or more
consecutive imaging frames and to move over a distance
longer than the size of two pixels without pausing. Although
these experimenter-defined thresholds appear arbitrary, we
will show that their choice does not affect the results.

In the following, we will describe the procedures to esti-
mate velocity, interaction time, and run length. Estimating
the mean velocity will be rather straightforward, but we
will show that it is more challenging (but equally important)
to estimate the associated statistical error. As motor velocity
is a good reporter of the environmental conditions (foremost
temperature but also ionic strength and pH), knowledge
about both mean velocity and error is of importance when
potentially combining data from different fields of view or
different experiments. Without taking precautions, the envi-
ronmental parameters can vary significantly over the course
of an experiment and unwanted influences can be minimized
by pooling data frommeasurements with nondiffering veloc-
ities only. For reducing the systematic error in estimating the
interaction time and run length, data analysis needs to address
additional experimental challenges such as limited filament
length and photobleaching. In addition to addressing the
challenges that arise in single motor protein stepping assays,
we provide extensive Supporting Material that includes the
workflow for image processing in FIESTA, the MATLAB
scripts used for the analysis, and many other experimental
considerations (e.g., temperature control). Along with the
proposed workflow for estimation of the motility parameters
(see Workflow for Evaluating Velocity and Workflow for
Evaluating Interaction Time and Run Length), this work
can be used as a tutorial for investigating processive motor
proteins. To facilitate the analysis, we incorporated the esti-
mation of the motility parameters (including the proposed
corrections) into FIESTA (version 1.6 or later).
Evaluation of the velocity

The velocity of individual processive motors is determined
by tracking their positions over time, X(t) and Y(t). These
positions are projected on the centerline of the filament
and the distance D(t) the motor moved along the filament
is calculated. Fitting D(t) with a linear function D(t) ¼
v$tþ c yields the velocity v. A typical experimental velocity
distribution of N ¼ 543 kinesin-1 motors is shown in
Fig. 2 A. Although upon first sight the distribution resembles
a normal distribution, hypothesis testing reveals that the data
cannot be described by a normal distribution (p < 0.001,
Kolmogorov-Smirnov test).

To investigate the reason behind the deviation from the
normal distribution, we created a Monte Carlo simulation
with 10,000 traces of motor proteins stochastically stepping
with a rate of kstep ¼ 100 s�1 and step size dstep¼ 8 nm
(koff ¼ 0, total time per trace 20 s). We looked at the number
of steps Nsteps taken by each of these simulated motor pro-
teins at specific time points (e.g., t1 ¼ 1 s, t2 ¼ 3 s, etc.).
At each time point, Nsteps is described by a Poisson distribu-
tion that can be approximated with normal distributions
(Nsteps > 10; Fig. S1 A). Because the velocity is described
by v ¼ Nsteps$ dstep /T, the mean velocities are the same at
each time point, but the widths of the normal distributions
vary (Fig. S1 B).

If the detachment rate is changed to koff ¼ 0.5 s�1, each
motor has a different interaction time, and thereby the
Biophysical Journal 113, 2433–2443, December 5, 2017 2435
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FIGURE 2 Evaluation of velocity in single-

motor stepping assays. (A) Shown here is a histo-

gram of kinesin-1’s velocity distribution at

temperature T ¼ 25.7�C with corresponding

normal and TLS PDF (estimated with MLE).

The inset shows the residuals between the esti-

mated PDF and the experimental data. (B) Shown

here is an evaluation of simulations using normal

and TLS PDF. The red/blue dashed lines show

the results using the Monte Carlo simulation

whereas the solid lines depict results from simula-

tions that resemble more realistic experimental

conditions (Monte Carlo simulation with spatial

averaging and additional positional error).

Whereas both distributions yield the same preci-

sion for the results obtained from theMonte Carlo

simulation, the TLS PDF is more precise than the

normal PDF with simulated experimental data.

The gray dashed lines are the average bootstrap-

ping errors (see Materials and Methods), used to

estimate the statistical errors. (C) Shown here is

velocity during acquisition of one data set in eight

different fields of view. The temperature was kept

constant within 0.5 K (23.5–24�C) and the

velocity shows only marginal deviations over

time. Therefore, data can be pooled to create a

combined data set (gray lines; dashed lines

indicate error, Ntotal ¼ 5208). (D) Shown here is

dependence of velocity on temperature (measured

in theflowchannel).A temperature increase of1K

increases thevelocity by>5%.To see thisfigure in

color, go online.
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velocity distribution of all motors is a mix of normal distri-
butions with the same mean values but different widths. In
general, motors with shorter interaction times have a higher
variance in the velocity distribution than motors that interact
longer (under the same imaging conditions, Fig. S1 B).
Consequently, the observed velocity distribution is not a
normal distribution.

To further adjust the simulation to more realistic experi-
mental conditions, spatial averaging over the positions
D(t) during the acquisition time of individual imaging
frames (e.g., 100 ms accounting for a finite frame rate of
f ¼ 10 s�1) was performed and a positional error (due to
tracking uncertainty) was incorporated by adding normally
distributed noise (s ¼ 100 nm). Due to the finite acquisition
time, no exact information about the attachment and detach-
ment time can be extracted. Consequently, the positional
averaging during acquisition of these frames would bias
the estimation toward slower velocities (see the Supporting
Material). Therefore, the first and last tracked frames have
to be excluded in the linear regression of D(t).

After obtaining a single velocity for each motor, a mean
velocity v for one experiment can be obtained by estimating
the characteristic parameters of a PDF with maximum like-
lihood estimation (MLE). As PDF, we used a t location-
scale (TLS) distribution (19) that includes a shape parameter
n in addition to the location m and scale s parameters, which
2436 Biophysical Journal 113, 2433–2443, December 5, 2017
are conventionally used to describe a normal distribution.
The TLS PDF that MATLAB uses in MLE is described by
the following equation:

f ðx jm; s; nÞ ¼
G
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As can been seen in Fig. 2 A, the TLS PDF fits the velocity
distribution better than the normal distribution because the
shape parameter n accounts for heavier tails (see also
Fig. S2 A). To compare the statistical errors when using
these PDFs, we picked out a random set of N motor proteins
from our simulation (with replacement, see bootstrapping in
Materials and Methods). We calculated the velocity for each
motor, and estimated the mean velocity viN for that random
set using both normal and TLS PDFs. The procedure was
repeated n ¼ 100 times and the deviation from the true ve-
locity ~v ¼ 0.8 mm/s (kstep ¼ 100 s�1 and dstep ¼ 8 nm) was
calculated:

sy
N ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn

i¼ 1

�
yiN � ~y

�2s
; n ¼ 100: (2)



Estimating Motility Parameters
The relative deviation svN=~v is plotted as function of the
number of measurements in Fig. 2 B. Although there is
only a small difference between using a normal or TLS
PDF when evaluating the Monte Carlo simulation, this dif-
ference increases when evaluating time-averaged traces
with additional positional error (corresponding to experi-
mental data). It turns out that, to reach a relative error
Dv/v of 2% (with Dv ¼ 2svN, confidence interval 95%),
only 200 measurements are necessary when using a TLS
PDF compared to 750 measurements when using a nor-
mal PDF. Here, the difference between TLS PDF and
normal PDF depends on the average number of data points
in each trace available (defined by time resolution and inter-
action time) for each trace as well as on the positional error.
On average, using either distribution yields the same mean
velocity, but the TLS PDF yields a smaller relative error
because it fits the velocity distribution significantly better
(19) (see the Supporting Material for a more extensive
investigation of the velocity evaluation).

In addition to measuring the velocity precisely, it is also
essential to limit any external influence on the motility pa-
rameters, most importantly the temperature. Conventionally,
velocity measurements on motor proteins are performed at
‘‘room temperature’’ and the actual temperature is not spec-
ified precisely. However, temperature variations can lead to
small but significant velocity differences within one experi-
ment and only by actively stabilizing the temperature in
the flow channel. Using a temperature control system
(within 50.5 K; see the Supporting Material), we could re-
move the temperature influence on the motor stepping
(Fig. 2 C). In contrast, not accounting for temperature differ-
ences when comparing data sets (e.g., from different days or
labs) can lead to a gravemisinterpretation of data. Even a 1K
temperature increase can influence the velocity by >5%
(Fig. 2D). The temperature effect becomes evenmore prom-
inent for measurements at room temperature (e.g., data
points at 24.2–25.7�C) with �13% increase in velocity
over 1.5 K. Thus, measuring and reporting both temperature
and velocity is of utmost importance when comparing the
motility parameters of motor proteins. In turn, the motor
velocity can be used as a control parameter to assure a con-
stant temperature. In fact, together with our temperature con-
trol system, this strategy enabled us to pool experimental
data sets from different image sequences and fields of view
into a combined data set for further analysis.

Workflow for evaluating velocity

1) Extract the distance versus time information for each
motor protein (see the Supporting Materials and
Methods for instructions on how to track and analyze
single fluorescent motor proteins using FIESTA (17)).

2) Fit distance versus time trace with linear regression leav-
ing out first and last frame of the trace.

3) Use MLE to fit a TLS pdf to the velocity distribution.
To calculate the error of the mean velocity n with the TLS
pdf, either use the 95% confidence interval (estimated
with MLE) or bootstrapping (see Materials and Methods).
The MATLAB code can be found within a compressed
file (Data S1).
Evaluation of the interaction time and run length

Interaction time and run length of motor proteins are theo-
retically exponentially distributed (20) and our Monte
Carlo simulations indeed show exponential distributions
for both parameters. This can be attributed to a
stochastic detachment with rate koff where the interaction
time is t ¼ koff

�1 and the run length is R ¼ v $ koff
�1.

To test different methods to evaluate censored data, we
simulated exponential distributions and evaluated them us-
ing three different methods previously described in the
literature: 1) least-squares fitting of the probability density
function (LSF-PDF) where the data is binned in a histo-
gram, and the locations and heights of the bins are fitted
by an exponential PDF yp ¼ f ðx jmÞ ¼ 1

m
e�x=m (20);

2) least-squares fitting of the cumulative distribution func-
tion (LSF-CDF) where the data is used to create a
cumulative probability distribution that is fitted with the
CDF yc ¼ f ðx jmÞ ¼ 1� e�x=m (4); and 3) MLE, where
the data is used directly to estimate the parameters of
the exponential distribution. For complete exponential dis-
tributions (where all events are measurable), the MLE
method yields the most precise results, because MLE
can be solved analytically. In contrast, least-squares fitting
involves numerical parameter optimization that is termi-
nated when a certain tolerance is reached. The tolerance
slightly decreases the precision with which the parameters
are estimated. However, the experimental limitations pre-
vent us from measuring complete exponential distribu-
tions. First, it is impossible to include motility events
with t shorter than the time resolution (in our case,
100 ms). Second, events with short interaction times might
be easily discarded as noise during the evaluation proced-
ure. Due to these missing short events, the measured expo-
nential distributions are not complete and the evaluation
method has to be adjusted: 1) using LSF-PDF, the first
bin is underrepresented and needs to be disregarded
when fitting the PDF (Fig. 3 A); 2) using LSF-CDF, a cut-
off parameter x0 has to be introduced in the CDF
yc ¼ f ðx jmÞ ¼ 1� e�ðx�xoÞ=m (4) to account for the
missing measurements (Fig. 3 B), which cutoff parameter
can be set as a constant (LSF-CDF(static) (4)) or as a free
fit parameter (LSF-CDF(free) (5)); and 3) using MLE, a
cutoff parameter can be employed to renormalize the
PDF (21). For a truly single exponential PDF, the cor-
rected parameter m can then be estimated by subtracting
the cutoff x0 from all measurements and evaluating the
data with MLE ðm ¼ Pðxi � xoÞ=nÞ.
Biophysical Journal 113, 2433–2443, December 5, 2017 2437
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FIGURE 3 Modified exponential distribu-

tion to simulate real measurements. (A)

Shown here is modified exponential probabil-

ity distribution with m ¼ 2 and N ¼ 1000.

Here, the first bar is underrepresented (black

pattern), due to experimental limitations.

The dashed line shows the LSF-PDF of the

complete distribution, whereas the solid line

shows the fit with the first bar excluded. (B)

Shown here is modified cumulative probabil-

ity of an exponential distribution with m ¼ 2

and N ¼ 1000. Here, all measurements

x < 0.5 are disregarded, due to experimental

limitations. The gray dashed line shows the

LSF-CDF(static) of the distribution with a

fixed x0, whereas the solid black line shows

the fit with x0 as free fit parameter

(LSF-CDF(free)). To see this figure in color,

go online.
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In the following, we characterize the evaluation of expo-
nential distributions with LSF-PDF, LSF-CDF, and MLE by
creating a random data set of an exponential distribution
with ~m ¼ 2 (we disregard the difference between run length
and interaction time for now because the following applies
to any exponentially distributed data). Analogous to the ve-
locity in the previous section, we analyze the deviation of
the estimated mean m (from n ¼ 100 independent data
sets) from the true ~m in dependence upon the number of
measurements N:

s
m
N ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn

i¼ 1

ðmi
N � ~mÞ2

s
; n ¼ 100: (3)

Fig. 4 A shows the results when using the complete expo-
nential distribution. The relative deviation s

m
N=~m depends

only on the number of measurements due to the statistical
nature of the exponential function. As expected, all methods
show a clear 1=

ffiffiffiffi
N

p
behavior, but the LSF-PDF yields a
A B
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higher statistical error due to ‘‘coarse graining’’ by binning.
Here, the data is binned but the distribution of the measure-
ments within the bins is skewed (because an exponential dis-
tribution is continuously decreasing). Therefore, the data
points for fitting the PDF differ slightly from the expected
exponential distribution, which leads to the higher statistical
error.

If the simulation is adjusted to represent realistic experi-
mental results (Monte Carlo simulation with spatial aver-
aging, additional positional error, and missing short
events), two methods do not show the expected 1=

ffiffiffiffi
N

p
behavior (see Fig. 4 B). Both LSF-CDF(static) and MLE
can yield a systematic error because the cutoff is fixed and
chosen rather arbitrarily. In experiments, however, the exact
cutoff could be hidden within the limited time resolution or
the limited tracking accuracy. For the example given in
Fig. 4 B, the shortest interaction time was 0.5 s (at least
five frames with a time resolution of 100 ms), but because
the interaction can only be measured for full frames, a num-
ber of motors with interaction times between �0.45 and
FIGURE 4 Comparison of methods to estimate

the parameters of exponential distributions.

(A) Shown here is relative deviation s
m
N=~m from

the a priori value of the simulation estimated using

an exact and complete exponential distribution.All

methods reach the right result (see values on the

right); only the LSF-PDFmethod has a higher sta-

tistical error due to coarse-graining by binning. (B)

Shown here is the same relative deviation s
m
N=~m,

but using a modified exponential distribution

with a resolution of 0.1 mm or s, only x R 0.5.

LSF-CDF(static) and MLE methods with cutoff

x0 ¼ 0.5 fail because the real cutoff should be at

x0¼ 0.45 (see the Supporting Material). All simu-

lations used ~m¼ 2 and n¼ 100 (for LSF-PDF, a 0.5

bin width was used). Values on the right are mean

results of simulations using ~m ¼ 2, N ¼ 105, and

n ¼ 104. To see this figure in color, go online.
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0.5 s will also be also present in the distribution. Therefore,
the correct cutoff should actually be smaller than 0.5 s (more
discussion on choosing the cutoff in the Supporting Mate-
rial). The LSF-PDF method is not influenced by the missing
short events as long as all bins that are affected by the
missing events are disregarded, but again yields a higher sta-
tistical error due to coarse-graining. LSF-CDF(free) avoids
choosing a fixed cutoff x0 (by adding it as an additional fit
parameter) and yields precise results for the modified distri-
bution. Admittedly, employing an additional fit parameter
comes at the price that it may distort the results when eval-
uating more complex distributions (e.g., double exponen-
tial). Note that the statistical error cannot be smaller than
m=

ffiffiffiffi
N

p
, even if the confidence interval of the fitting is smaller.

This fitting error from least-squares-fitting occurs in addition
to the statistical error that results from the random sampling
of the exponential distribution. Hence, it is more important to
measure a large number of data points rather than improving
the precision of the individual measurements. The code for
fitting a particular experimental data set can be found within
a compressed file in the Supporting Material, along with an
extensive discussion on the creation of the CDF, the least-
squares-fitting, and the cutoff issue. In the following, we
only use LSF-CDF(free) to evaluate exponential distribu-
tions. We note that MLE would work similarly (including
correction for censored events). For comparison, we
included both evaluation methods in the MATLAB code
and also compared their statistical errors using simulations
(see the Supporting Material).
FIGURE 5 Correction for finite filament length. (A) Shown here is a

schematic depiction of GFP-labeled kinesin-1 motors that reach the end of

the microtubule and are forced to detach there (scored as ‘‘end-event’’).

(B) Shown here is the simulation of motor proteins landing on 10 filaments,

which are picked out of a Schulz distribution with L0. Some motors reach

the endanddetach prematurely, resulting in underestimationof the run length.

Using the Kaplan–Meier estimator (for end-events), a corrected cumulative

probability distribution can be calculated and LSF-CDF(free) is used to esti-

mate a corrected run length (the same can be applied to the interaction time).

(C) Shown here is experimental data of kinesin-1 run length, where traces

were separated in five groups according to the length of their filament (N

z 1000). Solid line shows mean run length of combined distribution with

bootstrapping error (dashed lines; see Materials and Methods). To see this

figure in color, go online.
Correction for finite filament length

Because each filament has a finite length, some motor pro-
teins are destined to run into the end of their track and
detach (Fig. 5 A). These events influence the measurement
of run length (or interaction time) and introduce a depen-
dence on the filament length (8). Therefore, identical motor
proteins moving along longer filaments would have a higher
observed run length (or interaction time) than motors step-
ping on short filaments. Here, we present a correction for
these so-called ‘‘end-events’’ by using the Kaplan–Meier
estimator (22) in LSF-CDF(free) to adjust the cumulative
probability distribution for these censored events. Because
it is possible to image the filaments and track single motor
proteins, the detachment positions along the filament can
be determined. Any event where a motor protein detaches
near the end of a filament (within one pixel), is then scored
as end-event (the exact procedure to calculate the adjusted
cumulative probability distribution can be found in the Sup-
porting Material). To verify the proposed method, we simu-
lated events of motor proteins landing on filaments with a
random length distribution (assuming a Schulz distribution
(23), see equation in the Supporting Material) and assessed
which motors reach the filament end. These traces are
included in the analysis as censored events.
Fig. 5 B compares the run lengths from our simulated data
with and without correction. Note that neglecting the length
correction leads to a systematic error that influences the
measurement because a certain number of motor proteins
will always reach the end even for long filaments. The
method was also verified experimentally when we tracked
5208 kinesin-1 motor proteins stepping along MTs (same
data as in Fig. 2 C) in eight different fields of view (temper-
ature 23.5�24�C). Fig. 5 C shows the run lengths grouped
Biophysical Journal 113, 2433–2443, December 5, 2017 2439
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according to the length of their MTs (combined data set was
separated in groups of N z 1000). A dependence of the
observed run length on the MT length is seen in the uncor-
rected data, whereas the correction using the Kaplan–Meier
estimator yields the same run length for all groups as well as
for the combined distribution. The errors can be estimated
using bootstrapping, where measurements are randomly
selected (with replacement, see Materials and Methods),
classified for end-events and then evaluated using LSF-
CDF(free) with the Kaplan–Meier estimator. After sufficient
repetitions (n ¼ 100), the resulting bootstrapping distribu-
tion yields the mean run length R and the statistical error af-
ter correction DR ¼ 2sR. Therefore, any influence of the
Kaplan–Meier estimator on the statistical error can be ac-
counted for. An alternative method to verify length correc-
tion can be found in the Supporting Material.
C

FIGURE 6 Correction for photobleaching. (A) Shown here is a schematic

depiction of GFP-labeled kinesin-1 motors that photobleach while moving

along the microtubule. The observed detachment rate is influenced by

photobleaching. (B) Shown here are simulations with finite filament lengths

(Schulz distribution L0 ¼ 5 mm) and photobleaching of motor proteins with

one or two fluorophores (tbleach ¼ 1 – 10 s, r¼ 0.5). Distribution of bleach-

ing times (r and k ) is measured from a different population of
Correction for photobleaching

Another experimental limitation is the statistical nature of
photobleaching after a fluorophore has emitted a certain
number of photons. Photobleaching influences the measure-
ment of the observed interaction time (or run length) and in-
troduces a dependence on the bleaching rate kbleach (see
Fig. 6 A). Even though the lifetime of the fluorophores
can be increased by adding antifade solutions (15), the effect
of photobleaching cannot be eliminated fully in the experi-
ments. Here, we describe the bleaching probability as a
combination of one- and two-fluorophore bleaching (see
Eq. 4), because even though dimeric, GFP-labeled motor
proteins are always tagged with two fluorophores, not all
of these fluorophores are active (see the Supporting
Material):

Pbleach ¼ð2� rÞkbe�kbx

þ 2ðr� 1Þkbe�2kbx. kb ¼ kbleach;
(4)

� � �ðkoffþkbÞx

bleach

simulated motor proteins (e.g., immobilized motors). Simulations used

~t ¼ 2 s, N ¼ 1000, and n ¼ 100. (C) Shown here are experimental data

from kinesin-1 at different laser excitation intensities (laser power at

controller). The bleaching time distribution was measured with immobi-

lized motor proteins (in the presence of AMP-PNP) in a second flow

channel on the same coverslip (same settings and solutions). Here,

bleaching rates kbleach and ratio r were measured for each excitation

power: kbleach ¼ 0.041 5 0.003 s�1 and r ¼ 0.41 5 0.09 for 20 mW;

kbleach ¼ 0.13 5 0.02 s�1 and r ¼ 0.32 5 0.12 for 40 mW; and

kbleach¼ 0.225 0.02 s�1 and r¼ 0.435 0.11 for 60 mW. To see this figure

in color, go online.
Pstepping ¼ð2� rÞ koff þ kb e

þ ðr� 1Þ�koff þ 2kb
�
e�ðkoffþ2kbÞx:

(5)

In Eq. 4, the parameter r denotes the fraction of motors with
only one active fluorophore. Because combining the evalu-
ation of detachment and photobleaching is not trivial
(Eq. 5) and the corresponding addition of more parameters
into the LSF-CDF leads to unstable solutions, we introduce
a different approach by assigning a bleaching probability to
each individual motor protein according to its interaction
time. Afterwards, the data is analyzed with a single expo-
nential using LSF-CDF(free) several times (n ¼ 100) and
in each iteration different events will be randomly scored
as bleaching events in agreement with their bleaching prob-
ability. Combined with the end-events, these censored
events are corrected for by using the Kaplan–Meier esti-
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mator. This way, the bleaching correction is averaged over
many iterations of the run length or interaction time estima-
tion. Additionally, the data can be resampled in every itera-
tion to combine photobleaching correction with the
bootstrapping method that now not only yields a corrected
measurement, but also the statistical error of the result.
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To verify the proposed correction, we extended our sim-
ulations to include photobleaching with a mixture of one-
and two-fluorophore bleaching, r ¼ 0.5. Fig. 6 B shows
the dependence of the observed and corrected interaction
times on the bleaching time. Here, only when correcting
for both finite filament length and photobleaching, the ex-
pected interaction of ~t ¼ 2 s was estimated. We tested the
photobleaching correction experimentally by imaging sin-
gle kinein-1 motor proteins in stepping assays at different
laser excitation intensities. Here, for each intensity, the
bleaching rate kbleach as well as ratio r was measured in a
second flow channel (on the same coverslip) by immobiliz-
ing GFP-labeled kinesin-1 on MTs with AMP-PNP (a non-
hydrolysable analog of ATP). The evaluation of the
photobleaching using FIESTA is described in the Support-
ing Material. Results in Fig. 6 C validate the correction
for photobleaching, because the dependence of the interac-
tion time on the laser intensity is removed and the estima-
tion of a combined interaction time is possible.

Workflow for evaluating interaction time and run length

1) Extract the interaction time and run length information
for each motor protein (see the Supporting Materials
and Methods for instructions on how to track and analyze
single fluorescent motor proteins using FIESTA).

2) Score end-events according to their detachment position
in relation to the filament end.

3) Estimate bleaching probability from the separate chan-
nel with immobilized motors (see the Supporting Mate-
rials and Methods for photobleaching measurement with
FIESTA).

4) Assign bleaching-events, create cumulative probability
distribution (censored end- and bleaching-events) with
the Kaplan-Meier-Estimator and use LSF-CDF (free)
to estimate interaction time and length.

5) Bootstrapping: repeat step 4 with different randomly
selected traces. Reassign bleaching events randomly in
each iteration according to the bleaching probability.

The MATLAB code for evaluation of velocity, bleaching
time, interaction time, and run length can be found within
a compressed file (Data S1; description in the Supporting
Materials and Methods). Note that censored events also
include events where the motor proteins move in or out of
the field of view, as well as traces that start or end in the first
or last imaging frame, respectively.
DISCUSSION

Wepresented amethod to investigate the motility parameters
of single, fluorescently labeledmotor proteins in stepping as-
says, including experimental enhancements, software for
tracking and analysis, and precise evaluation of the measure-
ments. For verification, simulations were performed to check
whether the methods yield the true results and different
methods for evaluation and correction were compared with
respect to their systematic and statistical error. The best
methods were then used to characterize the temperature
dependence of the velocity as well as the influence of the fila-
ment length and photobleaching on interaction time and run
length experimentally. Furthermore, correction methods are
proposed tominimize the influence of the experimental setup
on the obtained results. These corrections are shown to work
in simulations as well as with experimental data and show the
advantage to previously used methods for the evaluation of
data from single fluorescent motor proteins.

First, we found that a measured velocity distribution from
single motor proteins cannot be described as a normal distri-
bution. When assuming a simple Poisson–Stepper model the
velocity of motors with longer interaction times can be esti-
mated more precisely then for short events, which leads to
deviations from the normal distribution due to heavier tails.
Still, the normal distribution is commonly used when eval-
uating velocity distributions (3–6), even though Norris
et al. (6) already show clear deviations (Fig. S2). Here, we
propose using a TLS distribution for estimation of the
mean velocity because the TLS PDF fits better to the simu-
lated as well as the experimentally measured velocity distri-
butions. Compared to the normal distribution the TLS
method yields a smaller statistical error. Because it is
possible to precisely measure the velocity (Dv/v < 0.01
with N> 1000) this motility parameter can be used as a con-
trol parameter to verify that the temperature indeed was sta-
ble even without the information of the additional
temperature sensor in the flow channel.

Second, we compared different methods to evaluate expo-
nential distributions and we found that using the LSF-CDF
yields the best results. Here, the introduction of a cutoff x0 as
a free fit parameter is sufficient to account for missing short
events. We note that the MLE method can also be used if the
PDF is renormalized to account for the missing short events
(21), but the a priori knowledge of the cutoff parameter can
essentially introduce a systematic error and bias the results.
Nonetheless, because MLE can also account for censored
events, the LSF-CDF(free) method can easily be replaced
by MLE. (Note: The MATLAB code in the Supporting Ma-
terial includes both methods.) We compared both methods
using simulations (see the Supporting Material) and found
that MLE has a slightly smaller statistical error (mainly
due to one less fitting parameter). However, when evaluating
noisy data (simulated or experimental) qualitatively the fit
of the PDF to the distribution was strongly influenced by
the choice of the cutoff parameter. While the actual method
to be used is a matter of choice we recommend using LSF-
CDF(free) or extending MLE to allow for estimation of the
best cutoff parameter (e.g., by machine learning).

Third, we propose specific corrections for finite fila-
ment length and photobleaching using the Kaplan–Meier
estimator with the LSF-CDF(free) method. Because we
can track both the fluorescently labeled motors and the
Biophysical Journal 113, 2433–2443, December 5, 2017 2441



Ruhnow et al.
filaments, it is possible to determine end-events, which
censor some specific events in a data set. By using the
Kaplan–Meier estimator we can adjust the CDF for these
end-events and thereby correct for the finite filament length.
The advantage over previously published methods (8),
which use a correction term that includes the average fila-
ment length of the experiment, is that the underlying length
distribution of the filaments does not influence the evalua-
tion. Therefore, it does not matter if motor proteins are step-
ping on one particular filament or on a random set of
filaments. In addition, variations in filament length between
different fields of view do not affect the results. Correction
for photobleaching is not as trivial as the filament length
correction. Previously, corrections for photobleaching
assumed the simple relation kobserved ¼ koff þ kbleach
(9,24), with kobserved describing the observed detachment
rate being the superposition of the real detachment rate
koff and the bleaching rate kbleach. There, by either estimating
the bleaching rate (9) or extrapolating kobserved using
different laser intensities (24), a corrected interaction time
could be calculated. Unfortunately, these methods fail
when the molecules of interest are labeled with more than
one fluorophore as is the case with dimeric motor proteins
where a GFP is expressed on each monomeric motor unit.
Most importantly, usually not all fluorophores are active
and a mixture of motor proteins with either one or two active
fluorophores is observed (12). Therefore, we propose to
measure the bleaching time as well as the ratio of one to
two fluorophore bleaching to calculate the bleaching proba-
bility for a specific experiment. Over many iterations, we
can now randomly assign bleaching-events according to
the interaction time of the motor proteins. By including
them in the censored events, our correction for both, photo-
bleaching and finite filament length, is achieved. Conse-
quently, our simulations show slight deviations from the
expected true values only for bleaching times in the range
of—or shorter than—the interaction time.

How well does our proposed method perform when 1) the
interaction time of the motor is significantly longer than
the bleaching time of the fluorophores, 2) the run lengths
of the motors are significantly larger than the filament
lengths, and 3) the motors exhibit frequent switching be-
tween movement and stalling?With regard to the limitations
originating from photobleaching, adjustment of the imaging
conditions (e.g., exposure time and light intensity, such that
the bleaching rates are lower than the motor detachment
rates) are effective means to reduce the systematic error.
Furthermore, novel photostable fluorescent proteins as
well as functionalized fluorophores (e.g., GFP-boosters
based on nanobodies) will reduce the influence of photo-
bleaching. In any case, comparing the motility parameters
obtained under different imaging conditions can directly
show if photobleaching influenced the results. With regard
to investigating highly processive motor proteins, which
reach the filament ends in most of the cases, the only solu-
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tion is to use longer MTs. Tweaking the protocols for MT
polymerization (e.g., by extending the growths times in
conjunction with lowering the tubulin concentration)
allows for the generation of MTs with lengths above
50 mm, sufficient to reliably determine the run lengths in
any cellular context. Moreover, discarding all motility
events from filaments with lengths below a threshold is
possible, because our proposed correction algorithms do
not require a certain MT length distribution. In general,
the more motor traces are censored the less accurate the pre-
cision will be. With respect to super-processive motility
(such as Kinesin-3 (25) and Kinesin-8 (26)) we note that
the run length is not a suitable motility parameter and rather
other measures (such as the motor’s end-reach probability in
dependence of the landing position) should be applied. With
regard to motors that exhibit frequent stalling, our correc-
tions for finite filament length and photobleaching do stay
valid (Kaplan–Meier estimator can still be used), but the
motors cannot be described by simple Poisson steppers
anymore. Therefore, the underlying models will have to
be adjusted accordingly, e.g., by using double-exponential
functions for interaction time and run length.

We conclude, to precisely characterize the stepping of
motor proteins on their filaments, the following steps are
necessary:

1. The temperature should be stable throughout the experi-
ments to combine and evaluate many traces at the same
condition in one data set. Because even small changes
in temperature influence the motility parameters signifi-
cantly, it is essential to measure the assay temperature
precisely. Here, measuring and specifying the room tem-
perature is not sufficient as the actual temperature in
the flow channel can be up to 3 K higher due to micro-
scope-internal heat sources, such as electrical components
and light sources.Hence, any results given for velocity, run
length, and interaction time should include the temperature
in the flow channel within51 K. Furthermore, to investi-
gate different motor or filament populations, we recom-
mend incorporating them in the same flow channel or at
least on the same coverslip to minimize any temperature
differences in the experiments. A detailed description of
the temperature control can be found in the Supporting
Material, which is easy to implement using any mechani-
cal workshop (SolidWork files are available on request).

2. Corrections for finite filament length and photobleaching
need to be included, because otherwise both interaction
time and run length are underestimated (e.g., see
Zimmermann et al. (27)). Here, the systematic errors
can be on the same order as the statistical error and there-
fore careful consideration of the evaluation method
is essential. For that reason, we provide an extensive
description of the evaluation method, including the
MATLAB code, to efficiently measure a sufficient
number of motor proteins (to reduce the statistical error)
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and to address limitations in the design of the experi-
mental assay (to remove the systematic error).

3. The motility parameters velocity, interaction time, and
run length should always be estimated when comparing
different data sets. Motor proteins could have the same
run length, but different velocities (kstep) and interaction
times (koff), so only comparing one motility parameter
might result in the misconception that even if the exper-
iment yields the same result for different motors, the
underlying motility mechanism could still be different.

In summary, the described evaluation should allow for a
better statistical comparison of motor proteins influenced
by external factors, e.g., ionic strength, ATP concentration,
nucleotide state of the filaments, or posttranslational modi-
fications of the filaments. Furthermore, comparison of
different motor proteins as well as motor populations, e.g.,
structural differences or binding of regulatory proteins,
will then become possible. We believe the methodology
developed in our work will provide a reliable framework
for the evaluation of a wide range of experiments with single
fluorescently labeled motor proteins.
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