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Abstract
Objectives  Multiomics study was conducted to 
elucidate the crucial molecular mechanisms of primary 
Sjögren’s syndrome (SS) pathology.
Methods  We generated multiple data set from 
well-defined patients with SS, which includes whole-
blood transcriptomes, serum proteomes and peripheral 
immunophenotyping. Based on our newly generated 
data, we performed an extensive bioinformatic 
investigation.
Results O ur integrative analysis identified SS gene 
signatures (SGS) dysregulated in widespread omics 
layers, including epigenomes, mRNAs and proteins. 
SGS predominantly involved the interferon signature 
and ADAMs substrates. Besides, SGS was significantly 
overlapped with SS-causing genes indicated by a 
genome-wide association study and expression trait 
loci analyses. Combining the molecular signatures with 
immunophenotypic profiles revealed that cytotoxic CD8  
T cells were associated with SGS. Further, we observed 
the activation of SGS in cytotoxic CD8 T cells isolated 
from patients with SS.
Conclusions O ur multiomics investigation identified 
gene signatures deeply associated with SS pathology and 
showed the involvement of cytotoxic CD8 T cells. These 
integrative relations across multiple layers will facilitate 
our understanding of SS at the system level.

Introduction
Primary Sjögren’s syndrome (SS) is a chronic auto-
immune disorder characterised by the destruction 
of lacrimal and salivary glands, and it is often 
accompanied by systemic manifestations. Existing 
therapies for SS are symptomatic treatments, and 
there are no disease-modifying treatments that 
can change the natural course of SS. Recently, 
open-label studies of biologics targeting CD201 
and BAFF2 have been conducted. Although these 
studies demonstrated some promise, their ther-
apeutic effects were not dramatic with respect to 
the response rate or the magnitude of symptomatic 
improvements. Thus, there is an enormous need to 
develop novel therapies that can remedy the patho-
physiological components of SS.

To elucidate the crucial disease mechanisms 
of SS, considerable effort has been made toward 
the comprehensive characterisation of molecular 
and cellular components. These efforts include 

genome-wide association studies (GWAS)3 4 and 
studies on transcriptomes in peripheral blood5 and 
affected glands,6 epigenomes,7 serum proteomes,8 
metabolomes9 and high-dimensional immunophe-
notyping.10 For instance, interferon-responsive 
genes (IRGs) are dysregulated in peripheral blood5 
and aberrantly DNA methylated.7 In addition, our 
serum proteome analysis8 identified the serum 
biomarkers for SS progression. Despite the success 
in identifying disease components of SS, there 
is a substantial lack of understanding regarding 
how each component connects and relates to SS 
development.

In this study, we performed transcriptome 
profiling and immunophenotyping for the iden-
tical blood samples previously used for the serum 
proteome.8 Our integrative analysis identified 
SS gene signatures (SGS) disrupted in wide-
spread layers, including whole-blood transcrip-
tomes, whole-blood DNA methylation and serum 
proteomes. We further showed that the SGS are 
related to SS GWAS variants and immune cell 
subsets.

Results
Identification of SS disease signatures
Our multiomics cohort was composed of 30 
patients with SS and 30 healthy controls (HCs) 
(online supplementary figure 1). We measured 
whole-blood transcriptomes using genome-wide 
microarrays (n=60), 1100 serum proteins based 
on the SOMAmer technology (n=60) as previously 
described,8 and the abundance of 24 peripheral 
immune cell populations (n=49–50).

To identify gene signatures that were highly 
dysregulated in SS, we integrated the SS molec-
ular aberrations with correlation networks built 
from transcriptome and proteome data (figure 1A). 
The correlation networks were used to identify the 
group of genes or proteins, which were regulated 
similarly in SS. We used the Weighted Correla-
tion Network Analysis  (WGCNA) method11 and 
the affinity propagation method12 to identify such 
groups in transcriptional networks and protein 
networks, respectively. We identified 32 transcript 
coexpression modules and 52 protein coabundance 
modules (online supplementary table 1). Then, 
these modules were prioritised based on the rele-
vance to SS.
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The disease relevance of each module was quantified based 
on four metrics, differentially expressed gene (DEG), differen-
tially expressed protein (DEP), disease activity-related index 
(DAI), differentially correlated genes or protein (DCOR) and 
differentially methylated region (DMR) (figure  1B). DEG(P) 
evaluates whether module memberships are differentially 
expressed between SS and HC (online supplementary table 
1). We overlaid upregulated genes (SS-HC_Up) and down-
regulated genes (SS-HC_Dw) separately with each module. 
DAI assesses whether module eigenvalues are correlated 
with disease activity-related indexes. DCOR quantifies the 
enhancement of correlation among module memberships in 
SS compared with the healthy condition. We only focused on 
the gain of correlation in SS (SS-HC_Up), because the loss of 
correlation occurs unlikely for the modules identified in SS. 
DMR evaluates whether the cis-regulatory elements of module 
memberships are hypermethylated (SS-HC_Up) or hypometh-
ylated (SS-HC_Dw). The DMRs in whole blood in SS includes 
5615 hypermethylated and 6159 hypomethylated regions.7

We found that transcriptional module1 (TR1) that contained 
271 genes showed significant associations with all four metrics 
(figure  2A) (online supplementary table 3). Specifically, most 
genes in TR1 were upregulated in patients with SS compared 
with HC. The eigenvalues of TR1 were positively correlated 
with the levels of autoantibodies, including anti-Ro/SSA and 
anti-La/SSB antigen–antibodies and serum IgG levels, both of 
which are serologic features of SS. Furthermore, the correlation 
strength among genes in TR1 increased in SS, indicating that 
TR1 reflected the reorganisation of transcriptional networks. 
Moreover, the genomic regions that code genes in TR1 were 
predominantly hypomethylated in SS and thus presumed to be 
transcriptionally activated. Accumulating evidence strongly indi-
cated that the TR1 was highly dysregulated in SS.

The same data integration procedure was applied to the 
52 protein coabundance modules. We identified one protein 
module (PR1) that contained 83 proteins and showed a remark-
able accumulation of molecular aberrations concerning all the 
metrics evaluated (figure 2B).

Disease signatures involve IRGs, GWAS genes and ADAM 
substrates
The overall association trends against the molecular aberrations 
were quite similar for TR1 and PR1 (figure  2). The levels of 
these two modules were significantly concordant regarding the 
rank orders (Spearman’s rho: 0.71; p: 1.86×10–5) (figure 3A), 
but the relation was non-linear. PR1 exhibited more obvious 
associations with the European League Against Rheumatism 
(EULAR) Sjögren’s Syndrome Disease Activity Index (ESSDAI) 
(Spearman’s rho: 0.62; p: 3.32×10–4) than TR1 (Spearman’s 
rho: 0.44; p: 0.017) (figure 3B). Besides, the pairwise associa-
tions of TR and PR modules revealed PR1 had many significant 
connections with higher ranked TR modules (online supplemen-
tary figure 4).

We next investigated the gene memberships of the two SS-re-
lated modules and their similarity. Two genes, granulin (GRN) 
and complement component (C1QA), were commonly involved 
in TR1 and PR1. The number of overlap was not statistically 
significant. To examine the similarity of two modules further, we 
performed pathway analysis for TR1 and PR1 using the Broad 
hallmark gene sets.13 Interestingly, these two modules were both 
associated (p<0.05, FDR<0.25) with IRGs (figure 3C; online 
supplementary table 4). TR1 captured a major component of 
IRGs including HERC5, EPSTI1 and CMPK2 that have been 
used for monitoring IRGs.14 PR1 covered different members 
of IRGs, for instance, interferon-induced chemokines such as 
CXCL10 and CXCL11. The result indicated a robust association 
of IRGs with SS pathology at both transcriptional and protein 
levels.

Next, we assessed the etiological relevance of the modules 
by overlaying the GWAS result of SS. In Han Chinese popu-
lation, nine SNPs reaches genome-wide or suggestive signif-
icance levels.3 Then, each SNP was assigned to genes based 
on physical location and cis-/trans-expression quantitative 
trait loci (eQTL) information (online supplementary table 5). 
We found significant overlaps with TR1 and SS GWAS genes, 
especially when trans-eQTL information was incorporated 

Figure 1  Study design and analytical strategy. (a) Data integration workflow. Correlation networks based on transcripts and proteins in primary 
Sjögren’s syndrome (SS) were built separately and clustered into gene groups referred as modules. Disease relevance of modules was assessed based 
on molecular aberration measures. The prominent SS modules were further investigated their functions and associations with immunophenotypes. 
(b) Molecular aberration measures used for selecting disease modules. Four measures were used to assess disease relevance of module. Differentially 
expressed gene (DEG) measure corresponds to the magnitude of overlap between module memberships and differentially expressed genes between 
SS and healthy control (HC). Disease activity-related index (DAI) quantifies the association between module eigenvalues and DAIs of SS using 
the limma R package. Differentially correlated genes or protein (DCOR) evaluates whether the module is specifically present in SS based on the 
enrichment of pairs of differentially correlated genes between SS and HC. Differentially correlated genes were identified based on Spearman’s 
correlation. Differentially methylated region evaluates that the cis-regulatory elements of module memberships are differentially methylated.
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(figure  3D). This observation indicates the contribution of 
TR1 to SS development, and thus further strengthens the 
importance of TR1.

The serum proteome panel was designed to detect the subset 
of genes including cytokines and soluble forms of their recep-
tors, such as sTNFR1. Ectodomain shedding by a disintegrin 

Figure 2  Identification of disease modules. (a) Disease association landscapes of transcriptional modules and (b) protein modules. The strength of 
overlap between module memberships and differentially expressed genes (DEGs) or differentially expressed proteins (DEPs), differentially correlated 
genes or proteins (DCOR) and differentially methylated regions (DMRs) and the association between module eigenvalues and Disease Activity-Related 
Indexes (DAIs) were depicted as heatmaps; their statistical significance is indicated as asterisks (p<0.05, false discovery rate (FDR) <0.05, ratio >0.15 
and fold >2). The bar graphs located at the top of the heatmaps represent the number of significant categories tested for each module, namely, DEG, 
DEP, DAI, DCOR and DMR.
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and metalloproteinase (ADAM) family or matrix metallo-
proteinase 9 (MMP9) is recognised as the major mechanism 
for generating soluble cytokine receptors.15 16 Therefore, 
we hypothesised that a sheddase substrate signature might 
be present in the serum protein coabundance modules. We 
obtained substrate information of ADAM10, ADAM17 and 
MMP9 from the CutDB17 and examined their overrepre-
sentation in the modules. Strikingly, PR1 included a greater 
number of ADAM substrates, whereas no enrichments were 
observed for MMP9 (figure  3E). The enrichment of ADAM 
substrates was specific to PR1 (online supplementary table 
4). Most ADAM substrates in PR1 showed significant posi-
tive correlations with ESSDAI (figure  3F). Intriguingly, this 
trend did not hold at transcript levels (figure 3F). The result 

suggests that ADAM’s activity might increase as the SS severity  
progresses.

SS disease signatures are associated with common cell types
To reveal the cell populations associated with TR1 and PR1, 
we correlated immunophenotyping data obtained from the 
same blood samples with the levels of TR1 or PR1. The ratio of 
immune cell counts within white blood cells (WBC) was primarily 
used for the correlation analysis because we found that the 
WBC-normalised cell counts were associated with the transcrip-
tome stronger than the absolute counts (online supplementary 
figure 2A). Both TR1 and PR1 were positively correlated with 
terminally differentiated effector memory CD8 T cells (TEMRA) 

Figure 3  Functional characterisation of disease-associated modules. (a) The eigenvalues of transcriptional module1 (TR1) and protein module (PR1) 
show significant positive relationships (Spearman’s rho: 0.71; p: 1.86×10–5). (b) ESSDAI is correlated with the eigenvalues of TR1 (Spearman’s rho: 
0.44; p: 0.017) and PR1 (Spearman’s rho: 0.62; p: 3.32×10–4). (c) The significant overrepresentation of interferon-responsive genes in both TR and 
PR1. The inner parts of the circles represent the normalised significance for TR1, and the outer regions of the circles represent that of PR1. Nodes are 
connected if there are shared gene memberships. (d) primary Sjögren’s syndrome (SS) genome-wide association studies (GWAS) genes were enriched 
in TR1. The number of the GWAS gene in the module is indicated above the bar. (e) ADAM substrates were specifically enriched in PR1. The number of 
the substrate in the module is indicated above the bar. (f) ADAM substrates were correlated with ESSDAI only in protein level. Spearman’s correlation 
test was employed.
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and HLADR+CD8 T cells (FDR<0.25, p<0.05). Regulatory B 
cells (BREG), basophils and naive CD4 T cells were correlated 
with either TR1 or PR1. These associations in HCs were not 
evident (p>0.05) (figure 4A). A formal differential correlation 
test18 19 indicated that the associations between the modules and 
the both CD8 T cells subsets were highly SS specific (figure 4B). 
Interestingly, TEMRA, HLADR+CD8 T cells and BREG were 
also correlated with other higher ranked modules (online 
supplementary figure 5 and supplementary figure 6), suggesting 
further relevance with disease signatures. Finally, the examina-
tion of the cell types with disease activity-related traits revealed 
that TEMRA, HLADR+CD8 T cells, BREG and basophils were 
significantly correlated with at least one of them (FDR<0.25, 
p<0.05) (figure 4c). The same tendencies were also seen when 
absolute cell counts were used (online supplementary figure 7 
and supplementary figure 8). The association result for other cell 

types will be found in online supplementary figure 9. Together, 
our results suggested that the SS omics SGS were related to 
common cell types and, the most notably, their connections with 
activated cytotoxic CD8 T cells were SS specific, which may 
reflect the disease characteristics.

Enhanced activity of TR1 in CD8 T cells in SS
What drives the SS-specific correlations between CD8 T cells 
and SS-associated modules? The cells might produce molecules 
in the modules, or conversely, the modules act on cell abun-
dance. We focused on the former scenario with TR1 in this 
study, but other possibilities are also plausible (see Discussion 
section). To investigate whether TR1 is present and elevated in 
the CD8 T cells from patients with SS, we conducted transcrip-
tome experiments. The peripheral CD8 T-cell subsets in four 

Figure 4  Primary Sjögren’s syndrome (SS)-specific association of transcriptional module1 (TR1) and protein module (PR1) with activated CD8 T cells. 
(a) Peripheral immune cells associated with the eigenvalues of TR1 or PR1 in SS. The p-value in each panel corresponds to the significance based on 
Spearman’s correlation test. (b) Activated CD8 T cells showed SS-specific associations with both TR1 and PR1. The p-value in each panel corresponds 
to the significance of the differential correlations between the groups. (c) Clinical traits associated with the module-related cell types. The asterisks 
represent the p-value based on the limma method with age as a covariate (*p<0.05, FDR<0.05).
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major differentiation stages from six patients with SS and six 
HCs were analysed (online supplementary figure 10). We also 
profiled CD4 T cells subsets from six patients with SS and six 
HCs to examine the TR1 in the cell types negatively correlated 
with TR1. Principal component analysis revealed that cell 
differentiation steps contributed to major transcriptome vari-
ations (online supplementary figure 11), indicating reasonable 
biological signals were embedded in the data. Then, we eval-
uated the module presence in the CD8 T-cell and CD4 T-cell 
transcriptomes using the composite metric that quantifies the 

similarity of correlation structure.20 Strikingly, TR1 in CD8 
T cells was present specifically in SS (figure  5A). TR1 was 
also present in CD4 T cells, but which was not SS specific. 
The levels of the TR1 in CD8 T cells were overall higher in 
SS and TEMRA reached statistical significance (figure  5B), 
whereas CD4 T cells did not show significant activations of 
TR1. These results demonstrated that CD8 T-cell, especially 
TEMRA, produces the TR1 signature observed in the whole-
blood transcriptome. To further characterise the CD8 T cells in 
SS, we performed gene set enrichment analysis21 using the CD8 

Figure 5  The presence and activation of transcriptional module1 (TR1) in CD8 T cells. (a) TR1 preservations in CD8 and CD4 T cells. Zsummary 
score corresponds to the statistical significance of module preservation measures. Zsummary above two is significant. The number attached to each 
bar corresponds to the median rank of preservation measures among 32 transcriptional modules. (b) TR1 was differentially expressed in TEMRA in 
primary Sjögren’s syndrome (SS). The eigenvalue of TR1 was calculated and compared between healthy control (HC) and SS using Welch’s t-test. (c) 
TEMRA in SS exhibited the gene signatures activated by TCR and interferon-alpha. Gene set enrichment analysis was conducted using public CD8 
T-cell signatures based on Gene Set Variation Analysis (GSVA) method. The difference of enrichment score between HC and SS was evaluated using 
the limma.
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T-cell signatures treated with interferons (GSE17301) from the 
MSigDB.13 The gene signature induced by simultaneous T-cell 
receptor (TCR) activation and stimulation of interferon-alpha2 
was highly enhanced in TEMRA in SS (figure 5C). This suggests 
that the synergistic cross-talk of TCR and interferon pathway 
might be activated in TEMRA in SS and targeting the cross-talk 
might be effective for suppressing transcriptional dysregula-
tions in the CD8 T cells.

TR1 is associated with cytotoxic CD8 T cells in minor salivary 
glands
Our last question involved whether the connection between 
disease signature and cytotoxic CD8 T cells also existed in the 
salivary glands of patients with SS. To gain implication for this 
question, we reanalysed the gene expression profiles of minor 
salivary glands (MSGs) from patients with SS.6 The module 
preservation analysis revealed that TR1 in MSG was present 
specifically in SS (figure  6A). Also, the levels of TR1 exhib-
ited apparent enhancements as the magnitude of lymphocytic 
aggregates (Tarpley score) increased (figure  6B). To examined 
the relationship between TR1 and CD8 T cells, we inferred the 
cell abundance based on the gene expression profiles (see online 
supplementary methods and supplementary figures 2 and 3). 
The estimated CD8 T cells also elevated along with Tarpley score 
(figure 6C). TR1 and estimated CD8 T cells in MSG were posi-
tively correlated (Pearson’s correlation=0.82, p=0.003) to the 
greatest extent among the estimated cell populations (figure 6D, 
E). Thus, this result suggests that the link between TR1 and CD8 
T cells is present in both the peripheral blood and MSG tissues 
of patients with SS.

Discussion
In this study, we report a multiomics cohort of SS with an exten-
sive bioinformatic investigation. Our integrative framework 
allowed us to discriminate the molecular aberrations into pieces 
of disease-associated gene signatures and further connect them 
with cell types.

PR1 comprised the substrates shed by ADAM family prote-
ases (figure 3E). The ADAM substrates observed in this study 
were also detected in other disease conditions. For instance, 
there are high levels of soluble TNF-R1 and TNF-R2 in the 
serum in Crohn’s disease and ulcerative colitis.22 In addition, 
sepsis elicits an increase in the soluble adhesion molecules 
shed by ADAMs in the serum, such as ICAM1 and VCAM1.23 
Furthermore, the activation of ADAMs, especially ADAM17 
has been implicated in a variety of inflammatory disorders, 
as reviewed in.24 Our observations also suggest that SS might 
ramp up ADAM shedding activity and PR1 can be used to 
monitor its activity.

Although we focused on TR1 and PR1, the next place modules 
also provided us some implications for SS pathology. For instance, 
TR2 contained the molecules related with lymphotoxin beta-re-
ceptor (LTBR) signalling (online supplementary table 4). The bene-
ficial effect of LTBR antagonist has been shown in the non-obese 
diabetic (NOD) mouse model.25 However, the blockage of LTBR 
could not improve salivary functions in human.26 A recent report 
indicates the specificity of the effect of LTBR antagonist on CD4 
T-cell subsets in mice,27 which might relate to its limited efficacy 
in human. Further analysis of TR2 with immunophenotypes 
might advance our understanding of LTBR pathway in patients 
with SS. PR2 included Wnt antagonists, DKK1 and DKK4 (online 

Figure 6  Interplay of transcriptional module1 (TR1) and CD8 T cells in salivary glands. (a) TR1 was preserved in the MSG under primary Sjögren’s 
syndrome (SS) condition. Zsummary score corresponds to the statistical significance of module preservation measures. Zsummary above two is 
significant. The number attached to each bar corresponds to the median rank of preservation measures among 32 transcriptional modules. (b) 
Enhanced TR1 expression in the MSG of SS. The histopathologic lesion grades were defined in the original report6 based on Tarpley score (TS) as 
control (TS=1), early (TS=1), moderate (TS=2) and severe (TS=3–4). Expression levels of TR1 were calculated by principal component analysis (PCA) 
and correlated with TS by the limma. (c) Enhanced estimated CD8 T-cell levels in the MSG of SS. CD8 T-cell amounts in the MSG were inferred based 
on the CD8 T-cell signature probes and correlated with TS by the limma. (d) Estimated CD8 T-cell levels were highly correlated with TR1 in the MSG. 
Pearson’s correlation was used (*p<0.05, **p<0.005). (e) A scatter plot of estimated CD8 T-cell levels and TR1 expression in the MSG.
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supplementary table 4), suggesting Wnt signalling dysfunctions in 
SS as seen in many autoimmune diseases.28

We showed that CD8 T cells were one of the sources for TR1 
activation in SS. What are other hypotheses for the correlations 
between activated CD8 T cells and SS-associated modules? First, 
the production of PR1 proteins from CD8 T cells have been 
reported. For instance, TCR-activated CD8 T cells can produce 
soluble TNF-R2,29 Tim-330 and LAG-331 by ADAMs. Second, both 
interferons and PR1 can increase the abundance of CD8 T cells. 
The exposure to type-I interferon allows CD8 T cells to escape 
from NK cell cytotoxicity.32 33 Also, type-I interferons directly work 
as the third signal for naive CD8 T-cell maturation.34 Alternatively, 
CXCL10 and CXCL11 in the PR1 enhance antigen-specific CD8 
T-cell responses and memory T-cell formation.35 The above factors 
may work in combination, which will be investigated further to 
untangle the mechanisms in detail.

The roles of CD8 T cells in SS have not been explored exten-
sively. Previously, we found that CD8 T cells-expressing αEβ7 inte-
grin colocalised with acinar epithelial cells in the lacrimal glands 
of patients with .36 The acinar epithelial cells around CD8 T cells 
showed apoptotic characteristics accompanied by high levels of 
cytotoxic molecules, including perforin, granzyme B. Besides, deep 
immunophenotyping of salivary gland tissue and peripheral blood 
from SS showed that the amount of HLADR+CD8 T cells was 
positively correlated with ESSDAI at both sites.10 These reports 
strengthen the findings from our multiomics analysis. Therefore, 
we hypothesise that CD8 T cells might be the key cell type that 
contributes to tissue disruption in SS.

In this study, we successfully built pathways from molecules to 
macrophenotypes in SS based on multiomics data from well-defined 
patients. This depth of understanding cannot be obtained using 
mono-omic data, showing the promising utility of multilayer data to 
understand disease mechanisms. We believe the molecules and their 
connections highlighted from our analysis will smooth the path to 
developing future novel therapies and biomarkers for SS.

Methods

Cohorts
Thirty-six patients with SS and 36 HCs who did not suffer from 
autoimmune diseases or were not receiving any drugs were 
enrolled from March 2012 to May 2013. Patients who were 
being treated with moderate to high doses of corticosteroids, 
immunosuppressants or biological agents were excluded. All 
procedures were approved by the medical ethics committee of 
Keio University Hospital and followed the tenets of the Decla-
ration of Helsinki. All samples and information were collected 
after patients and HCs provided written informed consent.

Transcriptome measurements
Blood samples were collected from healthy and SS human 
donors in PAXgene tubes. Total RNA was isolated with the 
PAXgene Blood RNA Kit (Qiagen, Valencia, California, USA) 
after freezing and storage. Ambion GLOBINclear (Ambion, 
Austin Texas, USA) was applied to total RNA samples to remove 
globin transcripts.

Peripheral CD8 T cell and CD4 T cell were purified with 
the CD8 T-Cell Isolation Kit and the CD4 T-Cell Isolation Kit 
(Miltenyi Biotec, Bergisch Gladbach, Germany), respectively. 
After staining with antibodies, each subset was isolated with 
the FACSAriaIII (BD Biosciences, San Jose, California, USA). 
Total RNA from the sorted cells was extracted (miRCURY RNA 

Isolation Kit, Exiqon, Vedbaek, Denmark), purified (RNeasy 
MinElute Cleanup KitTM, Qiagen, Hilden, Germany) and 
amplified (Ovation Pico WTA System V2 NuGEN Technologies, 
San Carlos, California, USA).

RNA samples were run on an Agilent 2100 BioAnalyzer using 
the RNA NanoChip (Agilent, Palo Alto, California, USA), and 
we confirmed that the RNA Integrity Numbers (RINs) were all 
above 7.0. All RNA samples were hybridised to the Affymetrix 
Human Genome U133 plus 2.0 arrays (Affymetrix, Santa Clara, 
California, USA). Quality control procedures for probe intensi-
ties are described in the online supplementary methods.

Serum proteome
Serum protein concentrations were measured using a Slow 
Off-Rate Modified DNA Aptamer (SOMAmer)-based capture 
array (SOMAscanTM; SomaLogic, Boulder, Colarado, USA) as 
previously described.8 The level of relative fluorescence units 
(RFUs) corresponding to 1100 serum protein concentration was 
log2-transformed and used for the analysis.

Immunophenotyping
Human whole-blood was collected using heparin blood collection 
tubes (TERUMO, Shibuya, Tokyo, Japan) and mixed with fluoro-
chrome-conjugated monoclonal antibodies to human cell surface 
antigens. To lyse and fix erythrocytes, the FACS Lysing Solution 
(BD Biosciences) was used. Flow cytometer data were obtained 
with the FACSAriaIII (BD Biosciences). We followed standard 
immunophenotyping protocols from the Human Immunology 
Project37 and the ONE Study.38 The antibodies used for sorting 
TEMRA, HLADR+CD8 T cells and BREG,39 naive CD4 T cells 
and basophils are listed in the online supplementary methods.

Disease phenotyping
Disease activity in SS was quantified based on the ESSDAI score. 
The ESSDAI score evaluates 12 domains. Each domain is divided 
into three to four levels according to the degree of activity and 
scored as 0 (no activity), 1 (low activity), 2 (moderate activity) or 
3 (high activity) as described previously.8

Bioinformatic analysis
Correlation modules were identified using the WGCNA11 and 
the affinity propagation algorithm.12 The detailed protocols for 
bioinformatic analysis are described in the online supplementary 
methods.
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