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BACKGROUND AND PURPOSE
Deciphering chemical mechanism of action (MoA) enables the development of novel therapeutics (e.g. drug repositioning) and
evaluation of drug side effects. Development of novel computational methods for chemical MoA assessment under a systems
pharmacology framework would accelerate drug discovery and development with greater efficiency and low cost.

EXPERIMENTAL APPROACH
In this study, we proposed an improved network-based inference method, balanced substructure-drug-target network-based
inference (bSDTNBI), to predict MoA for old drugs, clinically failed drugs and new chemical entities. Specifically, three parameters
were introduced into network-based resource diffusion processes to adjust the initial resource allocation of different node types,
the weighted values of different edge types and the influence of hub nodes. The performance of the method was systematically
validated by benchmark datasets and bioassays.

KEY RESULTS
High performance was yielded for bSDTNBI in both 10-fold and leave-one-out cross validations. A global drug-target network was
built to explore MoA of anticancer drugs and repurpose old drugs for 15 cancer types/subtypes. In a case study, 27 predicted
candidates among 56 commercially available compounds were experimentally validated to have binding affinities on oestrogen
receptor α with IC50 or EC50 values ≤10 μM. Furthermore, two dual ligands with both agonistic and antagonistic activities ≤1 μM
would provide potential lead compounds for the development of novel targeted therapy in breast cancer or osteoporosis.

CONCLUSION AND IMPLICATIONS
In summary, bSDTNBI would provide a powerful tool for the MoA assessment on both old drugs and novel compounds in drug
discovery and development.

Abbreviations
bSDTNBI, balanced substructure-drug-target network-based inference; DTI, drug–target interaction; eP, precision
enhancement; eR, recall enhancement; ERα, oestrogen receptor α; E2, estradiol; MoA, mechanism of action; NBI,
network-based inference; P, precision; R, recall; ROC, receiver operating characteristic
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Introduction
Drug discovery and development is a complex, expensive and
time-consuming process with high risk (DiMasi et al., 2003;
Adams and Brantner, 2006) and only about 10% of drug can-
didates in phase I trials were finally approved by the U.S. Food
and Drug Administration (FDA) (Hay et al., 2014). Many drug
candidates with ideal effects in vitro and good pharmacoki-
netic properties failed in phases II and III because of low effi-
cacy or safety problems (Arrowsmith, 2011a,b). One possible
reason of this high clinical attrition rate might be due to the
classical hypothesis of ‘one gene, one drug, one disease’ in
the traditional drug discovery paradigm (Hopkins, 2008;
Zhang et al., 2015). Recent studies have suggested that a
single drug might have interactions with multiple targets
in vivo, rather than acting as a ‘magic bullet’ that selectively
binds to a specific target (Roth et al., 2004; Yildirim et al.,
2007; Hopkins, 2008). The on-target and off-target effects of
drugs lead to both desired therapeutic effects and undesired
side effects or toxicity. Such a novel paradigm of ‘one drug,
multiple targets’ under a systems pharmacology framework
enables us to identify new drug–target interactions (DTIs)
for further understanding chemical mechanism of action
(MoA), enabling the characterization of drug side effects and
the identification of old drugs for new uses (i.e. drug reposi-
tioning). Currently, there are over 68 million commercially
available compounds with biologically relevant representa-
tions in chemical databases (e.g. ZINC database), including
a large number of described natural products (Lucas et al.,
2015). However, the traditional experimental assays are
always expensive and time-consuming. Therefore, it is urgent
to develop novel computational methods for DTI prediction
and chemical MoA assessment to accelerate drug discovery
and development with greater efficiency and low cost.

Currently, there are several types of computational
methods for DTI prediction and drug repositioning, includ-
ing molecular docking-based (Luo et al., 2011; Lu et al.,
2015), pharmacophore-based (Cheng et al., 2010; Xu et al.,
2010), machine learning-based (Yamanishi et al., 2008;
Yamanishi et al., 2010; Cheng et al., 2012a), similarity-based
(Campillos et al., 2008; Keiser et al., 2009; Cheng et al.,
2013), network-based (Cheng et al., 2012c,d) and network

perturbation methods (Woo et al., 2015). Compared with
traditional methods such as molecular docking and
machine learning, network-based ones have obvious
advantages. For example, network-based methods do not rely
on either three-dimensional structures of target proteins or
negative samples.

In recent years, several network-based methods were pro-
posed and successfully demonstrated their potential applica-
tions in DTI prediction and drug repositioning for speeding
up drug discovery and development. For instance, Cheng
et al., 2012d presented three network-based methods derived
from recommendation algorithms for social networks,
namely drug-based similarity inference, target-based similar-
ity inference and network-based inference (NBI) (Cheng
et al., 2012d). Furthermore, five old drugs were identified via
NBI and then experimentally validated to have potential
binding effects on oestrogen receptors (ERs) or dipeptidyl
peptidase IV in vitro (Cheng et al., 2012d). As an improvement
of NBI, they further developed two weighted NBI methods,
edge-weighted NBI (EWNBI) and node-weighted NBI
(NWNBI), by assigning the weighted values to edges and
nodes in the DTI network respectively (Cheng et al., 2012c).
These two improved methods slightly outperformed original
NBI. Other additional knowledge, such as chemical structure
similarity and target similarity, was also demonstrated to have
potential in improving model performance for network-
based methods (Chen et al., 2012; Alaimo et al., 2013).

However, these network-based methods can only predict
potential targets for known drugs in existing DTI networks,
due to lack of connections between novel compounds and
existing DTI networks. To address this deficiency, our group
recently proposed a new network-based method, named
substructure-drug-target network-based inference (SDTNBI),
for DTI prediction and drug repositioning (Wu et al., 2016).
SDTNBI employed chemical substructures to bridge the gap
between new chemical entities and known DTI networks.
By utilizing a way of resource diffusion, it can prioritize
potential targets for old drugs, clinically failed drugs and
new chemical entities in a large scale. However, there are still
several potential limitations in SDTNBI. For instance, it is not
known if introducing tunable parameters to SDTNBI could
improve the method performance.

Tables of Links

TARGETS

Nuclear hormone receptorsa GPCRsb

ERα, oestrogen receptor α 5-HT1A receptor

PPARγ 5-HT1D receptor

RARB Enzymesc

RXRA CA1

Dipeptidyl peptidase IV

LIGANDS

Clomipramine

Dapagliflozin

Metformin

Pioglitazone

Promethazine

Rosiglitazone

Tamoxifen

These Tables list key protein targets and ligands in this article that are hyperlinked to corresponding entries in http://www.guidetopharmacology.org,
the common portal for data from the IUPHAR/BPS Guide to PHARMACOLOGY (Southan et al., 2016), and are permanently archived in the Concise
Guide to PHARMACOLOGY 2015/16 (a,b,cAlexander et al., 2015a,b,c).
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In this study, we have made a further improvement on
SDTNBI, namely balanced substructure-drug-target network-
based inference (bSDTNBI), to identify the MoA for both old
drugs and new chemical entities. The model performance
was improved by introducing three parameters into the orig-
inal SDTNBI by adjusting: (i) the initial resource allocation of
different nodes (i.e. substructure nodes and target nodes); (ii)
the weighted values of different edges (i.e. drug-substructure
associations and DTIs); and (iii) the influence of hub nodes
respectively (Figure 1). High performance was yielded in both
10-fold and leave-one-out cross validations, outperforming
previously published methods. As a proof of concept, several
old drugs (e.g. anti-diabetic or tricyclic anti-depressant drugs)
were computationally identified to target well-known cancer
gene products (proteins) via bSDTNBI, providing potential
drug repurposing candidates for the development of novel
targeted cancer therapy. Furthermore, 56 commercially
available compounds predicted to target on oestrogen recep-
tor α (ERα) were purchased and experimentally validated by
in vitro bioassays, with approximate 50% success rate, such

that we were able to identify 27 active compounds with IC50

or EC50 values < 10 μM.

Methods

Construction of DTI networks
Two benchmark DTI networks for GPCRs and the kinase
superfamily (Kinases for short) were constructed as described
in our previous study (Cheng et al., 2012c). A global DTI
network covering human genome-wide target proteins was
further built. Specifically, bioactivity data for DTI pairs were
collected from four databases, including ChEMBL (version
20, accessed in June, 2015) (Gaulton et al., 2012), BindingDB
(downloaded in December, 2015) (Liu et al., 2007), IUPHAR/BPS
Guide to PHARMACOLOGY (downloaded in December, 2015)
(Pawson et al., 2014) and PDSP Ki Database (downloaded in De-
cember, 2015) (Roth et al., 2000). Drugmolecules were extracted
from the DrugBank database (version 4.3) (Law et al., 2014). All
chemical structures from these databases were prepared by the

Figure 1
Schematic diagram of bSDTNBI. (A) The construction of substructure-drug (and new chemical entity)-target network, (B) adjusting the initial
resource allocation of different node types by parameter α, (C) adjusting the weighted values of different edge types by parameter β.
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OpenBabel toolkit (version 2.3.2) (O’Boyle et al., 2011). In the
preparation processes, dative bonds were standardized, salt ions
were removed, chemical structures were converted into
canonical SMILES format and molecular weights were
calculated. After extracting the bioactivity data related to the
drugs from the prepared bioactivity databases, only those items
meeting the following five criteria were retained: (i) Ki, Kd, IC50

or EC50 ≤ 10 μM; (ii) the target protein can be represented by a
unique UniProt accession number; (iii) the target protein was
marked as ‘reviewed’ in the UniProt database (Apweiler et al.,
2004); (iv) the target protein is from Homo sapiens; (v) the
molecular weight of compound ranged from 100 -600 Daltons.
Finally, the global DTI network was built with the filtered bioac-
tivity data.

Description of chemical substructures
In this study, we selected four commonly used types of finger-
prints to generate chemical substructures for molecules in
each dataset, including Substructure Fingerprint (FP4),
Klekota-Roth Fingerprint (KR), MACCS Fingerprint (MACCS)
and PubChem Fingerprint (PubChem). Those fingerprints
were calculated via the PaDEL-Descriptor software (version
2.18) (Yap, 2011).

Overview of bSDTNBI method
As shown in Figure 1, bSDTNBI can (i) use resource diffusion
processes in a ‘substructure-drug-target network’ to prioritize
potential targets for known drugs, or (ii) use those in a
‘substructure-drug and new chemical entity-target network’
to predict potential targets for both known drugs and new
chemical entities. For convenience, these two networks were
called ‘substructure-drug-target network’ below, because new
chemical entities can be labelled as special drugs without
known targets. The resource diffusion processes in bSDTNBI
are similar to those we have used in the original SDTNBI
(Wu et al., 2016). The main improvement is that three tun-
able parameters (symbolized as α, β and γ) were introduced
to adjust (i) the initial resource allocation of different node
types; (ii) the weighted values of different edge types; and
(iii) the influence of hub nodes respectively. By varying these
parameters in their definition domains, we can search which
parameter values will contribute to the performance of the
models built via bSDTNBI. The details of the resource diffu-
sion processes and the three parameters were described in
Supporting Information.

Parameter optimization
To maximize the performance of the models built via
bSDTNBI, the values of the three introduced parameters
should be selected appropriately. Here, a grid search approach
using 10-fold cross validation was employed to achieve this
goal. To reduce the computation time, the procedure of
parameter optimization was divided into two steps. At first,
we assumed that γ = 0, namely ignoring the influence of
hub nodes. The optimal values of α and β were searched in
the range of 0 ≤ α < 1 and 0 ≤ β < 1 with a step length of 0.1.
Then, under the optimal values of α and β, the optimal value
of parameter γwas searched in the range of �1.0 to 1.0 with a
step length of 0.1. Moreover, for the issue of the number of
resource diffusion processes (symbolized as k), we selected
k = 2 as described in our previous study (Wu et al., 2016).

Benchmark evaluation
In this study, both 10-fold and leave-one-out cross validations
were employed to evaluate the performance of bSDTNBI and
othermethods. These two typesof cross-validationsutilize dif-
ferent ways to generate the pairs of test set and training set,
which were described in our previous study (Wu et al., 2016).

Ten-fold cross validation. During 10-fold cross validation,
10% of DTIs were randomly separated from the
substructure-drug-target network as the test set in turn. The
remnant network containing the other 90% of DTIs and all
drug-substructure associations was used as the training set.
In this study, in order to reduce the randomness, the 10-fold
cross validation was repeated by 10 times.

Leave-one-out cross validation. The predictive ability for new
chemical entities was further evaluated by leave-one-out
cross validation. During leave-one-out cross validation, DTIs
for each drug were separated from the substructure-drug-
target network to use as the test set in turn. The remnant
network containing the DTIs of the other drugs and all
drug-substructure associations was used as the training set.

Evaluation indicator calculation. For each pair of test set and
training set, bSDTNBI was utilized in the training set, and
then several types of evaluation indicators were calculated
by comparing the newly predicted DTIs with the test set.
Specifically, on the one hand, a receiver operating
characteristic (ROC) curve was drawn for each test-training
pair, and the AUC was computed to assess the model
performance. For a model, higher AUC values in cross
validations usually mean higher ability of distinguishing
positive DTIs from all possible DTIs (Lü et al., 2012). On the
other hand, considering that people are often concerned
only with the predicted targets ranked in the top-L places
for each drug, we calculated other four types of L-dependent
evaluation indicators: precision (P), recall (R), precision
enhancement (eP) and recall enhancement (eR). In general,
with a given L value, higher values of P(L), R(L), eP(L) and eR
(L) reveal higher model performance. The details of these
evaluation indicators were described in our previous studies
(Cheng et al., 2012c,d; Wu et al., 2016). In addition, if more
than one group of evaluation indicators were generated, the
mean values and standard deviations (mean ± SD) of each
evaluation indicator were further calculated to measure the
model performance.

Construction of cancer drug-gene network
To demonstrate the potential application of drug reposi-
tioning via bSDTNBI, we next showed how to identify new
MoA for anticancer drugs and repurpose old drugs for the de-
velopment of targeted cancer therapy. At first, cancer driver
genes for 15 cancer types or subtypes were collected from
The Cancer Genome Atlas, as described in a previous study
(Cheng et al., 2016b) and cancer-associated genes across 15
cancer types or subtypes were further collected from four
public databases, including the Online Mendelian Inheri-
tance inMan database (Hamosh et al., 2005), HuGENavigator
(Yu et al., 2008), PharmGKB (Hewett et al., 2002) and Com-
parative Toxicogenomics Database (Davis et al., 2009). Then,
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potential targets ranked in top five with highest scores for
approved drugs were predicted by the best global model of
bSDTNBI during 10-fold cross validation. Finally, a global
cancer drug-gene network was generated using the CytoScape
software (version 3.3.0) (Shannon et al., 2003). Circles
representing drug nodes were coloured by their first-level
Anatomical Therapeutic Chemical Classification codes
described in our previous studies (Cheng et al., 2012c,d).

Identifying novel ligands for oestrogen receptor α
(ERα)
To test the application of bSDTNBI, we experimentally
assayed several novel predicted ligands for ERα as a case study.
The compound collection we used was collected from
Enamine (http://www.enamine.net/, downloaded in March
2013). All molecules in this database were firstly filtered
by Lipinski’s Rule of Five. Then, chemical similarity search
was used to filter further, using the five ER ligands discov-
ered by our previous study (Chen et al., 2014) as reference
ligands. Here, the FCFP_4 fingerprint was used to perform
the chemical similarity screening according to a previous
study (Hu et al., 2012). Compounds with Tanimoto coeffi-
cients between 0.45 and 0.99 were used as input for
bSDTNBI prediction. The best global model during 10-fold
cross validation was utilized to predict potential targets for
these compounds. For each compound, if ERα was ranked
in top 20 with the highest predictive scores, this compound
was kept as a potential ligand for ERα. Based on this cut-off,
56 commercially available compounds from the top
predicted candidates were purchased for further experimen-
tal assays on ERα.

Yeast two-hybrid assay
To evaluate the activity of the purchased compounds, the
yeast two-hybrid system for ERα was carried out as described
previously (Shen et al., 2010). In brief, we transformed two
expression plasmids, pGBKT7-ERα-LBD (amino acid residues
301–553) and pGADT7-SRC1 (amino acid residues
613–773), into yeast cell AH109 by Yeast Protocols
Handbook. Yeast transformants were cultured in -Trp, -Leu
selective media, and then added 1 nM Estradiol (E2) in antag-
onist test (Shen et al., 2010). Each test was accompanied by E2
as a positive control and DMSO as a negative control
(Kawamura et al., 2003). The culture (500 μL) in a small tube
was mixed with indicated chemical and incubated for 24 h
at 30°C. After incubation, 200 μL of the culture was placed
into each of the 96 wells of a microplate and the absorbancy
measured at 600 nm using Perkin Elmer Multimode Plate
Reader (Evision). The supernatant (16 μL) was mixed with
α-galactosidase (48 μL) in 96 wells of a microplate and incu-
bated for 2 h usually at 30°C. Before the reaction was stopped
by the addition of 1MNa2CO3 (136 μL) and the lysate reacted
until development of a yellow colour. The absorbances at
410 nm were read on a microplate reader to estimate
α-galactosidase activity (Nishihara et al., 2000). The formula
for calculating the α-galactosidase activity as follows:

α-galatosidase activity milliunits= mL�cellsð Þ½ �
¼ OD410�Vf�1000

ε�bð Þ�t�Vi�OD600
(1)

Where Vf = final volume of testing (200 μL), Vi = volume
of medium supernatant, t = time of incubation (min),
OD600 = optical density of yeast culture and ε × b = p-
nitrophenol molar absorptivity at 410 nm × the light path
(cm) = 10.5 mL·μmol�1 (Shen et al., 2010).

Results

Statistics of the benchmark datasets
bSDTNBI uses the substructure-drug-target network to predict
potential new targets for known drugs and new chemical enti-
ties. A substructure-drug-target network can be constructed by
integrating known DTIs, drug-substructure association and
new chemical entity-substructure associations (Figure 1A).
In general, the bipartite graph was employed to represent a
number of DTIs and those drugs and targets they connected
(Yildirim et al., 2007), where nodes denote drugs or targets,
and edges denote experimentally validated DTIs (e.g. binding
affinity Ki, Kd, IC50 or EC50 ≤ 10 μM). In this study, three DTI
networkswere built: (i) GPCRs, containing 17 111 interactions
between 4741 molecules and 97 GPCRs; (ii) Kinases, contain-
ing 13 647 interactions between 2827 molecules and 206
kinases; (iii) the global network (Global for short), containing
10 650 DTIs between 1872 drugs and 1085 human target
proteins. The numbers of drugs, targets and interactions for
these DTI networks were provided in Table 1. Furthermore,
for each DTI network, drug-substructure networks were built
by generating substructures for all its drugs using the four
selected types of fingerprints. The number of drugs,
substructures and drug-substructure associations for these
drug-substructure networks were provided in Table S1.

Performance of bSDTNBI in cross validation
In a substructure-drug-target network, each drug node has
two types of neighbour nodes representing substructures
and targets respectively (Figure 1A). However, in our previous
study of original SDTNBI (Wu et al., 2016), we did not differ-
entiate them during the resource diffusion processes. Firstly,
in initial resource allocation, for each drug, an equal amount
of initial resource was allocated to each of its neighbour
nodes, no matter if it is a substructure node or a target node
(Wu et al., 2016). Meanwhile, the equal-weighted values were
set for each of its edges, no matter if it is a drug-substructure
association or a DTI (Wu et al., 2016). These factors without
distinction of different node types and edge types might re-
sult in potential unbalances and decrease the method perfor-
mance. To solve this problem, two parameters (symbolized as

Table 1
The statistics of DTI networks

Target ND NT NDT Sparsity (%)

GPCRs 4741 97 17 111 3.72

Kinases 2827 206 13 647 2.34

Global 1872 1085 10 650 0.52

ND, the number of drugs; NT, the number of targets; NDT, the number
of DTIs; Sparsity, the ratio of NDT to the number of all possible DTIs.
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α and β) were introduced to balance the initial resource
allocation of different node types and the weighted values
of different edge types respectively.

In addition, in a real DTI network, some proteins can be
targeted bymultiple drugs, and some drugs can act on various
proteins (Yildirim et al., 2007). For example, FDA approved
kinase inhibitors often have binding affinities with multiple
kinases harbouring similar ATP binding pockets, which have
demonstrated their high efficiency for targeted cancer thera-
pies in clinical practice (Knight et al., 2010). GPCRs are often
targeted by multiple small molecules due to their promiscu-
ous ligand-binding pockets (Jacobson et al., 2014). These drug
nodes and target nodes connecting a large number of
neighbours (i.e. with high degree) are called hub nodes. In
network-based resource diffusion processes, hub nodes
usually receive more amount of resource, resulting in higher
predicted scores and rankings in prediction results (Cheng
et al., 2012c,d). This could cause a high risk of false positive
rate. To allow for this, a parameter (symbolized as γ) was
introduced to balance the influence of hub nodes.

In this study, the 10-fold cross validation was used to
optimize the introduced three parameters and evaluate the
performance of bSDTNBI. The parameters α and β were firstly
optimized under the condition of ignoring the influence of
hub nodes (γ = 0). The relationships among α, β and the aver-
age AUC value for the models of Global, GPCRs and Kinases
in 10-fold cross validation were shown in Figure 2, Figure S1
and S2 respectively. These evaluations revealed that the

model performance was influenced by both α and β, and was
changed dramatically by α compared with β. Formostmodels,
their performance can be maximized (or nearly maximized)
when α = 0.1 and β = 0.1. Hence, we considered 0.1 as an
appropriate value for both α and β. Under this condition,
the highest AUC values 0.957 ± 0.003, 0.992 ± 0.001 and
0.981 ± 0.002 were obtained for the models of Global-KR,
GPCRs-KR and Kinases-KR in 10-fold cross validation
respectively. These figures suggest that higher model
performance can result from allocating more amount of
initial resource to target nodes than those of substructure
nodes (giving a small α value), and setting bigger weighted
values of DTIs than those of drug-substructure associations
(giving a small β value).

Subsequently, the influence of hub nodes was investi-
gated under the above selected condition by 10-fold cross
validation. The relationships among γ and the average AUC
value for themodels of Global, GPCRs and Kinases were given
in Figure 3. For each model, its AUC value was maximized by
setting a negative γ. Figure 3 revealed that the best perfor-
mance was yielded by setting γ = �0.5 for the models of
Global, and γ = �0.4 for the models of GPCRs and Kinases.
Under the optimal condition, the evaluation indicators for
the models of Global, GPCRs and Kinases were given in
Table 2. The highest AUC values 0.961 ± 0.003,
0.993 ± 0.001 and 0.983 ± 0.002 were obtained for the models
of Global-KR, GPCRs-KR and Kinases-KR in 10-fold cross
validation respectively. These observations suggest that the

Figure 2
The relationships among two parameters α, β and the average AUC value for the models of Global in 10-fold cross validation. These figures suggest
that higher model performance can be yielded from allocating more amount of initial resource to target nodes than those of substructure nodes
(giving a small α value), and setting bigger weighted values of DTIs than those of drug-substructure associations (giving a small β value).
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model performance can be further improved by appropriately
weakening the influence of hub nodes by setting a negative γ.

Besides 10-fold cross validation, leave-one-out cross vali-
dation was further employed to evaluate the models built
via bSDTNBI. Under the optimal condition, the evaluation
indicators for the models of Global, GPCRs and Kinases were
given in Table 3. The highest AUC values were 0.919 ± 0.144,
0.965 ± 0.061 and 0.960 ± 0.080 for the models of the models
of Global, GPCRs and Kinases in leave-one-out cross valida-
tion, respectively, further suggesting the high performance
during predicting targets for novel compounds via bSDTNBI.

Comparison with previous methods
As an improvement of the previously developed NBI and
SDTNBI methods (Cheng et al., 2012d; Wu et al., 2016), the
newly developed bSDTNBI has several key differences.
bSDTNBI can predict potential targets for those compounds
without known targets, such as clinically failed drugs and
newly synthesized chemical entities, whereas NBI cannot.
Compared with the unweighted network approach SDTNBI,
bSDTNBI introduced three parameters to adjust the initial re-
source allocation of different node types, the weighted values
of different edge types and the influence of hub nodes respec-
tively. As described above, a reasonable selection of the pa-
rameter values could solve several potential problems, such
as the imbalance resulting from the hub nodes.

We tested whether the model performance would benefit
from this improvement. The performance of bSDTNBI was
compared with NBI and SDTNBI, via 10-fold or leave-one-
out cross validation. NBI that cannot predict potential targets
for new chemical entities was excluded during leave-one-out
cross validation. All models participated in evaluation were
built under the aforementioned optimal condition: (i) k = 2
for the models built via SDTNBI; (ii) k = 2, α = 0.1, β = 0.1
and γ = �0.5 for the models of Global built via bSDTNBI;
and (iii) k = 2, α = 0.1, β = 0.1 and γ = �0.4 for the models of
GPCRs and Kinases built via bSDTNBI. Tables 2 and 3 reveal
that bSDTNBI outperformed SDTNBI across four types of fin-
gerprints in both 10-fold and leave-one-out cross validations.
The performance of bSDTNBI was comparable with or mar-
ginally outperformed NBI in prioritizing potential targets for
known drugs in 10-fold cross validation. These results sug-
gested that balancing the initial resource allocation of differ-
ent node types, the weighted values of different edge types
and the influence of hub nodes in resource diffusion pro-
cesses could play critical roles in improving the accuracy of
predicting potential targets for both old drugs and new
chemical entities. Altogether, bSDTNBI outperform several
previously published methods.

Discovery of new MoA of anticancer drugs and
repurposing existing drugs for targeted cancer
therapy
In this case study, a global cancer drug-gene network (Figure 4)
was built, which contains: (i) 2100 known and 1355 newly
predicted DTIs between 666 approved drugs and 369 cancer
gene products, and (ii) 1533 cancer-gene associations
connecting 15 cancer types and subtypes. Figure 4 provides
useful information for repurposing approved therapeutic
agents as novel anticancer indications or exploring new

Figure 3
The relationships among parameter γ and the AUC value for the
models of (A) GPCRs, (B) Kinases and (C) Global in 10-fold cross
validation. These figures suggest that the model performance can
be further improved by appropriately weakening the influence of
hub nodes by setting a negative γ.
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MoA for known anticancer agents. The detailed data were
provided in our website (http://lmmd.ecust.edu.cn/
methods/bsdtnbi/).

Recent studies have suggested that tricyclic anti-
depressant agents (e.g. clomipramine and promethazine)
could induce apoptosis in several types of cancer cells, such
as small cell lung cancer (Jahchan et al., 2013) and glioma
(Shchors et al., 2015). However, the MoA for these anticancer
drugs remains unclear (Cheng et al., 2016a; Li et al., 2016). As
shown in Figure 4, clomipramine and promethazine were
predicted to target on 5-HT1A or 5-HT1D receptors with the
high predicted score via bSDTNBI. 5-HT1A and 5-HT1D recep-
tors might be involved in various cancers (Figure 4), includ-
ing stomach adenocarcinoma, bladder carcinoma, lung
adenocarcinoma and lung squamous cell carcinoma. A recent
study suggested that all four serotonin receptors exhibit
differential expression patterns in breast cancer specimens,
and a strong staining for HTR1A was observed on the mem-
brane of cancer cells (Kopparapu et al., 2013). In addition,
pharmacological studies showed that clomipramine signifi-
cantly induced the expression of 5-HT1A receptors in mice

(Kim et al., 2013). Such experimental evidence was in good
agreement with our prediction. Collectively, targeting
serotonin receptors (e.g.5-HT1A receptors) by tricyclic anti-
depressant agents might be a potential MoA for their antican-
cer effect. Further experimental studies would be necessary to
validate our prediction, which we hope that the anticancer
study will be prompted by the findings herein.

Moreover, recent studies suggested that targeting cancer
cell metabolism pathways might provide a novel targeted
cancer therapy via regulating tumour cell nutrients and en-
ergy profiles (Zhao et al., 2015; Kim et al., 2016). For instance,
metformin, the most commonly prescribed drug for type 2
diabetes, was identified as a promising agent for cancer
prevention and treatment in various cancer types (Quinn
et al., 2013). Therefore, we computationally investigated
new MoA for several anti-diabetic drugs (e.g. dapagliflozin,
pioglitazone and rosiglitazone) by targeting cancer-
associated gene products, such as CA1, PPARG, RARB and
RXRA (Figure 4). Consistent with our prediction, recent
preclinical studies demonstrated that dapagliflozin (Saito
et al., 2015), pioglitazone (Mahmoud and El Shazly, 2013)

Table 2
The performance of the models built via NBI, SDTNBI and bSDTNBI under the optimal condition in 10-fold cross validation

Method Target FP P (L = 20) R (L = 20) eP (L = 20) eR (L = 20) AUC

NBI Global – 0.072 ± 0.002 0.770 ± 0.017 34.73 ± 0.87 40.75 ± 0.93 0.912 ± 0.005

GPCRs – 0.058 ± 0.001 0.998 ± 0.001 4.74 ± 0.06 4.74 ± 0.06 0.988 ± 0.001

Kinases – 0.061 ± 0.001 0.963 ± 0.005 9.72 ± 0.09 9.79 ± 0.09 0.974 ± 0.002

SDTNBI Global FP4 0.061 ± 0.002 0.659 ± 0.018 31.82 ± 0.87 34.89 ± 1.00 0.951 ± 0.003

KR 0.059 ± 0.002 0.635 ± 0.019 30.97 ± 0.94 33.62 ± 1.03 0.949 ± 0.003

MACCS 0.053 ± 0.002 0.530 ± 0.021 27.72 ± 0.98 28.06 ± 1.16 0.939 ± 0.003

PubChem 0.046 ± 0.002 0.428 ± 0.020 23.91 ± 0.94 22.64 ± 1.06 0.927 ± 0.004

GPCRs FP4 0.057 ± 0.001 0.980 ± 0.003 4.65 ± 0.06 4.66 ± 0.06 0.966 ± 0.002

KR 0.057 ± 0.001 0.976 ± 0.004 4.63 ± 0.06 4.64 ± 0.07 0.960 ± 0.002

MACCS 0.055 ± 0.001 0.945 ± 0.006 4.47 ± 0.07 4.49 ± 0.07 0.931 ± 0.002

PubChem 0.052 ± 0.001 0.903 ± 0.007 4.27 ± 0.06 4.29 ± 0.06 0.918 ± 0.003

Kinases FP4 0.055 ± 0.001 0.868 ± 0.010 8.75 ± 0.12 8.83 ± 0.13 0.956 ± 0.003

KR 0.056 ± 0.001 0.877 ± 0.009 8.82 ± 0.11 8.92 ± 0.11 0.958 ± 0.003

MACCS 0.047 ± 0.001 0.737 ± 0.013 7.40 ± 0.14 7.50 ± 0.14 0.925 ± 0.003

PubChem 0.042 ± 0.001 0.671 ± 0.012 6.72 ± 0.13 6.83 ± 0.13 0.903 ± 0.003

bSDTNBI Global FP4 0.067 ± 0.002 0.747 ± 0.017 35.06 ± 0.90 39.50 ± 0.92 0.960 ± 0.003

KR 0.069 ± 0.002 0.767 ± 0.015 35.85 ± 0.91 40.57 ± 0.87 0.961 ± 0.003

MACCS 0.067 ± 0.002 0.736 ± 0.018 34.99 ± 0.93 38.95 ± 1.00 0.959 ± 0.003

PubChem 0.067 ± 0.002 0.728 ± 0.019 34.89 ± 0.91 38.53 ± 1.02 0.959 ± 0.003

GPCRs FP4 0.058 ± 0.001 0.997 ± 0.001 4.73 ± 0.06 4.74 ± 0.06 0.993 ± 0.001

KR 0.058 ± 0.001 0.997 ± 0.001 4.74 ± 0.06 4.74 ± 0.06 0.993 ± 0.001

MACCS 0.058 ± 0.001 0.997 ± 0.001 4.73 ± 0.06 4.74 ± 0.06 0.993 ± 0.001

PubChem 0.058 ± 0.001 0.997 ± 0.001 4.73 ± 0.06 4.74 ± 0.06 0.993 ± 0.001

Kinases FP4 0.062 ± 0.001 0.966 ± 0.005 9.76 ± 0.09 9.83 ± 0.09 0.983 ± 0.002

KR 0.062 ± 0.001 0.967 ± 0.005 9.77 ± 0.09 9.84 ± 0.09 0.983 ± 0.002

MACCS 0.061 ± 0.001 0.966 ± 0.005 9.75 ± 0.09 9.82 ± 0.09 0.983 ± 0.002

PubChem 0.061 ± 0.001 0.963 ± 0.005 9.72 ± 0.09 9.80 ± 0.09 0.982 ± 0.002

Values of evaluation indicators are expressed as mean ± SD. FP, the fingerprint type used in generating drug-substructure linkages.
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and rosiglitazone (Tikoo et al., 2009) could provide potential
targeted therapies in various cancer types, such as hepatocel-
lular carcinoma, colon cancer and renal adenocarcinoma. Put
together, bSDTNBI would provide a useful tool to identify
new indications for old drugs for the development of
potential targeted therapies in cancer.

Identifying novel ligands for oestrogen receptor α
ERs are members of the nuclear receptor superfamily. Previ-
ous studies have suggested that ERs serve as potential targets
for various complex diseases, such as cancer (e.g. breast can-
cer), osteoporosis, neurodegenerative diseases, cardiovascular
disease and obesity (Deroo and Korach, 2006; Nilsson et al.,
2011). To examine the application of bSDTNBI for identify-
ing new drug targets or lead compounds for drug discovery
and development, we showed how to identify novel ligands
targeting ERα. Before bSDTNBI prediction, 6116 unique
compounds were identified via chemical similarity search as
described in our previous study (Shen et al., 2012). Then, 56
commercially available compounds computationally identi-
fied by bSDTNBI were purchased for bioassays. Among these
compounds, 27 of them showed potential activity on ERα
with EC50 or IC50 ≤ 10 μM (Table 4 and Table S2). The exper-
imental results suggested approximate 50% success rate
through combining bSDTNBI and chemical similarity search

in predicting targets for novel compounds. Among 27
potential hits, 18 compounds showed micromolar and sub-
micromolar antagonistic activities to ERα (Table 4). Two
highly antagonistic compounds, Z25219066 and Z19674832
(Table 4 and Table S2), with IC50 of 0.37 μM and 0.2 μM, re-
spectively, would provide potential lead compounds for the
development of targeted breast cancer therapy by inhibiting
ERα. In addition, among 27 potential hits, five compounds
only showed micromolar and sub-micromolar agonistic ac-
tivities to ERα. For example, Z25218942 and Z25218345
showed EC50 value of 0.89 μM and 0.74 μM, respectively,
providing potential lead compounds for treatment of osteo-
porosis by activating ERα.

In natural biological systems, the same ligand may be an
antagonist in some tissues while an agonist in other tissues,
which was called a dual-effect ligand (Kansra et al., 2005).
For example, tamoxifen, an ER antagonist in breast, was ap-
proved for breast cancer treatment, but as ER agonist in bone,
thereby preventing osteoporosis potentially (Shang and
Brown, 2002; Kansra et al., 2005). Interestingly, among 27
hits with EC50 or IC50 ≤ 10 μM, four compounds were revealed
as having both antagonistic and agonistic activities on ERα
(Table 4 and Table S2). For example, two compounds,
Z991569394 and Z19674818, computationally identified by
bSDTNBI, were experimentally verified as dual-effect

Table 3
The performance of the models built via SDTNBI and bSDTNBI under the optimal condition in leave-one-out cross validation

Method Target FP P (L = 20) R (L = 20) eP (L = 20) eR (L = 20) AUC

SDTNBI Global FP4 0.076 ± 0.144 0.353 ± 0.410 19.16 ± 22.22 19.16 ± 22.22 0.892 ± 0.146

KR 0.102 ± 0.171 0.479 ± 0.435 25.96 ± 23.60 25.96 ± 23.60 0.911 ± 0.149

MACCS 0.070 ± 0.160 0.243 ± 0.364 13.19 ± 19.76 13.19 ± 19.76 0.868 ± 0.160

PubChem 0.063 ± 0.152 0.212 ± 0.344 11.52 ± 18.66 11.52 ± 18.66 0.860 ± 0.167

GPCRs FP4 0.154 ± 0.063 0.877 ± 0.261 4.25 ± 1.26 4.25 ± 1.26 0.922 ± 0.092

KR 0.166 ± 0.059 0.940 ± 0.179 4.56 ± 0.87 4.56 ± 0.87 0.951 ± 0.072

MACCS 0.147 ± 0.068 0.834 ± 0.312 4.04 ± 1.51 4.04 ± 1.51 0.908 ± 0.103

PubChem 0.150 ± 0.067 0.850 ± 0.301 4.12 ± 1.46 4.12 ± 1.46 0.915 ± 0.105

Kinases FP4 0.143 ± 0.080 0.648 ± 0.338 6.67 ± 3.48 6.67 ± 3.48 0.906 ± 0.099

KR 0.187 ± 0.107 0.815 ± 0.290 8.40 ± 2.99 8.40 ± 2.99 0.949 ± 0.084

MACCS 0.134 ± 0.083 0.600 ± 0.346 6.18 ± 3.56 6.18 ± 3.56 0.894 ± 0.104

PubChem 0.135 ± 0.085 0.603 ± 0.344 6.21 ± 3.54 6.21 ± 3.54 0.896 ± 0.103

bSDTNBI Global FP4 0.045 ± 0.053 0.393 ± 0.433 21.30 ± 23.50 21.30 ± 23.50 0.891 ± 0.149

KR 0.095 ± 0.121 0.593 ± 0.427 32.17 ± 23.15 32.17 ± 23.15 0.919 ± 0.144

MACCS 0.049 ± 0.064 0.373 ± 0.422 20.21 ± 22.91 20.21 ± 22.91 0.888 ± 0.149

PubChem 0.065 ± 0.097 0.395 ± 0.418 21.44 ± 22.67 21.44 ± 22.67 0.897 ± 0.144

GPCRs FP4 0.158 ± 0.059 0.898 ± 0.228 4.36 ± 1.11 4.36 ± 1.11 0.926 ± 0.090

KR 0.169 ± 0.058 0.956 ± 0.154 4.64 ± 0.75 4.64 ± 0.75 0.965 ± 0.061

MACCS 0.149 ± 0.066 0.850 ± 0.291 4.12 ± 1.41 4.12 ± 1.41 0.914 ± 0.100

PubChem 0.153 ± 0.065 0.867 ± 0.282 4.20 ± 1.37 4.20 ± 1.37 0.924 ± 0.098

Kinases FP4 0.143 ± 0.075 0.671 ± 0.344 6.91 ± 3.54 6.91 ± 3.54 0.912 ± 0.100

KR 0.197 ± 0.107 0.863 ± 0.266 8.89 ± 2.74 8.89 ± 2.74 0.960 ± 0.080

MACCS 0.137 ± 0.073 0.643 ± 0.338 6.62 ± 3.48 6.62 ± 3.48 0.901 ± 0.101

PubChem 0.142 ± 0.081 0.648 ± 0.342 6.67 ± 3.52 6.67 ± 3.52 0.905 ± 0.099

Values of evaluation indicators are expressed as mean ± SD. FP, the fingerprint type used in generating drug-substructure linkages.
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molecules on ERα with EC50 or IC50 value less than 1 μM. On
the one hand, Z991569394 and Z19674818 were revealed to
have the potential agonistic activities on ERαwith EC50 value
of 0.97 and 0.79 μM respectively. On the other hand, these
two compounds further showed a higher antagonistic activ-
ity on ERα with IC50 value of 0.20 and 0.26 μM respectively.
These results suggested that Z991569394 and Z19674818

could serve as potential lead compounds for the development
of targeted therapy in breast cancer or osteoporosis via dually
targeting ERα. Altogether, we demonstrated that bSDTNBI
showed potential application for identifying specific antago-
nistic or agonistic ERα ligands, or dual-effect ERα ligands with
both antagonistic and agonistic activities for drug discovery
and development.

Figure 4
The newly discovered drug-gene-disease network by bSDTNBI. This figure was generated by CytoScape (version 3.3.0, http://www.cytoscape.
org/). Circles representing drug nodes were coloured by their first-level Anatomical Therapeutic Chemical Classification codes.
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Development of toolkit
The newly developed bSDTNBI method and the previously
published SDTNBI and NBI methods were all implemented
in a toolkit named as NetInfer via C++ programming
language. NetInfer provides a uniform platform, which
allows users to apply operations such as prediction, cross
validation or external validation to their in-house networks.
The format of input and output files of this toolkit have been
described in our previous article (Wu et al., 2016). NetInfer
runs fast and is light-weight. It can predict potential targets
for thousands of drugs in a few seconds, and have no reliance
on extra matrix or linear algebra libraries. The binary
program, benchmark sets and thousands of newly predicted
DTIs are available upon request. In addition, the manuals of
bSDTNBI in NetInfer were given in our website (http://
lmmd.ecust.edu.cn/methods/bsdtnbi/).

Discussion
In this study, we developed an improved NBI method, named
bSDTNBI, for systematic prediction of chemical MoA.
bSDTNBI can be utilized in prediction of potential targets
for old drugs, clinical failed drugs and new chemical entities.
High performance was yielded in both 10-fold and leave-one-
out cross validations. We computationally explored new
MoA of anticancer drugs (e.g. tricyclic anti-depressant
agents), and identified hundreds of existing drugs (e.g.
anti-diabetic drugs) for the development of potential targeted
therapies on 15 cancer types/subtypes via bSDTNBI. Further-
more, 27 new potential ERα ligands were experimentally
validated with EC50 or IC50 values less than 10 μM, with
approximate 50% success rate for target identification to

new chemical entities. Collectively, bSDTNBI would provide
a powerful tool for identification of chemical MoA in drug
discovery and development.

Advantages
As a network-based method, bSDTNBI has several obvious ad-
vantages compared with others for DTI prediction and drug
repositioning, such as molecular docking-based (Luo et al.,
2011), and machine learning-based methods (Yamanishi
et al., 2008; Yamanishi et al., 2010; Cheng et al., 2012a).
bSDTNBI can cover more types of targets without known
three-dimensional protein structures. Although machine
learning-based models have been widely used to predict
potential targets for old drugs and novel compounds, they
have several limitations. Machine learning-based models re-
quire both positive and negative samples as input. However,
collection of high-quality negative samples is always
challenging due to lack of experimentally validated nega-
tive data. Generating negative samples with the principle
of ‘one versus the rest’ may partly alleviate this
problem (Cheng et al., 2012a), but the accuracy of models
was often reduced due to the low quality of samples. In this
study, bSDTNBI only utilizes positive DTI pairs and
chemoinformatics information to predict potential targets
for known drugs and new chemical entities, where negative
samples are not needed.

Furthermore, bSDTNBI can predict potential target for old
drugs, clinically failed drugs and new chemical entities with a
higher accuracy compared with our previous method,
SDTNBI (Wu et al., 2016). The higher performance was
yielded via adjusting three important issues in the original
SDTNBI. Specifically, for bSDTNBI, three key parameters were
used to adjust the initial resource allocation of different node

Table 4
The in vitro bioassay results for newly predicted ligands with EC50 or IC50 ≤ 10 μM on ERα

Compound ID Rank EC50 (μM) IC50 (μM) Compound ID Rank EC50 (μM) IC50 (μM)

Z92457891 1 0.33 1.07 Z56802474 3 1.35 NA

Z25218907 1 NA 8.51 Z55027883 3 NA 1.03

Z25218929 1 NA 1.28 Z46032399 4 NA 1.11

Z25219066 1 NA 0.37 Z46628474 4 NA 3.68

Z54109200 1 NA 6.17 Z19674177 4 NA 3.71

Z46032404 1 NA 0.58 Z19675184 4 NA 0.8

Z25218942 1 0.89 NA Z286056758 4 NA 4.25

Z991569394 1 0.97 0.2 Z19674828 5 NA 1.32

Z56868143 1 6.16 NA Z19674832 5 NA 0.2

Z46032353 2 NA 8.22 Z46628031 5 NA 2.99

Z25218345 2 0.74 NA Z19674818 6 0.79 0.26

Z25219162 2 1.83 NA Z19697324 13 NA 2.05

Z95162908 2 NA 7.08 Z19697748 20 NA 0.96

Z56797264 3 0.99 3.8 – – – –

E2a – 0.00024 NA Tamoxifena – NA 3.34

The compound identifiers are from the Enamine database. Rank is the position of ERα in the predicted target list for the corresponding compound. NA
means non-activity or EC50 or IC50 > 10 μM on ERα.
aTwo control compounds (E2 and Tamoxifen).

BJP Z Wu et al.

3382 British Journal of Pharmacology (2016) 173 3372–3385

http://lmmd.ecust.edu.cn/methods/bsdtnbi/
http://lmmd.ecust.edu.cn/methods/bsdtnbi/


types, the weighted values of different edge types and the
influence of hub nodes respectively. Based on systematic
evaluation, we found that bSDTNBI yielded the best
performance when (i) more amount of initial resource was
allocated to target nodes than that of substructure nodes;
(ii) bigger weighted values were set for DTIs than that of
drug-substructure associations; and (iii) the influence of hub
nodes were properly weakened. Under the optimal condition,
bSDTNBI yielded higher performance in both 10-fold and
leave-one-out cross validations in comparison to SDTNBI
across four types of fingerprints evaluated here.

Meanwhile, we found that KR fingerprint always
outperform other types of fingerprints in bSDTNBI. As shown
in Table S1, the drug-substructure networks generated by KR
fingerprint had lower sparisity. This suggests that the KR
fingerprint could generate more specific chemical substruc-
tures to differentiate molecules with different bioactivities.
The finding was similar to those we found in our previous
studies (Cheng et al., 2012b; Wu et al., 2016).

Limitations
Several possible limitations still exist in bSDTNBI. For
example, bSDTNBI could not predict potential DTIs for those
novel target proteins that are absent from the known
substructure-drug-target network. Moreover, the interaction
types and binding affinities of DTIs have not been considered
yet. We are actively developing new methods to solve this
limitation. For example, we may predict potential DTIs for
those novel target proteins by integrating a human
protein–protein interaction network (Cheng et al., 2014).
Nonetheless, bSDTNBI would provide a powerful tool for
identifying the MoA for known drugs and novel compounds
during drug discovery and development.
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