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Abstract

Tube current modulation (TCM) is routinely adopted on diagnostic CT scanners for dose 

reduction. Conventional TCM strategies are generally designed for filtered-backprojection (FBP) 

reconstruction to satisfy simple image quality requirements based on noise. This work investigates 

TCM designs for model-based iterative reconstruction (MBIR) to achieve optimal imaging 

performance as determined by a task-based image quality metric. Additionally, regularization is an 

important aspect of MBIR that is jointly optimized with TCM, and includes both the regularization 

strength that controls overall smoothness as well as directional weights that permits control of the 

isotropy/anisotropy of the local noise and resolution properties. Initial investigations focus on a 

known imaging task at a single location in the image volume. The framework adopts Fourier and 

analytical approximations for fast estimation of the local noise power spectrum (NPS) and 

modulation transfer function (MTF) - each carrying dependencies on TCM and regularization. For 

the single location optimization, the local detectability index (d′) of the specific task was directly 

adopted as the objective function. A covariance matrix adaptation evolution strategy (CMA-ES) 

algorithm was employed to identify the optimal combination of imaging parameters. Evaluations 

of both conventional and task-driven approaches were performed in an abdomen phantom for a 

mid-frequency discrimination task in the kidney. Among the conventional strategies, the TCM 

pattern optimal for FBP using a minimum variance criterion yielded worse task-based 

performance compared to an unmodulated strategy when applied to MBIR. Moreover, task-driven 

TCM designs for MBIR were found to have the opposite behavior from conventional designs for 

FBP, with greater fluence assigned to the less attenuating views of the abdomen and less fluence to 

the more attenuating lateral views. Such TCM patterns exaggerate the intrinsic anisotropy of the 

MTF and NPS as a result of the data weighting in MBIR. Directional penalty design was found to 

reinforce the same trend. The task-driven approaches outperform conventional approaches, with 

the maximum improvement in d′ of 13% given by the joint optimization of TCM and 

regularization. This work demonstrates that the TCM optimal for MBIR is distinct from 

conventional strategies proposed for FBP reconstruction and strategies optimal for FBP are 

suboptimal and may even reduce performance when applied to MBIR. The task-driven imaging 

framework offers a promising approach for optimizing acquisition and reconstruction for MBIR 

that can improve imaging performance and/or dose utilization beyond conventional imaging 

strategies.
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A Introduction

Tube current modulation (TCM) is routinely used on diagnostic CT scanners to reduce 

radiation dose while maintaining image quality (Kalra et al 2004, McCollough et al 2009). 

TCM techniques tend to include modulation along the axial direction and/or modulation as a 

function of rotation angle. With conventional modulation schemes, lower tube current (and 

hence less total fluence) is delivered to less attenuating sections of the patient (e.g., chest as 

compared to shoulders) where lower dose is required to achieve the desired image quality. 

Moreover, angular modulation is often applied for anatomical sections that have significant 

variation in thickness as a function of rotation – e.g. for abdominal CT, tube current is 

usually increased for lateral views and decreased for views along the anterior-posterior axis. 

Optimal angular TCM pattern poses an interesting design question and requires the adoption 

of a specific image quality objective. Conventional modulation schemes generally consider a 

performance metric based on noise and have been designed for CT reconstructions using the 

filtered-backprojection (FBP) algorithm. For example, one can target uniform signal/noise at 

the center of the detector by specifying a fluence inversely proportional to the transmissivity 

(Kalra et al 2004). Gies et al. (Gies et al 1999) and Harpen (Harpen 1999) directly 

minimized variance (from quantum noise) at a particular voxel in a FBP reconstruction 

through a TCM pattern that is proportional to the square root of the transmissivity.

Recent years have seen rapid development and clinical translation of model-based iterative 

reconstruction (MBIR) algorithms as well as more sophisticated metrics of imaging 

performance suggesting that TCM design should be revisited. Model-based iterative 

reconstruction approaches present distinct noise and resolution tradeoffs from FBP. In 

particular, TCM substantially affects the noise properties in FBP reconstruction but has little 

effect on the spatial resolution; however, in MBIR, TCM has the potential to affect both 

noise and resolution in an object-dependent fashion. Therefore, it is unclear whether 

traditional modulation strategies designed for FBP are optimal for MBIR. Furthermore, there 

is increasing consensus that image quality quantification needs to move beyond simple 

metrics of noise and resolution, and must be defined with respect to a particular imaging task 

(Wagner and Weaver 1972, Barrett 2009, Sharp et al 1996). Task-based metrics (e.g., 

detectability index for a detection task) has been commonly used in image quality 

assessment (Sharp et al 1996), and have found applications in the optimization of various 

aspects of the imaging system as well (Chawla et al 2008, Frey et al 2002, Rolland et al 
2005, Sanchez et al 2014, Prakash et al 2011, Gang et al 2012). Motivated by the above two 

reasons, we aim to investigate in this work TCM strategies optimal for MBIR consistent 

with a task-based image quality objective.

Toward this end, we adopt a task-driven imaging framework for prospective optimization of 

acquisition and reconstruction based on an image quality objective that seeks to maximize 

the detectability index for a specified imaging task and patient anatomy. The concept of the 

framework is somewhat similar to adaptive imaging techniques that have been proposed for 

MRI (Cao and Levin 1993) or SPECT (Barrett et al 2008). For CT or cone-beam CT 

(CBCT), this framework has been used to identify optimal acquisition trajectories in robotic 

c-arm systems (Stayman and Siewerdsen 2012), as well as TCM, view-dependent 
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apodization kernels, and orbital tilt for FBP reconstruction (Gang et al 2015). In particular 

relevance to TCM, we derived the optimal modulation pattern in FBP reconstruction that 

maximizes detectability index for a range of imaging tasks while taking into account a 

complete system model including system blur, quantum and electronics noise (Gang et al 
2015). It was found that the optimal TCM for radially symmetric task functions are 

comparable to the minimum variance solution proposed by Gies et al. (Gies et al 1999), 

while that for asymmetric tasks are strongly dependent on the radial frequency of the task 

function.

Finding optimal TCM approaches for MBIR presents a number of challenges. MBIR 

algorithms are typically nonlinear and often lack an explicit closed-form expression of the 

reconstruction as a function of the measurements. In addition, MBIR methods can present 

images with significant shift-variance in spatial resolution properties and nonstationarity in 

noise (Fessler and Rogers 1996, Fessler 1996). These properties are object- and acquisition-

dependent, and are also closely tied to the form of regularization or penalty that is integrated 

into the MBIR algorithm. Many different regularization functions are available, permitting 

significant freedom in shaping the noise and resolution in the reconstruction. It is likely that 

the effects of TCM and regularization are coupled. Joint optimization will therefore be 

potentially important for maximizing imaging performance.

Despite these challenges of nonlinearity and scan-specific dependencies, prospective 

predictors of imaging performance have been derived for specific MBIR objective functions. 

In particular, for penalized-likelihood reconstruction, closed-form expressions for local point 

spread functions and local covariance have been derived even though the estimator itself is 

implicitly defined (Fessler 1996, Fessler and Rogers 1996). While these expressions 

generally involve solving a problem with the same computational complexity of an ordinary 

reconstruction, Fourier approximations have been applied (Stayman and Fessler 2004, Jinyi 

Qi and Leahy 2000) to permit fast computation of these predictors or their transforms – the 

local modulation transfer function (MTF) and local noise power spectrum (NPS) – which 

can, in turn, be used to compute local detectability index. Recently, more efficient closed-

form analytical expressions have been derived (Zhang-O’Connor and Fessler 2007, Schmitt 

and Fessler 2012) permitting even faster computation. Such local and efficient predictors 

relate imaging parameters to task-based imaging performance and are essential in a 

computationally feasible parameter optimization of MBIR. Task-based optimization of 

MBIR has been performed for directional penalty design in emission imaging (Qi and 

Huesman 2006, Yang et al 2014). In transmission tomography, Gang et al. (Gang et al 2011) 

proposed methods for a spatially-varying penalty strength map to maximize task-based 

detectability index. Schmitt (Schmitt 2015) examined an exhaustive search method for 

jointly optimizing penalty strength and TCM parameterized by a sinusoid.

In this work, we investigate the joint optimization of TCM and MBIR regularization. 

Specifically, we extend the task-driven framework for the optimization of angular TCM 

using a general basis decomposition and a regularizer specified by overall penalty strength 

as well as the variation of individual pairwise voxel penalties to permit directional control of 

noise and resolution. We explore optimal design in the context of quadratic penalized-
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likelihood reconstruction for a mid-frequency discrimination task in an abdomen phantom, 

and compare task-driven strategies to conventional TCM and regularization approaches.

B Methods

B.1 Overview of Design Framework

Following previous work (Gang et al 2015, Stayman and Siewerdsen 2012), we introduce a 

task-driven imaging framework for prospective optimization of image acquisition and 

reconstruction using a task-based objective function. Specifically, the objective function 

seeks to maximize detectability index – a task-based image quality metric commonly used 

for performance assessment of classification tasks (detection or discrimination). 

Detectability index is dependent on the imaging task, the observer model, as well as the 

noise and resolution characteristics in the reconstruction. Thus, a model of the entire 

imaging chain is required to predict reconstructed image properties as a function of the 

patient attenuation characteristics (based on an anatomical model), and the particular 

acquisition parameters (denoted as ΩA) and reconstruction parameters (denoted as ΩR) to be 

designed. An optimization algorithm is applied that seeks the combination of  that 

maximizes the objective.

The utility of this framework has been demonstrated primarily in the context of 

interventional imaging where an anatomical model is typically available in the form of a pre-

operative or planning CT study (Gang et al 2015, Stayman and Siewerdsen 2012). To adopt 

the framework in diagnostic CT imaging scenarios, the anatomical model can be derived 

from a very-low dose 3D scout which replaces the traditional anterior-posterior (AP) and 

lateral radiographs (Yin et al 2015, Gomez et al 2017). Specification of the task function can 

be based on suspected lesions or disease prevalence, and may include multiple tasks. The 

location of the imaging task may include a single point, one or more organs, or the entire 

image volume (Gang et al 2016).

In this work, we focus on the joint optimization of TCM and regularization at a single, 

known location for a known imaging task in penalized-likelihood reconstruction with a 

quadratic penalty. Performing a single location optimization reduces the complexity of the 

problem and provides basic understanding of how acquisition and reconstruction parameters 

jointly affect task-based image quality metrics in MBIR. The optimal modulation pattern is 

dependent on the local spatial resolution and noise properties and is therefore location-

dependent. Prescribing optimal fluence patterns for many locations requires additional 

flexibility in data acquisition – e.g, dynamic fluence field modulation (Stayman et al 2016, 

Hsieh and Pelc 2013, Szczykutowicz and Mistretta 2014, Bartolac et al 2011, Gang et al 
2016) – which is the subject of ongoing investigation.

B.1.1 Task-Driven Objective—For the following investigations, the imaging task is 

assumed to be a binary classification task (detection or discrimination) presuming a signal-

known-exactly and background-known-exactly scenario. A non-prewhitening (NPW) 

observer model was adopted as a quasi-ideal observer that quantifies the upper bound of 

imaging performance while modeling the human observer as unable to prewhiten correlated 

noise. In this case, one may write the local detectability index at voxel j as:
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(1)

where fx, fy, fz are frequency axis along the x, y, z axes. This expression is a function of 

local spatial resolution and noise, expressed in the Fourier domain as the MTF (denoted T) 

and NPS (denoted S), respectively. This model presumes a linear, shift-invariant (LSI) 

system and stationary noise within a local neighborhood around voxel j (Gang et al 2014). 

The task function WTask, is equal to the Fourier transform of the difference between binary 

hypotheses (e.g., signal present versus signal absent for a detection task, or signal under 

hypothesis 1, H1, versus signal under hypothesis 2, H2, for a discrimination task). Focusing 

on the optimization of imaging performance at a single location, one may directly use the 

local detectability index as the objective function, i.e.:

(2)

While this paper concentrates on the above objective, it is straightforward to generalize 

design for regional objectives – e.g., based on maximizing the minimum detectability over 

many locations (Gang et al 2016).

B.1.2 Penalized-Likelihood Reconstruction with Quadratic Penalty—The MBIR 

method investigated in this work is based on a penalized-likelihood (PL) objective with a 

quadratic roughness penalty. This estimator integrates a statistically motivated data fit term 

and regularization term to achieve favorable noise-resolution trade-offs and locally 

linearizable imaging properties for which the locally shift-invariant approximation is 

accurate (Fessler 1996). The reconstruction, , is given by:

(3)

where the vector μ is the volume of attenuation values, the vector y denotes the projection 

data, L(μ, y) is the log-likelihood function and R(μ) is the roughness penalty. In this work, a 

simplified forward model was adopted assuming an ideal detector with no detector blur, zero 

electronics noise, and unity gain. Thus, the measurements, y, are a vector of independent 

Poisson random variables, with means given by:

(4)

where A is the forward projection operator and I0 is the number of barebeam photons per 

detector pixel. Fluence variations achieved via tube current modulation are accounted for in 

the I0 term as a function of projection angle, θ.
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The quadratic roughness penalty takes the following generalized form:

(5)

where subscripts j and k denotes voxel locations. The symbol  denotes the neighborhood 

around voxel where the penalty function is effective. As illustrated in Fig.1, we adopt a 

neighborhood with eight neighboring voxels in-plane and two neighboring voxels out-of-

plane. Note that the size of the neighborhood is usually dependent on user choice and 

typically involves 1st order neighbors along x, y, and z. The neighborhood in this work was 

chosen to include voxels that significantly affect the anisotropy of MTF and NPS in the axial 

plane (fx − fy). These neighbors would arguably have the most interesting interactions with 

the effect of tube current modulation, which also manifests mainly in the axial plane. 

Expanding the neighborhood to higher order neighbors both in- and out-of-plane may be 

considered for future work.

The terms ξjk denotes the intrinsic weighting factor based on the distance between voxels j 

and k. For the neighborhood above, ξjk is 1 for neighbors along the x, y, and z axes, and 

for in-plane diagonal neighbors. Two additional weighting factors, βj and rjk, control the 

strength of the penalty. The penalty strength parameter, βj, determines the overall weight of 

the penalty term relative to the data fit term. The subscript, j, denotes the general case where 

the penalty strength can be spatially varying as a function of voxel locations (Stayman and 

Fessler 2000). The term, rjk, is usually 1 for all voxel pairs in conventional weighting 

schemes. In this work, rjk is allowed to vary in order to control the strength of the roughness 

penalty in different directions. This enables additional freedom in shaping the isotropy/

anisotropy of the noise and resolution characteristics in the reconstructed image. While ξjk, 

rjk and βj can be mathematically reduced to a single weighting factor, the form in Eq.(5) 

enables the separate investigation of two aspects of penalty design, i.e., the overall 

smoothness/sharpness controlled by βj and the directionality of the noise or resolution 

controlled by rjk as compared to traditional directional weighting based only on distance 

(ξjk).

B.1.3 Acquisition Parameters—For TCM optimization, we consider a circular scanning 

geometry where the fluence varies simply as a function of rotation angle, i.e., I0(θ). Instead 

of optimizing over all angular positions – a potentially difficult non-convex and high-

dimensional estimation problem, we specify a low-dimensional parameterization of the 

modulation pattern as a linear combination of basis functions, :

(6)

where [Ω1, Ω2, …, ΩN] denotes the low-dimensional vector of basis coefficients to be 

estimated. We choose a set of bases defined by a shifted Gaussian function, , where 
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θn and σ denote the mean and standard deviation of the Gaussian, respectively. The centers 

(θn) of the Gaussians are evenly spaced along θ. The width of each Gaussian (2σ) is the 

same for all basis functions, and is chosen such that the value at the mid-point between 

centers sums to the same as that at the centers such that a flat profile can be achieved by this 

parameterization. Furthermore, projections 180° apart are redundant under a parallel beam 

assumption and are therefore assigned the same fluence to further reduce the dimensionality 

of the parameter. Thus, each basis function is given by:

(7)

where

The number of basis functions (N) affects the smoothness of tube current variations over θ. 

The number should be large enough to allow flexible modulation profiles that capture 

realistic anatomical variations, but smaller enough to ensure a low-dimensional search and to 

avoid high-frequency fluctuations that are unachievable by a real CT system. In this work we 

have chosen N = 8 to such that TCM may vary every ~20o. An important consideration in 

choosing the low dimensional parameterization is that it should be versatile enough to 

represent different classes of modulation profiles so that they are not excluded from the 

search space. Two conventionally adopted modulation patterns – a constant and a sine 

squared function - are shown in Fig. 2(b) to illustrate the difference between the basis 

function representations (solid line) versus ground truth (dashed red line). The two curves 

overlap almost completely for both modulation patterns, with a root mean square error of 

~0.0052% of the mean fluence for the constant pattern and ~0.11% for the sinusoidal 

pattern.

Various TCM strategies were investigated in this work. To ensure fair comparisons among 

strategies, a fluence constraint was applied such that the total bare beam fluence for all 

modulation patterns sum to a constant:

(8)

In addition, a lower bound was applied to the fluence in each projection to constrain the 

amplitude of modulation. The maximum ratio between the maximum and minimum levels of 

I0(θ) in current clinical CT systems is typically limited (e.g. to a factor of 3) based on x-ray 

tube and generator capabilities. The above two constraints were achieved through the 

following variable transformation and the following equation was used in the optimization 

process:
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(9)

B.1.4 Reconstruction Parameters—In addition to TCM, task-driven optimization of 

the penalty term was also investigated. Using the quadratic penalty form in Eq.(5), we 

choose rjk and βj as the design parameters. Similar to TCM, the regularization was 

optimized for a single location, i.e., a scalar βj and directional rjk weights for a single voxel, 

and applied everywhere in the image. For more a general optimization involving multiple 

locations, spatially varying rjk and βj can be optimized and applied instead (Fessler and 

Rogers 1996, Stayman and Fessler 2000, Gang et al 2014). As mentioned in Sec.B.1.2, Eq.

(5) is redundantly parameterized. To avoid ambiguities in optimization, we apply an 

additional constraint. Specifically, we chose to normalize the directional penalty weights 

such that the base-10 logarithm exponents sums up to 0,

(10)

This constraint keeps the overall smoothing relatively constant (recognizing that the weights 

have logarithmic action due to the log-likelihood objective). Specifically, if rjk is increased in 

one direction, the weighting for another direction or other directions have to decrease to 

keep the overall smoothing similar. Additionally, we constrain the maximum allowed 

variation in rjk to one order of magnitude, i.e., 10 or 1/10. Only the four in-plane (x−y) 

penalty weights illustrated in Fig.1 were optimized in this work. The rjk in the z-direction is 

fixed to 1.

B.1.5 Local Noise and Resolution Predictors—The local covariance and point spread 

function for PL reconstruction was derived by Fessler (Fessler 1996, Fessler and Rogers 

1996) based on the implicit function theorem and first-order Taylor expansions. This 

method, although accurate, involves the iterative estimation of three matrix inverses for each 

evaluation of d′ and thus would be computationally infeasible for incorporation into the 

optimization framework. Adopting the Fourier approximations in (Stayman and Fessler 

2004) permits one to write closed form expressions without any matrix inverses. 

Specifically, we may write the local MTF and NPS at voxel j as:

11(a)

11(b)
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where  denotes the discrete Fourier transform, ATWA is the Hessian of the data-fit 

term, R is the Hessian of the quadratic penalty term, ej and is a unit vector that is 1 at the 

voxel location and 0 everywhere else. For transmission tomography with independent 

Poisson noise, W can be approximated by  (Zhang-O’Connor and Fessler 2007) where 

D{·} denotes a diagonal matrix with its vector input as the diagonal elements. Note that 

dependence on the patient anatomy and TCM strategy is determined through the 

term which is a function of the mean measurements; the dependence on regularization 

design enters through R the term.

During the optimization process, we need to repeatedly evaluate Eqs. 11(a) and (b). For fast 

and memory-efficient computation of , the following techniques were 

adopted. First, for each projection angle θ,  was precomputed numerically and 

stored. This technique assumes that W varies slowly on the detector and allows the 

weighting term for voxel j at projection angle θ (denoted as wj,θ) to be multiplied directly 

and summed over angles:

(12)

Thus, only one set of  over θ needs to be precomputed to achieve any arbitrary 

TCM patterns.

Second, instead of using the full image support, only a 49×49×49 voxel volume of interest 

(VOI) centered at voxel j was extracted from  and used to compute the Fourier 

approximation in Eq.(11). The VOI size was sufficiently large to capture the 1/r blur induced 

by the . Thus, voxels values outside of the VOI are 0, and the resulting Fourier 

transform is more coarsely sampled but retains the same frequency content. Using  to 

denote the VOI around voxel j, this technique is represented mathematically as:

(13)

Similar techniques were used for the evaluation of . From derivations in (Zhang-

O’Connor and Fessler 2007),  can be computed analytically as:

(14)

where (ρ, ϕ) is the polar coordinates of the frequency domain, a is the voxel size (assuming 

isotropic voxel size along x, y, and z),  is the cartesian unit vector corresponding to the 

polar unit vector (1, ϕ), and  is the Cartesian vector of spatial offset from voxel j to voxel 
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k. For the local penalty design investigated in this work,  is only dependent on βj 

and rjk. Therefore, for efficient implementation, four matrices corresponding to the 

unweighted frequency response for each penalty direction, 

, were precomputed and stored, allowing fast 

computations of  for arbitrary βj and rjk. Again, a 49×49×49 voxel VOI was used 

instead of the full image support.

B.1.6 Imaging Strategies and Optimizer—Six imaging strategies were investigated 

and compared using PL reconstruction, including both conventional TCM techniques and 

task-driven TCM and penalty design. Various strategies for TCM exist ranging from simple 

heuristic sinusoids based on the oblateness of the patient, as well as more sophisticated 

methods calculated as a function of the attenuation characteristics of the patient. In this 

work, we focus on the latter using the parameterization proposed by Gies et al.(Gies et al 
1999):

(15)

where  denotes the line integral through voxel j at projection angle θm and α is a scalar 

value that controls the amplitude of modulation. We select the following three imaging 

strategies as traditional TCM choices that have been suggested and used in the context of 

FBP reconstruction:

Strategy 1: Unmodulated Tube Current (α = 0). The tube current is constant for each 

projection.

Strategy 2: Uniform Detector Signal (α = 10). When α = 1.0, the fluence incident on 

the detector for the source-detector ray passing through voxel j is constant for each 

projection. The statistical weighting for measurements associated with image position 

j is therefore the same for each projection angle, and one would expect isotropic noise 

and resolution properties for a likelihood-based reconstruction.

Strategy 3: Minimum Variance in FBP (α = 0.5). From Gies et al., the variance of 

voxel in an FBP reconstruction is minimized when α = 0.5.

Though these strategies were developed for FBP, they are still being applied to MBIR 

reconstructions in current clinical protocols. Therefore, we will explicitly evaluate 

their performance in PL reconstruction. To present a fair evaluation and comparison 

among strategies, the regularization strength βj was optimized for each to obtain the 

highest detectability. For optimization of a local, scalar βj, an exhaustive search was 

performed over discrete values of βj and the optimum was identified to within ±10.03. 

Again, since this work concentrates only on local design, only a single βj 

optimization was performed and that βj value was applied globally as a shift-invariant 

weight.
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The next three strategies follow the task-driven optimization framework and 

investigate combinations of the image parameters described in Sec.B.1.3 and B.1.4.

Strategy 4: Task-driven I0(θ). Task-driven optimization of tube current modulation 

and βj.

Strategy 5: Task-driven rjk. Task-driven optimization of directional penalty weights 

and βj.

Strategy 6: Task-driven I0(θ) + rjk. Task-driven optimization of tube current 

modulation, directional penalty weights, and βj.

Contrary to Strategies 1–3 which only involve the optimization of βj, the 

optimizations for Strategies 4–6 involves a vector input (coefficients of I0(θ) and/or 

rjk in addition to βj). We adopted the Covariance Matrix Adaptation Evolution 

Strategy (CMA-ES)(Hansen and Ostermeier 1996) algorithm for these optimizations. 

The algorithm is stochastic and derivative-free, making it suitable for non-linear, non-

convex problems. An open-source Python implementation of the algorithm was 

obtained from (Hansen 2014) (Hansen and Kern 2004). A population size of 60 was 

chosen for each iteration. The initial step size was 0.1 and the stopping criterion is 

based on a function tolerance of 0.001, which is on the order of ~10−5 of the final 

objective function value.

B.2 Experimental Methods

B.2.1 Imaging Phantoms and Tasks—The six imaging strategies described in Sec.1.6 

were investigated in a digital abdomen phantom [Fig.3(a)] derived from the reconstructed 

CT image of a cadaver torso. To generate the phantom, the CT reconstruction was 

segmented into air, soft tissue, liver/kidney, and bone. The first three tissue types in the 

segmented image were assigned a homogeneous value equal to the mean voxel values in a 

corresponding region of interest (ROI): air 0 mm−1, soft-tissue 0.173 mm−1, liver/kidney 

0.019 mm−1. Bone details and attenuation values were preserved from the original data. The 

voxel size of the digital phantom was 0.871×0.871×0.871 mm.

The imaging task was formulated as the discrimination of a calcification cluster (hypothesis 

H1) from a monolithic calcification (hypothesis H2) shown in Fig.3(b). The calcification 

cluster consists of three rotationally symmetric Gaussian functions (standard deviation = 1.0 

mm) evenly distributed along the perimeter of a 3.3 mm radius circle. The contrast of each 

Gaussian was 0.024 mm−1 relative to the soft tissue background. The larger monolithic 

calcification was modeled as a Gaussian function rotationally symmetric in the x–y plane 

with its 50% value equal to the radius of the circle (3.3 mm). Its standard deviation in the z-

axis is equal to that of the smaller Gaussians (1.0 mm). We assumed that all axial-rotational 

orientations of the cluster are equally likely and accounted for this effect numerically by 

averaging Fourier transform of the cluster rotated at every 2° increment. The Fourier 

transform of the larger Gaussian was then subtracted to obtain the task function. 

Mathematically,
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(16)

where μtrue denotes the true object and is to be distinguished from the reconstruction . The 

resulting task function is rotationally symmetric in fx–fy and is plotted in Fig.3(c).

To gain further intuition on the task-driven design, we explicitly explored the relationship 

between regularization and optimal tube current modulation. Using the CMA-ES algorithm, 

the optimal I0(θ) was identified at fixed values of βj in a simplified phantom using idealized 

imaging tasks. Specifically a homogeneous ellipse phantom (major axis ≈ 90 mm, minor 

axis ≈ 60 mm) with the task location at the center as illustrated in Fig.3(d) was employed. 

Three task functions were constructed for the detection of low-, mid-, and high-frequency 

content [Fig.3(e)]. The low frequency task was the Fourier transform of a Gaussian of 

standard deviation 3 mm. The mid- and high-frequency tasks were formulated directly in the 

Fourier domain as the difference between two Gaussians. For the mid-frequency task, the 

standard deviation of the two Gaussians are 0.25 mm−1 and 0.15 mm−1; for the high-

frequency task, 0.40 mm−1 and 0.35 mm−1. Values of βj spanned 5 orders of magnitude from 

10 to 106.

B.2.2 Image Simulation and Reconstruction—Projections were simulated at a pixel 

pitch of 1.17×1.17 mm to match the voxel size (times the magnification factor) for the 

digital phantom. The nominal exposure level is 750 photons per pixel (or ~548 photons per 

mm2) per projection, giving a total fluence of ~1.97×105 photons per mm2 for the entire 

acquisition. This low dose simulation was used to provide a challenging scenario for the 

different imaging strategies to yield performance differences that can be appreciated 

visually. The lower limit of fluence in Eq.9 is 450 photons per pixel. Efficient GPU-based 

implementations of the forward- and back-projectors using the Siddon algorithm (Siddon 

1985) were adopted. Poisson noise was generated using the random.poisson function in the 

Numpy package. The system geometry used a source-axis-distance of 804 mm and a source-

detector-distance of 1080 mm.

Penalized-likelihood reconstructions were performed using Nesterov momentum updates 

and ordered subsets for acceleration (Kim et al 2013). A total of 60 iterations were 

performed, with 20 subsets for the first 30 iterations and 1 subset for the last 30 iterations to 

ensure convergence. Reconstruction voxel size was the same as that of the digital phantom 

(0.871×0.871×0.871 mm).

B.2.3 Validation of Theoretical Predictions of MTF and NPS—The MTF and NPS 

from theoretical predictions (calculated according to Sec.B.1.5) were validated with 

empirical calculations. For NPS, 50 repeated reconstructions were performed and the 

difference image for each image pair was computed. The NPS was then calculated as the 

ensemble average of the square of the Fourier transform of a 49×49×49 voxel VOI around 

the location of the imaging task (denoted by j) in each difference image, i.e.,
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(17)

Using  to denote the VOI around voxel j, where denotes a difference image,  is the 

neighborhood notation consistent with Eq.(13), ax is the voxel size, nx is the number of 

voxels along the x-direction, and the  accounts for noise amplification from the subtraction 

process. For MTF, the local impulse response was first computed as the magnitude-

normalized difference between mean reconstructions of the true object with and without an 

impulse (amplitude δ = 0.01mm−1) injected at the location of interest. The MTF was then 

calculated as the modulus of the Fourier transform of the impulse response function within a 

49×49×49 voxel volume of interest around the location of the impulse, i.e.,

(18)

B.2.4 Visual Illustration of Image Quality—Example reconstructions from the six 

imaging strategies were presented for purposes of illustration. In low dose imaging 

scenarios, individual noise realizations can have a substantial impact on the appearance of 

the signal. Therefore, showing a single arbitrary reconstruction from each imaging strategy 

may not be representative of image quality. Instead, we developed a method rooted in 

statistical decision theory for fair selection of reconstructions from an ensemble. Note that 

the example images are only meant to serve as “visual aids” for the d′ values. Definitive 

performance comparisons should only be concluded from observer studies which will be 

subjects of future work.

For each imaging strategy, we generated noisy data and reconstructed 50 realizations for a 

digital phantom containing the stimulus – in this case, the calcification cluster described in 

Sec.B.2.1. The test-statistics corresponding to this hypothesis, t1, was computed for each 

realization according to

(19)

where m denotes the template vector for an NPW observer and is equal to the difference 

between the mean reconstruction vectors of the two signals under each hypothesis, . 

The mean reconstruction was approximated from reconstruction of noiseless data for the two 

hypotheses (H1–calcification cluster, and H2–“monolithic” Gaussian). The support of the 

template was chosen to be a 29×29×9 voxel VOI centered at the location of the signal.
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Particular noise realizations that are particularly bad (or good) for the specific discrimination 

task can be graded and identified using Eq. (19). To do so, the values of t for each 

reconstruction method ensemble is ordered and reconstructions closest to particular 

percentile values were selected from each imaging strategy for comparison. Specifically, we 

identified and presented the reconstructions at 100th (best case), 80th, 50th, and 20th 

percentiles for each strategy in Sec.C.2 below.

C Results

C.1 Comparison of Imaging Strategies

A summary of the imaging parameters associated with each of the six imaging strategies 

described in Sec.B.1.6 are shown in Figure 4 including (a) TCM, I0(θ), (b) directional 

penalty weights, rjk, and (c) overall penalty strength βj. Tube current modulation is shown as 

polar plot and overlaid on the abdomen phantom in the Unmodulated strategy to help 

illustrate the dependence on patient anatomy. In the Uniform Signal (α = 1.0) case, more 

fluence is allocated to the more highly attenuating lateral views so as to homogenize fluence 

in all views at the detector location corresponding to the stimulus location. The Min. FBP 

Variance (α = 0.5) case is the square root of the Uniform Signal (α = 1.0) case and therefore 

has smaller amplitude but similarly shaped modulation. Both task-driven designs of tube 

current modulation (i.e., Task-Driven I0(θ) and Task-Driven I0(θ) + rjk), on the other hand, 

have the opposite trend where the highest fluence levels were assigned to the least 

attenuating views along the anterior-posterior (AP) axis. The lowest fluence levels for the 

two strategies are along the lateral views and are limited by the constraint placed on the 

optimization [  in Eq.(9)]. The maximum ratio between the maximum and minimum 

levels of I0(θ) is ~3.0 and ~3.3 for the Task-Driven I0(θ) and Task-Driven I0(θ) + rjk 

strategies, respectively, and is consistent with the tube current dynamic range achievable on 

modern CT scanners.

Directional penalty weights, rjk, [Fig. 4(b)] are presented with their base-10 logarithmic 

values. Both task-driven strategies apply greater smoothing along the y-axis and the 45° 

diagonal, and less smoothing along and the 135° diagonal. Note that smoothing along y-axis 

in the image domain corresponds to smoothing in fy which in turn corresponds to lateral 

views at 90°. Therefore, greater smoothing is applied to data from projections with lower 

fluence. The penalty strength parameter, βj, [Fig 4(c)] varies among the imaging strategies 

by ~ three orders of magnitude, with the lowest βj observed for α = 1.0 and highest for the 

Task-Driven I0(θ) strategy.

The local MTF and NPS at the location of the signal is shown in Fig.5. Theoretical 

predictions are shown on the upper half and empirical calculations from the 50 

reconstructions are shown on the bottom half. Good agreement between theoretical 

prediction and empirical calculations are obtained in all cases. To provide quantification of 

the level of agreement, the Pearson correlation coefficient between three radial profiles 

(horizontal, vertical, and diagonal) of the theoretical and empirical MTF and NPS were 

computed for all six profiles. The level of agreement are comparable among strategies, with 
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the mean correlation coefficient for MTF equal to 0.9983±0.0013 and that for NPS 

0.9432±0.0345.

The Unmodulated strategy shows the intrinsic noise-resolution tradeoff in PL reconstruction, 

where noisier data along the lateral direction (contributing to frequencies along fy) are 

smoothed more. The Uniform Signal (α = 1.0) strategy results in the same weighting for 

each view and, hence, no preferential smoothing for different orientations. Thus, the MTF 

and NPS are isotropic. The Min. FBP Variance (α = 0.5) strategy yields MTF and NPS 

results qualitatively “in between” the unmodulated and the Uniform Signal (α = 1.0) cases. 

The three task-driven strategies accentuate the intrinsic anisotropy of MTF and NPS, with 

the combined Task-Driven I0(θ) + rjk optimization yielding the most directional MTF and 

NPS.

The trend in MTF helps to explain the difference in orders of magnitude of β. Intuitively, the 

MTF that are optimal for d′ would match the width of the task function to give the 

maximum task power [numerator of Eq.(1)] while avoiding excessive noise power that might 

degrade d′. At their respective βj values in Fig.4, the MTF for all six strategies has 

approximately the same maximum radial full-width at half-maximum (from Strategies 1–6: 

0.26, 0.24, 0.24, 0.26, 0.32, 0.31 mm−1), which approximately encompasses the peak of task 

function [Fig.3(e)]. Strategies with MTFs that are not as “stretched out” therefore require a 

lower βj in order to reach the higher frequencies, such as the Uniform Signal (α = 1.0), Min. 

FBP Variance (α = 0.5), and Task-Driven rjk strategies; whereas strategies with very 

anisotropic MTFs (Task-Driven TCM and Task-Driven TCM + rjk) can reach these high 

frequencies at a higher βj as a result of TCM. All three task-driven strategies suggest the 

same trend – greater fluence is applied to less attenuating views to obtain sharper MTFs that 

boost task power. Less fluence and therefore noise are concentrated in higher attenuation 

views where both the estimator itself and additional penalty through rjk are used to apply 

greater smoothing and reduce noise.

Figure 6 presents the task-driven I0(θ) designs at fixed βs for the low-, mid-, and high-

frequency tasks [Fig.3(e)] at the center of the ellipse phantom [Fig.3(d)]. Interestingly, when 

βj is small, the optimal tube current modulation for all three tasks closely approximates the 

α = 0.5 modulation (superimposed as red dotted lines), i.e., the optimal tube current 

modulation for PL reconstruction is similar to that for FBP when regularization has 

negligible effect. As βj increases, the modulation pattern shifts to similar trends as seen in 

Fig.4 where more fluence is assigned to less attenuating views at 0° and 180°. The shift 

occurs at lower β for higher frequency tasks. The optimal βj (i.e., highest detectability 

index), indicated by the green circle, is smaller for higher frequency tasks, consistent with 

intuition that higher spatial resolution is required to optimize performance for a higher 

frequency task.

C.2 Reconstructed Images for Different Strategies

The test statistic, t, for the calcification cluster (hypothesis H1) was computed for 50 

reconstructions for each imaging scenario. A sample histogram of t is shown as a bar plot in 

Fig.7(a) for the Task-Driven I0(θ) + rjk case. Under the assumption that test statistics follows 

a Gaussian distribution, a Gaussian fit to the data is superimposed as a solid curve. Similar 
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histograms for other approaches are not shown. The distribution for the H2 hypothesis 

(monolithic Gaussian) – shown (dashed line) only for illustrative purposes was not generated 

empirically but was presumed to be Gaussian, with its mean equal to the inner product of the 

template with the noiseless reconstruction of the monolithic Gaussian signal and the same 

variance as that of the distribution for H1. As indicated in Fig.7(a), the best case 

reconstruction of H1 has a test statistic value that is the furthest away from the distribution of 

H2 while the worst reconstruction of H1 has a test statistic closest to the H2 curve.

Reconstruction ROIs corresponding to the 100th (best case), 80th, 50th, and 20th percentiles 

of the respective test statistics distributions are shown for the six imaging strategies 

(columns) in Fig. 8. A relative d′ based on normalization to the Unmodulated strategy, , 

is presented along the bottom of the figure. Within each strategy, the ease of performing the 

imaging task (discrimination between the calcification cluster and the monolithic Gaussian) 

generally agrees visually with the best to worst ranking suggested by the t value. Comparing 

across the different strategies, the relative performance of different TCM and regularization 

approaches is consistent with the computed value of . Qualitatively, the Task-Driven I0(θ) 

+ rjk, approach provides the most easily discernable calcification cluster (most evident in the 

100th and 80th percentile reconstructions). The next best strategy appears to be Task-Driven 

I0(θ) where the calcification cluster is the most obvious in the 100th percentile 

reconstruction. For the rest of the imaging strategies, the imaging task is challenging in all 

four percentiles, with the α = 1.0 strategy appearing most noisy and difficult to discriminate 

between the cluster and monolithic stimulus hypotheses.

D Discussion

This paper presented a prospective, task-driven optimization of tube current modulation and 

quadratic penalty design in PL reconstruction. For the optimization of imaging performance, 

the objective function was chosen to be the detectability index of the intended imaging task 

at a specific location. The method is patient-specific and requires an anatomical model (e.g., 

from a prior CT image) to provide the attenuation characteristics for determining the 

location-specific noise and spatial resolution which are necessary for computing 

detectability index. Tube current modulation was parameterized using a smooth set of basis 

functions and quadratic penalty parameterization included overall penalty strength as well as 

directional penalty weights. The optimization was performed for a sample discrimination 

task of a calcification cluster versus a monolithic lesion in the kidney. Results from task-

driven optimization were then compared with conventional strategies that were originally 

developed for FBP reconstruction.

For the imaging scenarios investigated in this paper, the optimization results suggest a tube 

current modulation that assigns greater fluence to less attenuating views and less fluence to 

more highly attenuating views – suggesting that it may be more important to “make good 

data better”, than “make bad data good”. These results are direct opposite to TCM schemes 

traditionally applied for FBP reconstruction (e.g., the minimum variance solution when α = 

0.5). For FDK reconstruction, the amount of smoothing in the image is independent of the 

incident fluence and maximizing detectability index for a radially symmetric task is 
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equivalent to minimizing the NPS. In contrast, PL reconstruction assigns a statistical 

weighting to the projection data (W in Eq.4) typically equal to the variance of each 

measurement. The amount of smoothing is determined by the statistical weighting relative to 

the penalty term with greater smoothing applied to noisier data. Due to this property, the 

noise advantage from increasing fluence in a noisy view is less in PL as compared to FBP. In 

addition, when the penalty term is dominant for noisy data, further decreasing fluence in 

these views does not result in as much of an increase in noise. In fact, for a fixed total 

fluence and regularization strength, the variance of a particular voxel of interest in PL is 

fairly insensitive to tube current modulation. On the other hand, increasing fluence results in 

a sharper MTF and this effect is greater in less noisy views compared to noisier views. The 

distinct noise-resolution tradeoff in PL leads to an optimal tube current modulation that is 

the opposite from that for FBP reconstruction. Thus, as seen in the reconstruction 

comparisons, the α = 1.0 strategy performs the worst, followed by the and unmodulated 

strategies. While the α = 1.0 strategy may be suboptimal in terms of detectability index (and 

the particular task investigated here), isotropic noise and resolution may be important for 

other tasks.

The trends in directional penalty weights are consistent with that of tube current modulation, 

where the intrinsic directionality of MTF and NPS is further enhanced. Interestingly, Qi and 

Heusman (Qi and Huesman 2006) obtained similar trends in emission tomography using a 

channelized Hotelling observer model with internal noise. In fact, the anisotropic nature of 

MTF and NPS in the Unmodulated strategy is exaggerated in all three task-driven strategies, 

with the Task-Driven TCM + rjk strategy presenting the most directional blur in the 

reconstructed image. While such anisotropy is favored for the purpose of detection/

discrimination in this work, other types of imaging tasks (e.g., size estimation) may require 

more isotropic resolution to preserve the shape of the lesion. Radiologists may also prefer 

more familiar looking images with less directional correlations. This could be accomplished 

by constraining the variation in the directional penalty and/or the fluence modulation. The 

optimal regularization strength parameter (βj) roughly matches the MTF (and NPS) to the 

same frequency extent as the imaging task, which results in a difference of ~three orders of 

magnitude among βj for different strategies. Another imaging scenario of clinical relevance 

involves optimizations at matched noise levels. In that case, we may need to investigate a 

few different noise levels (e.g., optimal noise level for each strategy) to present a fair 

comparison.

Detectability index computation was performed in the Fourier domain using the local MTF 

and NPS in a small voxel neighborhood around the location of interest and for small changes 

in signal magnitude. Due to the slowly-varying nature of the measurement (and thus the data 

weighting term) as well as the additional smoothing induced by the back-projector (the 

ATWA term), the input to the reconstruction process may be assumed to be wide-sense 

stationary and the local impulse response in the image can be assumed to be shift-invariant 

within a local neighborhood. Furthermore, a locally linear approximation (around the mean 

measurement) was shown to hold for a PL objective with quadratic penalty (Fessler and 

Rogers 1996). These assumptions allow the adoption of Fourier domain metrics, which 

enables fast calculations of d′ in the Fourier domain. While it is possible to calculate their 
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spatial domain counterparts, i.e., point spread function, covariance, and compute d′ using a 

spatial domain version of Eq.1, each set of calculations would require three iterative 

estimations of matrix inverses which imposes huge computational burden on the 

optimization processes. Previous work (Gang et al 2011) also explicitly examined the 

validity of such assumptions by comparing the d′ values for a Hoteling observer calculated 

in the Fourier domain vs. those in calculated in the spatial domain. The difference for PL 

reconstruction with a quadratic penalty was found to be small (~5%) within uniform regions 

or regions with low contrast structures (e.g., soft tissue to air). Adopting Fourier 

approximations has the additional benefit of reducing the computation time of the estimators 

and making the optimization computationally feasible.

The type of regularization studied in this work is quadratic. Other forms of regularization, 

such as L-1 or Huber penalty, are attractive due to their edge-preserving nature. 

Optimization involving such penalty function are challenging due to a lack of close-form 

analytical expression for noise and resolution. For Huber penalty specifically, the quadratic 

form may still be useful for low contrast signals when the penalty operates in the quadratic 

region. However, a general analytical approximation would be necessary for high contrast 

structures. In addition, the local shift-invariance assumption no longer holds around edges 

and one may need to use the spatial domain calculations mentioned above.

The observer model adopted in this work is the linear non-prewhitening model, chosen as a 

quasi-ideal model to represent the upper bound of detectability while taking into account of 

human’s inability to prewhiten correlated noise. Inclusion of the non-prewhitening feature is 

important for this work because prewhitening observers are invariant to the amount of 

smoothing in the reconstructed image and would not yield an optimum for regularization 

design. Similarly, prewhitening observers can “undo” correlations introduced by the 

reconstruction process such that the optimal tube current modulation would assign all the 

fluence to the least attenuating view for the location of signal (Schmitt 2015). Ideally, the 

observer model should be one that perfectly matches the human visual response, including 

characteristics of slice scrolling, search, as well as the effect of non-uniform background. 

The task-driven imaging framework is sufficiently general to accommodate any form of 

observer models in the objective function and incorporating the latest development in image 

perception research will subject of future work.

Several simplifications were invoked in this work and will be addressed in future studies. 

The forward model in this work assumed an ideal detector with no detector blur, unity gain, 

and zero electronic noise. Noise and resolution predictors for PL reconstruction with a 

realistic detector model is the subject of ongoing investigation (Wang et al 2017) and will be 

incorporated in the optimization framework in future studies. The inclusion of detector blur 

will likely result in a small change in the magnitude of the regularization parameters. The 

inclusion of electronic noise poses additional considerations on the lower limit of tube 

current in each view. Additional constraints might be needed to keep the number of incident 

photons above the electronic noise floor. Alternatively, we may relax the constraint that all 

views must have non-zero tube current and allow tomosynthesis-like scenarios to occur. In 

that case, we require a more sophisticated observer model that takes into account of the 
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effect of overlaying anatomy (viz. increased anatomical noise (Gang et al 2010) and 

reduction in contrast of the stimulus from 3D to 2D) as well as streaking artifacts.

The frequency content and location of the imaging task in this work was assumed to be 

known exactly. In diagnostic imaging scenarios, a multi-task and multi-location optimization 

is likely needed to account for a range of possible lesions specific to the anatomical site 

based on disease prevalence. Results from the single location investigation in this work 

suggest that the optimal TCM profile is affected by the attenuation characteristics at the 

location of interest and therefore varies as a function of location. While appropriate for 

optimization at a single location, one cannot drive arbitrary fluence to many stimuli 

locations with simple TCM. Multi-location optimization using TCM alone will therefore 

only be able to consider the most challenging location, or improve average or weighted 

average performance over all locations. A technology more suited to multi-location 

optimization is (Stayman et al 2016, Szczykutowicz and Mistretta 2014, Hsieh and Pelc 

2013, Bartolac et al 2011) which generalized the TCM concept to provide varying spatial 

modulations of the x-ray beam as a function of rotation angle have been developed. Initial 

studies generalizing the TCM strategies presented here are underway to permit greater 

freedom in providing locally optimal fluence-field modulation to multiple locations in the 

image (Gang et al 2016).
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Fig.1. 
Illustration of the in-plane second order neighborhood over which the penalty is effective. 

Conventional penalty weighting scheme with ξjk = 1 for horizontal and vertical pairwise 

neighbors, and  for diagonal pairwise neighbors; rjk is 1 for all directions (not shown).
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Fig.2. 
(a) Polar plots of the Gaussian basis functions used for tube current modulation. The radial 

axis represents mAs per frame. Views 180o apart are assigned the same weights in our 

investigations of a 360° circular scan. (b) A constant and a sinusoidal tube current 

modulation profiles represented by the Gaussian basis functions (solid) almost completely 

overlaps with ground truth (dashed).
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Fig. 3. 
(a) The abdomen phantom with the stimulus inserted in the right kidney. (b) Discrimination 

task of a calcification cluster from a monolithic Gaussian. (c) The frequency domain task 

function of the imaging task illustrated in (b). (a), (b), and (c) are used for the six imaging 

strategies described in Sec.2.1. (d) A homogeneous ellipse phantom with a location of 

interest at the center. (e) Three task functions constructed directly in the Fourier domain 

presenting low, mid, and high-frequency content. (d) and (e) are used to investigate of the 

effect of β on the optimal tube current modulation.
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Fig.4. 
The (a) tube current modulation, (b) directional penalty weights, and (c) β for the six 

imaging strategies detailed in Sec.B.1.6.
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Fig.5. 
The local MTF (row 1) and NPS (row 2) around the location of the imaging task for the six 

imaging strategies. Theoretical predictions presented at the top half of each figure are 

compared with empirical estimations presented at the bottom half.
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Fig.6. 
Optimal tube current modulation as a function of β for three imaging tasks presenting low-, 

mid-, and high-frequency components. For comparison, the α = 0.5 modulation pattern is 

plotted as red dotted lines in the first column. The β value that yields the highest d′ for each 

task is indicated by a green circle.
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Fig. 7. 
(a) Test statistics distribution for the two hypotheses under the Task-Driven I0(θ) + rjk 

strategy. Values for the calcification cluster hypothesis were calculated from the 50 

reconstructions following Eq.(19) and are shown as the bar plot. A Gaussian fit is 

superimposed as the solid curve. Distribution for the monolithic Gaussian signal is 

approximated for purposes of illustration. (b) Template for the Task-Driven I0(θ) + rjk 

strategy.
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Fig.8. 
Reconstruction ROIs corresponding to the 100th, 80th, 50th, and 20th percentile from the 

respective test statistics distrubtion for each of the six imaging strategies. Relative d′ to the 

“Unmod” strategy are shown at the bottom.
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