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Abstract——Epilepsy is a common and serious neu-
rologic disease with a strong genetic component.
Genetic studies have identified an increasing collec-
tion of disease-causing genes. The impact of these
genetic discoveries is wide reaching—from precise

diagnosis and classification of syndromes to the
discovery and validation of new drug targets and
the development of disease-targeted therapeutic
strategies. About 25% of genes identified in epilepsy
encode ion channels. Much of our understanding of

ABBREVIATIONS: ADNFLE, autosomal dominant nocturnal frontal lobe epilepsy; CAE, childhood absence epilepsy; EEG, electroen-
cephalography; GEFS+, genetic epilepsy with febrile seizures plus; GGE, genetic generalized epilepsy; HCN, hyperpolarization-activated
cyclic nucleotide-gated; iPSC, induced pluripotent stem cell; JME, juvenile myoclonic epilepsy; nAChR, nicotinic acetylcholinergic receptor;
NMDA, N-methyl-D-aspartate.
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disease mechanisms comes from work focused on this
class of protein. In this study, we review the genetic,
molecular, and physiologic evidence supporting the
pathogenic role of a number of different voltage- and

ligand-activated ion channels in genetic epilepsy. We
also review proposed disease mechanisms for each
ion channel and highlight targeted therapeutic
strategies.

I. Introduction

Epilepsy, with a lifetime prevalence of 3%, is a
common and serious neurologic disease occurring due
to either primary genetic determinants or as a conse-
quence of a variety ofmetabolic and structural disorders
of the brain. It is characterized by recurrent seizures
resulting from hypersynchronous discharges. Despite
optimal treatment with modern antiepileptic drugs,
about one third of patients still continue to have
seizures, and side effects from these drugs are common.
Epilepsy was recognized to have a genetic component as
early as 400 BC, when Hippocrates suggested that its
origins may lie in heredity. The first gene for genetic
epilepsy was identified in 1995 (Steinlein et al., 1995),
with discoveries in subsequent decades slowly begin-
ning to unravel the genetic basis of the epilepsies (Reid
et al., 2009). More recently, a combination of improve-
ments in gene-screening technologies, the creation of
large international consortia, and use of more powerful
bioinformatic tools has led to an explosion in the
number of genes identified in epilepsy. This has allowed
the mechanistic basis of human epilepsy to be probed in
a way not previously possible.

A. General Clinical Principles in Epilepsy

Over 50 epilepsy syndromes are described, and they
are broadly divided into focal (formerly partial) and
generalized epilepsies based on the concept that the
former have seizures generated in a local unilateral
network, whereas the generalized epilepsies have sei-
zures generated within bilateral networks. Focal epi-
lepsies more often have a macroscopic structural
abnormality as the primary underlying cause. The
classification of epilepsy and seizure types has recently
been revised (Fisher et al., 2017; Scheffer et al., 2017).
Diagnosis begins with seizure type(s), and then, where
sufficient electroclinical information is available, an
epilepsy type can be defined that may be focal, gener-
alized, combined focal and generalized, or unknown.
A further aspect of classification is the epilepsy syn-
drome based on a combination of epilepsy type, etiology
(genetic, structural, infectious, metabolic, immune),
and comorbidities (e.g., developmental delay, autism
spectrum disorders, intellectual disability).
The broad group of generalized epilepsies is largely

comprised of genetic generalized epilepsy (GGE),
which is also known as idiopathic generalized epilepsy.
These are a family of related syndromes, typically
beginning in childhood or adolescence and associated
with a characteristic electroencephalography (EEG)
pattern of generalized spike-and-wave discharges.

Patients have combinations of absence, myoclonic,
and tonic-clonic seizures, and the four classic GGE
syndromes are childhood absence epilepsy (CAE),
juvenile absence epilepsy, juvenile myoclonic
epilepsy (JME), and generalized tonic-clonic seizures
alone (Scheffer et al., 2017). Rarer genetic epilepsy
syndromes include many epileptic encephalopathy
syndromes, with refractory seizures and overall de-
velopmental delay (McTague et al., 2016). In this
review, we highlight specific epilepsy syndromes
associated with mutations in a given gene. Table 1
summarizes the clinical aspects of the epilepsy genes
discussed, including their Online Mendelian Inheri-
tance in Man number.

B. Genetic Architecture of Epilepsy

A clearer picture is emerging of epilepsies as a
collection of distinct genetically defined disorders.
Many of the early gene discoveries were made in
familial epilepsies. Data from large families allowed
for genetic linkage, with the subsequently identified
pathogenic variant running through affected members
like a golden thread. More recent studies suggest that
many severe epilepsies beginning in infancy and child-
hood, especially the developmental and epileptic en-
cephalopathies, are due to de novo mutations (absent in
both parents) (Allen et al., 2013).

Somatic mosaicism is a concept that is becoming
increasingly relevant in neurologic disease (Poduri
et al., 2013). In this case, an individual has at least two
cell populations with different genotypes. Improved
genetic screening methods have allowed for better
detection of mosaicism. Somatic mutations can arise at
any time during brain development to cause epilepsy.
The pathogenic outcome depends on the proportion and
cell types affected. It is important to note that unaffected
parents, who are germline mosaics for a pathogenic
variant, can pass the mutation onto their affected chil-
dren. The percentage mosaicism in the parental lympho-
cyte DNA may reflect their extent of affectedness. This
has been shown in studies of Dravet children with
inherited SCN1A mutations from mosaic parents. Par-
ents who were ,45% mosaic were unaffected, whereas
those with .45% mosaicism were affected, and the
severity of their epilepsy correlated with their percent-
age mosaicism (Depienne et al., 2010).

In contrast to rare epilepsies, an understanding of the
genetic architecture of more common epilepsies has
lagged. GGE has a complex inheritance pattern likely
caused by a contribution of multiple susceptibility
alleles, or de novo mutations in some cases. There is
debate as to whether the genetic contribution is largely
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from numerous common variants of small effect, dis-
coverable by Genome Wide Association Studies
(International League Against Epilepsy Consortium
on Complex Epilepsies, 2014) or from rare variants of
larger effect detectable by massively parallel sequenc-
ing. Recent evidence argues that a proportion of GGE is
contributed to by ultra-rare variants in known epilepsy
genes (Epi4K Consortium and Epilepsy Phenome/
GenomeProject, 2017). To date, rare structural genomic
variants, including microdeletions at 15q13.3, 15q11.2,
and 16p13.11, are the most common identified genetic
risk factors for GGE, considerably increasing genetic
risk (Dibbens et al., 2009; Helbig et al., 2009, 2013; de
Kovel et al., 2010). There is also increasing evidence for
the genetic basis of focal epilepsies, traditionally be-
lieved to be due to acquired insults. This was first
appreciated in clinical studies of small and large
families (Scheffer et al., 1998; Dibbens et al., 2013),
but more recently, clear signals from exome-sequencing
studies indicate a genetic component to focal epilepsy
that falls outside the familial setting (Epi4K Consortium

and Epilepsy Phenome/Genome Project, 2017). There-
fore, although it is difficult to establish an exact pro-
portion, it is becoming increasingly clear that genetic
factors play a significant pathogenic role in a majority of
the epilepsies (Thomas and Berkovic, 2014).

Early gene discovery implicated mostly ion channels
and raised the concept that the genetic epilepsies were
likely to be a family of channelopathies (Wallace et al.,
1998; Reid et al., 2009). Although this concept has
evolved, with many biologic pathways now implicated
in disease, ion channels still account for a significant
proportion of known genetic epilepsies (Fig. 1). As such,
there is a rich literature that has begun to unravel the
molecular, cellular, and neuronal network mechanisms
underlying genetic epilepsy caused by mutations in ion
channels. This is laying the foundation for the develop-
ment of disease-targeted therapy in the genetic epilep-
sies. In this review, we focus on ion channels as an
exemplar of how genetic discoveries have driven basic
science, and how the circle back to the clinic is beginning to
close (Fig. 2).

TABLE 1
Ion channel genes mutated in epilepsy, functional impact, and available mouse models

Gene Protein Phenotype OMIM Nr Functional
Impact Human Mutation-Based Mouse Models

Voltage-Gated
SCN1A NaV 1.1 Dravet syndrome; GEFS+ 182389 LOF R1407X (Yu et al., 2006);

R1648H (Martin et al., 2010)
SCN1B NaVb1 GEFS+, temporal lobe epilepsy, an

early infantile epileptic
encephalopathy

600235 LOF C121W (Wimmer et al., 2010)

SCN2A NaV1.2 BFNIE, early-onset epileptic
encephalopathies,
neurodevelopmental disorders

182390 GOF LOF A263V (Schattling et al., 2016)

SCN8A Nav1.6 BFIE, epileptic encephalopathy 600702 GOF N1768D (Lopez- Santiago et al., 2017)
KCNA1 KV1.1 Partial epilepsy and episodic

ataxia
176260 LOF V408A (Herson et al., 2003)

KCNA2 KV1.2 Epileptic encephalopathy 176262 GOF LOF
KCNB1 KV2.1 Epileptic encephalopathy 600397 LOF
KCNC1 KV3.1 Progressive myoclonus epilepsy 176258 LOF
KCNMA1 KCal.1 Epilepsy and paroxysmal

dyskinesia
600150 LOF

KCNQ2 KV7.2 BFNE, epileptic encephalopathy 602235 GOF LOF A306T (Singh et al., 2008)
KCNQ3 KV7.3 BFNE 602232 GOF LOF G311V (Singh et al., 2008)
KCNT1 KNal.1 ADNFLE, EIMFS 608167 GOF
KCTD7 KCTD7 Progressive myoclonus epilepsy 611725 LOF
HCN1 HCN1 IGE 602780 GOF LOF
CACNA1A CaV2.1 Epilepsy, episodic ataxia, epileptic

encephalopathy
601011 LOF

CACNA1H CaV3.2 GGE 607904 GOF

Ligand-Gated
GRIN1 GluNl Epileptic encephalopathy 138249 LOF
GRIN2A GluN2A Epileptic encephalopathy 138253 GOF LOF
GRIN2B GluN2B Epileptic encephalopathy 138252 GOF LOF
GRIN2D GluN2D Epileptic encephalopathy 602717 GOF
GABRA1 GABRA1 GGE, epileptic encephalopathy 137160 LOF A322D (Arain et al., 2015)
GABRB3 GABRB3 CAE, epileptic encephalopathy 137192 LOF

GABRG2 GABRG2 FS/GEFS+, epileptic encephalopathy 137164 LOF R43Q (Tan et al., 2007);
Q390X (Kang et al., 2015)

CHRNA2 CHRNA2 ADNFLE 118502
CHRNA4 CHRNA4 ADNFLE 118504 GOF S252F (Klaassen et al., 2006);

+L264 (Klaassen et al., 2006)
CHRNB2 CHRNB2 ADNFLE 605375 GOF

BFIE, benign familial infantile epilepsy; BFNIE, benign familial neonatal-infantile epilepsy; EIMFS, epilepsy of infancy with migrating focal seizures; FS, febrile seizures
GOF, gain-of-function; LOF, loss-of-function; OMIM, Online Mendelian Inheritance in Man.
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C. A Path for Translational Research in Genetic
Epilepsy Caused by Mutations in Ion Channels

A mutation in a protein can have its impact on both
temporal and spatial scales, and understanding the
cellular consequence of these changes is central to our
understanding, and eventual treatment, of epilepsy.
A translational pathway is beginning to develop based
on the use of several experimental platforms (Fig. 2).
The mainstay of current discovery uses heterologous
expression systems, including Xenopus laevis oocytes
or human embryonic kidney cell models. These plat-
forms have the significant advantage of providing an
opportunity to investigate protein function in isolation.
Electrophysiological methods provide the gold stan-
dard for studying ion channels, giving good signal-to-
noise and temporal resolution. Much of what we know
about the molecular basis of disease has been de-
veloped on these platforms. If mutations in a single
gene give rise to a common functional consequence,
this provides a strong target for therapy. However, as
will become apparent, this is not always the case. It is
important to note that these platforms cannot report
on the cellular components that drive neuronal hyper-
excitability. Ion channels in particular operate in very
specialized and interactive temporal and spatial do-
mains. For example, Na+ channels work with K+

channels in a dynamic manner to generate action
potentials. Another important reason that these sim-
ple functional assays may not be predictive is that they
are opaque to cell compartment–specific trafficking
deficits and emerging pathologies. Much mechanistic
insight has come from animal models of epilepsy based
on genetic manipulation that can, at least partially,
overcome these issues.
Genetic rodent models provide a major experimental

avenue for dissecting out cellular and neuronal network
mechanisms of disease. They also provide invaluable

preclinical tools that can be used to test both targeted
precisionmedicine and general therapeutic approaches.
Initially, it is worth stipulating what we require our
animal models to deliver for them to serve as valid tools
for investigating human epilepsy. A good model of
disease would be expected 1) to be based on a known
human genetic lesion, 2) to recapitulate the seizure
phenotypes represented in the epilepsy patients, includ-
ing their pharmacosensitivity, and 3) to model comorbid-
ities. For variants that cause definitive loss-of-function,
traditional knockout mice can be effective models of
disease. However, even in this case, the position that a
truncation occurs in a gene can be a critical component of
the underlying pathogenic mechanism. For example,
truncated protein products expressing functional do-
mains may act in a dominant-negative manner, impact-
ing other proteins to cause disease. As such, the new gold
standard in genetic research is to engineer knock-inmice
based on human mutations. These syndrome-specific
models more often recapitulate the epilepsy phenotypes
noted in humans, making them good preclinical models
that are ideal for investigating diseasemechanisms (e.g.,
Kearney et al., 2001; Yu et al., 2006; Kalume et al., 2007;
Ogiwara et al., 2007; Tan et al., 2007; Oakley et al., 2009;
Martin et al., 2010; Wimmer et al., 2010; Kang et al.,
2015; Wagnon et al., 2015b).

It is important to note that mice lack the neuronal
complexity seen in the primate brain, and that knock-in
mouse models do not always recapitulate the human
disease. It follows that although these approaches
represent the most useful methods we have for identi-
fying the mechanistic causes of genetic epilepsy, we
need to continue to develop new methods and models
(Maljevic et al., 2017). Induced pluripotent stem cell
(iPSC) technology provides an avenue in which neurons
can be derived directly from patient tissue. Several
recent reports have demonstrated the utility of this
approach in neurologic disorders, including epilepsy
(Parent and Anderson, 2015; Barral and Kurian, 2016;
Sun et al., 2016), suggesting that iPSC-based methods
are likely to become an important part of the disease-
mechanism discovery toolkit.

In the remaining part of this review, we will outline
the genetic, molecular, cellular, and behavioral evi-
dence that is used in identifying mechanisms of disease.
A cartoon representing the major epilepsy proteins and
where they reside on both excitatory and inhibitory
neurons is presented in Fig. 3. Although the molecular
mechanisms are discussed in terms of gain- and loss-of-
function, we accept that in many cases this represents
an oversimplification. More complex distinctions will
evolve as models of disease for each gene develop.
However, in pragmatic terms, this distinction provides
a useful way to represent general principles of disease
mechanisms and has already helped in defining disease
classes caused by different variants within single genes
(Wolff et al., 2017).

Fig. 1. Visualization showing the contribution of ion channels to genetic
epilepsy.
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II. Voltage-Gated Ion Channels in Epilepsy

A. Voltage-Gated Na+ Channels

The primary role of voltage-gated Na+ channels is in
the initiation and propagation of action potentials, mak-
ing them critical determinants of neuronal excitability
(Alexander et al., 2015a; www.guidetopharmacology.org/
GRAC/FamilyDisplayForward?familyId=82). Nine genes
encode the pore-forming a-subunits, with four genes
encoding the ancillary b-subunits. The a-subunits have
a tetrameric structure comprising four homologous do-
mains (I–IV), each with six transmembrane segments
(S1–S6), encoded by a single gene. They are usually
associated with one or more b-subunits, transmembrane
proteins with a single extracellular loop that influence
a-subunit localization and function (Catterall et al., 2005).

To date, mutations have been identified in three major
pore-forming a-subunits found in the brain, and in one of
the b-subunits.

1. SCN1A. SCN1A encodes the NaV1.1 subunit
expressed predominantly in inhibitory GABAergic neu-
rons and is enriched at the axon initial segment,
implicating a role in the initiation and propagation of
action potentials in these cells (Yu et al., 2006; Ogiwara
et al., 2007; Duflocq et al., 2008).

a. Clinical syndrome and molecular findings.
Since first discovered in 2000, several hundred SCN1A
mutations have been described in epilepsy, making it
the most common known epilepsy gene (Oliva et al.,
2012). Missense mutations are associated with genetic
(previously generalized) epilepsy with febrile seizures

Fig. 2. Schematic illustrating a path to the development of targeted therapeutic strategies in genetic epilepsy. Genetic screening is identifying large
numbers of causative mutations. For ion channels, functional analysis usually involves electrophysiological recordings. Knock-in mice based on human
mutations provide good preclinical models on which disease mechanisms can be determined and on which treatments can be tested. This can lead to the
development of various targeted therapies that can be based on small molecules or newer molecular techniques.

Ion Channels in Genetic Epilepsy 147

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=82
http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=82


plus (GEFS+). This is a familial syndrome in which
affected individuals have a variety of epilepsy pheno-
types, including febrile seizures, febrile seizures plus,
and febrile seizures associated with absence, myoclonic,
and even focal seizures. Seizures typically continue into
later childhood or adolescence, where they usually
resolve (Scheffer and Berkovic, 1997; Singh et al., 1999).
At the more severe end of the GEFS+ phenotypic

spectrum, patients harboring SCN1A mutations suffer

from Dravet syndrome (Claes et al., 2001; Harkin et al.,
2007; Scheffer et al., 2009; Escayg and Goldin, 2010).
This devastating disease begins with prolonged sei-
zures with fever at about age 6 months, followed by
multiple seizure types, developmental regression, and
gait abnormalities (Scheffer, 2012; McTague et al.,
2016). Dravet syndrome usually occurs as a sporadic
disorder with de novo mutations. Approximately half
the mutations are missense mutations, and half predict

Fig. 3. Cartoon illustrating the known expression patterns of ion channels implicated in genetic epilepsy. Gene groups are represented by different
colors.
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protein truncation with deletions of whole exons, mul-
tiple exons, or, more rarely, the whole gene (Claes et al.,
2001; Ohmori et al., 2002, 2006; Fujiwara et al., 2003;
Nabbout et al., 2003; Kearney et al., 2006; Madia et al.,
2006; Mulley et al., 2006; Suls et al., 2006; Marini et al.,
2011). Although several biophysical changes that sug-
gest increased channel function have been reported for
GEFS+ SCN1Amissensemutations (Spampanato et al.,
2001, 2004a,b; Cossette et al., 2003; Kahlig et al., 2006),
the prevailing view is that loss-of-function is the likely
basis of disease in most cases. Indeed, this is self-
evident in cases with haploinsufficiency due to trunca-
tion variants.
b. Mechanisms and potential targeted therapies.

The NaV1.1 knockout mouse models the loss-of-function
mutations suggested by molecular studies (Yu et al.,
2006). In some genetic backgrounds, heterozygous mice
develop spontaneous seizures and sporadic death,
reflecting the severity of the disease in humans. Re-
cordings from this mouse model indicated that, al-
though Na+ currents were essentially unchanged in
hippocampal excitatory pyramidal neurons, the current
was substantially reduced in inhibitory GABAergic
interneurons. This reduction is responsible for the
collapse of action potentials at higher firing frequencies
and occurs only in inhibitory neurons (Yu et al., 2006).
Similarly, a pronounced action potential attenuation
during continuous firing was seen in fast-spiking
parvalbumin-positive inhibitory interneurons of hetero-
zygous NaV1.1 (R1407X) knock-in mice carrying a
truncating mutation (Ogiwara et al., 2007). The
NaV1.1 (R1648H) mouse model based on a GEFS+

mutation also had impaired GABAergic interneuron
function (Martin et al., 2010; Hedrich et al., 2014).
Furthermore, using a conditional mouse model, it was
possible to show that the selective deletion of NaV1.1 in
GABAergic inhibitory neurons was sufficient to cause a
Dravet-like phenotype (Cheah et al., 2012). Even
though early studies using human iPSC cells from
Dravet patients produced mixed results (Higurashi
et al., 2013; Jiao et al., 2013; Liu et al., 2013a), more
recent work based on differentiating iPSCs into telen-
cephalic excitatory neurons or medial ganglionic
eminence-like inhibitory neurons demonstrates an in-
hibitory neuron deficit (Liu et al., 2016; Sun et al., 2016).
Taken together, these data provide convincing evidence
that an inability of GABAergic interneurons to fire
robustly results in hyperexcitability, leading to seizures
in Dravet syndrome.
The NaV1.1 knockout-based Dravet mouse models

recapitulate many of the pharmacosensitivity profiles
seen in patients. A loss of GABAergic inhibitory neuron
functionmay provide a basis for the seizure aggravation
properties of Na+ channel-blocking agents, such as
lamotrigine, carbamazepine, and phenytoin, often ob-
served in Dravet syndrome (Guerrini et al., 1998). In this
study, the block by these drugs of already compromised

Na+ channel function in GABAergic interneurons would
be expected to further enhance network excitability.
Consistent with this, Na+ channel blockers were not
effective or exacerbated seizures in a NaV1.1 knockout
model of Dravet (Hawkins et al., 2017). The NaV1.1
knockout-based Dravet mouse models also respond well
to stiripentol and clobazam, which are commonly used as
first drugs in this disease (Chiron and Dulac, 2011; Cao
et al., 2012; Oakley et al., 2013; Hawkins et al., 2017).
This provides confidence in the preclinical value of such
mouse models.

Understanding the molecular, cellular, and network
consequences of harboring SCN1A mutations allows
predictive design of targeted therapies. The most
obvious strategy would be to selectively enhance
NaV1.1 function. Peptides with these properties exist
(Osteen et al., 2016). Small molecules (AA43279) with
the desired properties have also been reported
(Frederiksen et al., 2017). Another approach that
restores NaV1.1 activity is to take advantage of the
recently discovered natural regulatory mechanism
based on inhibitory long noncoding RNA. Oligonucleo-
tides designed to block this site enhance NaV1.1 expres-
sion and, at least partially, rescued the seizure
phenotype in a mouse model of Dravet (Hsiao et al.,
2016). Other strategies could include enhancing
GABAergic inhibitory neuron function through second-
ary mechanisms. For example, the selective activation
of KV3.1 channels that underlie fast-spiking in certain
GABAergic inhibitory neurons may help sustain activ-
ity and consequently reduce seizure susceptibility.

A number of strategies that are not disease-target
based have been tried in mouse models of Dravet. For
example, GS967, a drug that preferentially blocks
persistent Na+ current, is very effective in reducing
seizures and death in a NaV1.1 knockout mouse model
(Anderson et al., 2017). These mice could also provide a
robust model on which to determine the mechanism of
action of newer drugs used in the disease. For example,
the amphetamine analog, fenfluramine, has been used
with some success in a few Dravet patients, but the
mechanistic basis of efficacy remains unknown
(Schoonjans et al., 2017). These preclinical rodent
models can also be used to inform already completed
clinical studies. For instance, cannabidiol has recently
been shown to be effective in Dravet syndrome, but its
mechanism is unknown; interpretation is confounded
by the fact that patients were already on several other
antiepileptic drugs (Devinsky et al., 2017). Validated
preclinical models provide a mechanism for testing
drugs in isolation and/or in combination with other
drugs (Hawkins et al., 2017), something that is difficult
in humans. In summary, patients with SCN1A-based
disease are well placed to significantly benefit from
disease-targeted therapeutic strategies.

2. SCN1B. SCN1B encodes the b1-ancillary subunit
of Na+ channels. The b-subunits are multifunctional,
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modulating channel gating, regulating the level of
channel expression, and potentially acting as cell
adhesion molecules (Isom, 2002). These proteins are
found in high abundance in several brain regions and
are enriched at axon initial segments and nodes of
Ranvier of both excitatory and inhibitory neurons
(Wimmer et al., 2015).
a. Clinical syndrome and molecular findings.

Heterozygous mutations in SCN1B that are located
mostly in the immunoglobulin-like extracellular do-
main of the protein have been described in families
with GEFS+ (Wallace et al., 1998; Audenaert et al.,
2003; Scheffer et al., 2007). Patients harboring SCN1B
mutations seem to be at greater risk of developing
temporal lobe epilepsy (Scheffer et al., 2007). Also, there
are now several reports of homozygous SCN1B muta-
tions causing an early infantile epileptic encephalopa-
thy with features that strongly resemble Dravet
syndrome (Patino et al., 2009; Ramadan et al., 2017).
Functional analysis has uniformly ascribed a loss-of-

function to mutations in SCN1B associated with epi-
lepsy (reviewed in Reid et al., 2009; O’Malley and Isom,
2015). However, given that the b1-subunit is not pore-
forming, the consequent impact on neuronal function is
more difficult to interpret. Coexpression with other
pore-forming a-subunits suggests that the loss of mod-
ulatory action of the b1-subunit can increase excitabil-
ity through various biophysical mechanisms, including
slowing of inactivation, increased availability of chan-
nels at hyperpolarized potentials, and reduction in
channel rundown during high-frequency activation
(Wallace et al., 1998; Meadows et al., 2002; Thomas
et al., 2007; Xu et al., 2007). Protein dysfunction is not
limited to altered channel kinetics, with a cell adhesion
assay indicting a disruption in the ability of mutated
b-subunits to mediate protein–protein interactions
(Kruger et al., 2016).
b. Mechanisms and potential targeted therapies.

The SCN1B (C121W) knock-in mouse model is based on
a GEFS+ mutation and recapitulates the febrile seizure
phenotype seen in patients (Wimmer et al., 2010;
Kruger et al., 2016). A temperature-sensitive increase
in axon initial segment excitability was observed,
consistent with the exclusion of the mutant protein
from this neuronal compartment (Wimmer et al., 2010).
It is important to note that a more pronounced febrile
seizure phenotype is observed in SCN1B (C121W) mice
when compared with SCN1B knockout mice. This
suggests that the SCN1B (C121W) epilepsy mutation
has an impact over and above simple haploinsufficiency
(loss of one allele) thatmay be related to the b1 protein’s
adhesion role (Kruger et al., 2016). Themultiple biologic
roles of b1 make it difficult to devise a therapeutic
strategy that would best target heterozygous disease.
Homozygous SCN1B variants are associated with

severe epilepsy phenotypes (Patino et al., 2009;
Ramadanet al., 2017). This is seen inboth thehomozygous

SCN1B knockout (Chen et al., 2004) and the SCN1B
(C121W) mouse models (Reid et al., 2014), with both
having a severe phenotype similar to Dravet syndrome.
The homozygous SCN1B (C121W) mouse shows a
significant reduction in dendritic branching consistent
with a defect in b1-mediated cell–cell adhesion (Chen
et al., 2004; Davis et al., 2004; Reid et al., 2014). The
contraction of the dendritic arbor increases the elec-
trical compactness of the hippocampal neurons, which
results in an increase in the voltage depolarization
caused by excitatory synaptic input, increasing both the
likelihood of action potential firing and consequently
network excitability (Reid et al., 2014). Although it is
not feasible to correct the morphologic deficit in the
SCN1B (C121W) mouse, the addition of the K+ channel
activator, retigabine, is able to reverse the impact on
electrical compactness, providing a potential targeted
therapy. In keeping with this, retigabine is very effec-
tive at reducing febrile seizure susceptibility in the
homozygous SCN1B (C121W) mouse model of Dravet
(Reid et al., 2014).

The severe seizure and comorbid phenotypes ob-
served in both NaV1.1 and homozygous SCN1B
(C121W) knock-in mouse models recapitulate several
features of Dravet syndrome, suggesting that both are
good models of the disease (Yu et al., 2006; Reid et al.,
2014). Comparisons between these models of Dravet
highlight an important concept in genetic epilepsy.
Genetic heterogeneity is a phenomenon in which a
single disease phenotype may be caused by mutations
in different genes. As discussed above, mutations in
SCN1A are the most common genetic cause of Dravet
syndrome in which an inhibitory neuron deficit is the
well-established disease mechanism. In contrast, no
inhibitory neuron deficit is seen in the homozygous
SCN1B (C121W) mouse model, indicating that two very
different cellular mechanisms can underlie the same
epilepsy syndrome. This has clear implications for
targeted therapy, with different strategies possibly
required for the same syndrome depending on the
causative gene.

3. SCN2A. SCN2A encodes the NaV1.2 subunit that
is expressed predominantly in excitatory neurons, par-
ticularly in the proximal axon initial segment, where it is
proposed to play an important role in promoting back
propagation to the soma and dendrites (Westenbroek
et al., 1989; Hu et al., 2009).

a. Clinical syndrome and molecular findings.
For a long time, SCN2Amutations were thought to only
associate with benign familial neonatal–infantile sei-
zures, a mild, self-limited epilepsy syndrome of the first
year of life (Heron et al., 2002; Berkovic et al., 2004;
Herlenius et al., 2007). More recently, SCN2A has
emerged as one of the most prominent epilepsy genes
associated with a wide spectrum of seizure and neuro-
developmental phenotypes. These include early-onset epi-
leptic encephalopathies with reported epilepsy syndromes,
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including Ohtahara syndrome, epilepsy of infancy with
migrating focal seizures, infantile spasms (West syn-
drome), Lennox-Gastaut syndrome, Dravet-like syn-
drome, as well as unclassified epileptic encephalopathies
(Howell et al., 2015; Wolff et al., 2017). Interestingly,
SCN2A has also emerged as one of the most prominent
genes associated with neurodevelopmental disorders, in-
cluding autism, intellectual disability, and schizophrenia,
with most patients carrying truncation mutations not
having recognized seizures (Jiang et al., 2013; Iossifov
et al., 2014; Sanders et al., 2015; Carroll et al., 2016;Wang
et al., 2016; Ben-Shalom et al., 2017). The genotype-
phenotype relationship in epilepsy is more complex with
both loss-of-function and gain-of-function changes ob-
served. A recent retrospective study that reverse-
phenotyped epilepsy patients with SCN2A mutations
began to dissect this conundrum. A phenotypic classifica-
tion based on seizure onset, cognitive outcome, and
movement disorders revealed that patients carrying
gain-of-function mutations show an earlier onset of the
disease, more severe seizure phenotype, and better re-
sponsiveness to Na+ channel blockers than the carriers of
loss-of-function mutations (Ben-Shalom et al., 2017; Wolff
et al., 2017). It is possible that the biophysical measures
indicating both loss-of-function and gain-of-function for
similar phenotypes are not targeting the critical cellular
mechanism of NaV1.2 in these disorders. Clarification of
this has significant implications for diagnosis, treatment
strategies, and mechanistic understanding in diseases
associated with SCN2A mutations.
b. Mechanisms and potential targeted therapies.

The classification of SCN2A-related epilepsy into
either a gain-of-function or a loss-of-function grouping
already has significant implications for targeted ther-
apy. As suggested above, one simple prediction of this
finding is that antiepileptic drugs that act as Na+

channel blockers should have a differential impact on
the two populations. Consistent with this, Wolff et al.
(2017) show that phenytoin is reasonably effective in
ameliorating disease caused by gain-of-function muta-
tions, but less effective, or possibly even exacerbates
seizures in patients with loss-of-function mutations
(Wolff et al., 2017). These findings strongly argue that
biophysical characterization should be part of a com-
plete evaluation of subjects with SCN2A mutations.
With time, a comprehensive database will develop,
meaning that many mutations will be ascribed a
functional class. This will significantly aid diagnosis
and help devise the best treatment strategy for a given
patient.
The finding that both loss and gain of NaV1.2 function

can cause disease adds complexity to the development of
targeted therapy (Ben-Shalom et al., 2017; Wolff et al.,
2017). For gain-of-function SCN2A mutations, it is
reasonable to assume that molecular strategies that
reduce protein expression or protein function may be
effective. However, in the context of loss-of-function

SCN2A mutations, these would be expected to increase
seizure susceptibility, as well as exacerbating neuro-
developmental symptoms. A converse argument for
strategies based on loss-of-function mutations can be
made. This suggests that any approach that directly
targets the specific SCN2A deficit is likely to have
narrow therapeutic windows and will rely heavily on
accurate functional diagnosis.

Mouse models, in which emerging pathologies can be
discovered, may provide alternative targets based on
disease mechanism. The NaV1.2 (Q54) transgenic
mouse expresses a gain-of-function channel mutation
that results in a progressive epilepsy phenotype begin-
ning with spontaneous focal motor seizures that evolve
to include bilateral convulsive seizures with age
(Kearney et al., 2001). Recordings from hippocampal
pyramidal neurons exhibit an enhanced persistent Na+

current (Kearney et al., 2001). The NaV1.2 (A263V)
knock-in mouse line, which is homozygous for a mild
disease gain-of-function mutation, presents with fre-
quent seizures and increased mortality (Schattling
et al., 2016). At the cellular level, current clamp
recordings in slices reveal increased excitability in
hippocampal pyramidal neurons (Schattling et al.,
2016). These mouse lines provide preclinical models of
gain-of-function disease. Comparing the genetically
different models may also reveal points of mechanistic
convergence that could be targeted. For example, if the
increase in persistent Na+ current was evident in both,
this would provide a clear target for which strategies
already exist (see SCN8A).

TheNaV1.2 knockoutmousemodel is of interest in light
of evidence implicating loss-of-function SCN2A muta-
tions in both epilepsy and other neurodevelopmental
disease. Initial observations report that heterozygous
NaV1.2 knockout mice appear normal (Planells-Cases
et al., 2000). This suggests that overt seizures are not part
of the heterozygous phenotype, although a full behavioral
analysis that includes probing neurodevelopmental def-
icits is clearly needed. Homozygous NaV1.2 knockout
mice die within 1–2 days of birth. It will be important to
develop new knock-in mouse models of loss-of-function
disease based on human mutations, which may have
impacts over and above simple haploinsufficiency.

4. SCN8A. SCN8A encodes the Nav1.6 subunit that
is found throughout the adultmammalian brain. Nav1.6
is expressed in the distal compartment of the axon
initial segment and thought to be important for action
potential initiation (Hu et al., 2009). It is also expressed
at nodes of Ranvier and is therefore critical to saltatory
conduction along myelinated axons (Caldwell et al.,
2000; Van Wart et al., 2007; Gasser et al., 2012).

a. Clinical syndrome and molecular findings.
Heterozygous mutations in SCN8A are associated with
an epileptic encephalopathy characterized by develop-
mental delay, seizure onset within the first 18months
of life, and intractable epilepsy. These patients have
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multiple seizure types, including infantile spasms,
generalized tonic-clonic seizures, absences, and focal
seizures (Veeramah et al., 2012; Allen et al., 2013;
Carvill et al., 2013a; Vaher et al., 2014; Blanchard
et al., 2015; Larsen et al., 2015; Takahashi et al.,
2015; Wagnon et al., 2015a; Boerma et al., 2016).
Mirroring the situation with SCN1A and SCN2A,
where there are both mild and severe phenotypes,
very recently there were two reports of familial
benign infantile seizures, without cognitive impair-
ment, and some with paroxysmal dyskinesias with
missense variants in SCN8A (Anand et al., 2016;
Gardella et al., 2016).
The majority of mutations in SCN8A associated with

epileptic enecephalopathy are missense mutations.
Functional analysis has predominantly identified
changes predicting gain-of-function that are likely to
increase neuronal excitability. These include incom-
plete channel inactivation, depolarizing shift in the
voltage dependence of steady-state fast inactivation,
and hyperpolarizing shifts in the voltage dependence of
activation (Veeramah et al., 2012; de Kovel et al., 2014;
Estacion et al., 2014; Blanchard et al., 2015; Wagnon
et al., 2015a; Barker et al., 2016). One common finding
for SCN8A variants tested is an increase in persistent
Na+ current (Estacion et al., 2014), a biophysical
property that has been implicated in several epileptic
states (Stafstrom, 2007).
b. Mechanisms and potential targeted therapies.

The heterozygous NaV1.6 (N1768D/+) knock-in
mouse model recapitulates the seizures, ataxia, and
sudden death seen in patients with the mutation,
providing a robust preclinical model (Wagnon et al.,
2015b; Lopez-Santiago et al., 2017; Sprissler et al.,
2017). Consistent with functional analysis in heterolo-
gous assays, recordings from excitatory and inhibitory
neurons reveal an increase in persistent Na+ current.
CA1 excitatory neurons also have unusual depolarizing
events that are proposed to be due to a change in the
function of the Na+/Ca2+ exchanger caused by excessive
internal Na+ concentrations (Lopez-Santiago et al.,
2017).
Although the human genetic evidence is not strong,

there is good evidence from animal models that loss of
Nav1.6 function can also result in nonconvulsive sei-
zures (Papale et al., 2009). Elegant recent work has
demonstrated reduced function of inhibitory neurons in
the thalamus as the likely basis of increased suscepti-
bility to spike-and-wave discharge seizures (Makinson
et al., 2017). Specifically, a reduction in the ability of
thalamic reticular nucleus GABAergic neurons to sus-
tain tonic firing results in the disruption of intra-
thalamic reticular nucleus inhibition, leading to an
increase in oscillatory behavior in the thalamus. In-
terestingly, a pyramidal neuron-specific loss of Nav1.6
function is protective against convulsive seizures
(Makinson et al., 2017). Reduced NaV1.6 function was

also able to ameliorate seizure severity in a Scn1a
mouse model of Dravet syndrome, suggesting that it
could act as a modifier of disease (Martin et al., 2007).
This study highlights the importance of understanding
the cell-specific impact of epilepsy mutations, allowing
insight into not only pathogenic mechanisms, but also
the potential adverse impact of any therapeutic
intervention.

Mechanistic insights provide a number of potential
targeted therapeutic options. In particular, targeting
the increased persistent Na+ current makes sense.
Significantly, GS967 (PRAX-330), a specific blocker of
persistent Na+ current, extends survival of the NaV1.6
(N1768D/+) mouse (Anderson et al., 2014). A further
possibility is the use of the persistent Na+ current
blocker, riluzole, an approved drug that is used to treat
amyotrophic lateral sclerosis. Riluzole is effective in
blocking the early depolarization events seen in CA1
pyramidal neurons (Lopez-Santiago et al., 2017), but
as yet there is no published evidence of its efficacy in
the NaV1.6 (N1768D/+) mouse. Patel et al. (2016) have
also demonstrated that increased persistent current of
Nav1.6 mutant channels can be preferentially reversed
with cannabidiol. Another strategy could be to block
the Na+/Ca2+ exchanger that is implicated in the
disease mechanism (Lopez-Santiago et al., 2017).
Approved drugs, including amiodarone (Watanabe
and Kimura, 2000), bepridil (Watanabe and Kimura,
2001), aprindine (Watanabe et al., 2002), and cibenzo-
line (Yamakawa et al., 2012), have been found to have
inhibitory actions on the Na+/Ca2+ exchanger, poten-
tially providing repurposing opportunities. Finally,
given the gain-of-function observed with the majority
of SCN8A epilepsy mutations, developing molecular
knockdown strategies may be beneficial. It is worth
noting that these knockdown strategies could poten-
tially result in an increase in susceptibility to non-
convulsive spike-and-wave seizures (Makinson et al.,
2017).

B. Voltage-Gated K+ Channels

K+ channels are the most diverse group of ion
channels, playing important roles in a myriad of cellular
processes (Alexander et al., 2015a; http://www.guide-
topharmacology.org/GRAC/FamilyDisplayForward?fam-
ilyId=81). They can be classified into three structural
families depending on the number of transmembrane
domains in each subunit and the gating mechanisms.
Voltage-gated K+ channels, which are encoded by about
40 genes, comprise four subunits, each with six trans-
membrane domains. Four (S1–S4) form the voltage
sensor, whereas two (S5 and S6) form the pore region.
These channels are critical for the regulation of neuronal
excitability, including defining the resting membrane
potential, modulation of action potential firing, and the
modulation of neurotransmitter release (reviewed in Jan
and Jan, 2012; Maljevic and Lerche, 2013).
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1. KCNA1. KCNA1 encodes the Kv1.1 subunit of the
voltage-gated K+ channel that is widely expressed
throughout the central nervous system, with particu-
larly high levels of expression in the hippocampus
(Wang et al., 1994; Jan and Jan, 2012). The Kv1.1
subunit is predominantly localized in the axon initial
segment, axon preterminal, and the juxtaparanodal
domain adjacent to the nodes of Ranvier, where it helps
to repolarize and shape action potentials (Shieh et al.,
2000; Goldberg et al., 2008; Trimmer, 2015).
a. Clinical syndrome and molecular findings.

Themajority of humanKCNA1mutations are associated
with episodic ataxia type 1 (Browne et al., 1994, 1995;
Zuberi et al., 1999; Eunson et al., 2000; Rajakulendran
et al., 2007). Patients with episodic ataxia type 1 are
ten times more likely to have seizures than the general
population, strongly implicating mutations in this gene
as a cause of epilepsy (Rajakulendran et al., 2007).
Another common feature of KCN1A disease is myoky-
mia, characterized by involuntary twitching of facial and
limb muscles (Browne et al., 1994, 1995). Furthermore,
this gene has been suggested as one of the contributing
genes to suddenunexpecteddeath in epilepsy in a 3-year-
old proband with pharmacoresistant epileptic encepha-
lopathy (Klassen et al., 2014). The majority of functional
studies of KCNA1 mutations revealed loss-of-function
through a variety of mechanisms, including changes to
the voltage threshold and gating properties of KV1.1-
containing K+ channels, reduction in peak K+ current
amplitude, and channel trafficking defects (Rajakulendran
et al., 2007; D’Adamo et al., 2015).
b. Mechanisms and potential targeted therapies.

Kv1.1 knockout mice display similar phenotypes to
human patients, including frequent spontaneous sei-
zures and in some cases sudden unexpected death,
suggesting that it is a good preclinical model of disease
(Smart et al., 1998; Lopantsev et al., 2003;Wenzel et al.,
2007; Glasscock et al., 2010). The heterozygous Kv1.1
(V408A) knock-in mouse model based on a human
mutation linked to episodic ataxia type 1 has stress–
fear responses and induced motor dysfunctions that
recapitulate some disease phenotypes, but no sponta-
neous seizures (Herson et al., 2003).
The cellular basis of morbidity is not clear but may

involve changes in neurotransmitter release. It is well
established that blocking KV1 channels broadens the
action potential, thus increasing the flux of Ca2+ into the
presynaptic terminal and as a consequence increasing
triggered neurotransmitter release (Shu et al., 2006;
Foust et al., 2011). Consistent with this, the over-
expression of a human KV1.1 epilepsy mutation in
cultured rat hippocampal neurons enhances neuro-
transmitter release probability (Heeroma et al., 2009).
KV1.1 is localized in the axon initial segment of fast-
spiking neocortical GABAergic interneurons and has a
critical role in regulating the excitability of these cells
(Goldberg et al., 2008). Functional studies have reported

an increase in GABAergic inhibitory synaptic trans-
mission in both the Kv1.1 knockout and Kv1.1 (V408A)
knock-in mouse models (van Brederode et al., 2001;
Herson et al., 2003). At a neuronal network level,
multielectrode array analysis of hippocampal slices from
Kv1.1 knockout mice indicates an increase in spontane-
ous spike-wave and high-frequency ripples that are
associated with hyperexcitability (Simeone et al., 2013).
This is proposed to be due to increased synaptic release
within the CA3 region, decreasing precision of CA3
principal cell spike timing, which in turn leads to the
altered hippocampal network oscillatory behavior
(Simeone et al., 2013).

There are no reported effective targeted therapies
based on our understanding of cellular mechanisms.
However, the preclinical knockout mouse model has
provided some insights. Interestingly, homozygous
Kv1.1 knockout mice have disrupted sleep, and sei-
zures peak during times of light (Wright et al., 2016).
Almorexant, a dual orexin receptor antagonist used in
sleeping disorders, improves sleep and reduces seizure
severity, suggesting that it may be useful for patients
with mutations in KCNA1 (Roundtree et al., 2016).
Treatment of homozygous Kv1.1 knockout mice with
a ketogenic diet also reduces seizure frequency
(Fenoglio-Simeone et al., 2009) and has been shown
to successfully extend life span (Simeone et al., 2016).
Finally, homozygous Kv1.1 knockout mice with partial
genetic ablation of NaV1.2 exhibit reduced duration of
spontaneous seizures, and a significant improvement
of survival rates argues that blockers of this Na+

channel may have some treatment value (Mishra
et al., 2017).

2. KCNA2. KCNA2 encodes the KV1.2 shaker-type
voltage-gated K+ channel subunit, which is highly
expressed in the central nervous system, predominately
in the axon (Monaghan et al., 2001; Melé et al., 2015).
The KV1.2 channel belongs to the delayed rectifier class
of K+ channels, which enable the repolarization of the
neuronal membrane following an action potential
(Maljevic and Lerche, 2013).

a. Clinical syndrome and molecular findings.
De novo mutations in KCNA2 have been identified in
cases of early infantile epileptic encephalopathy (Pena
and Coimbra, 2015; Syrbe et al., 2015; Allen et al., 2016;
Hundallah et al., 2016). Seizure onset is between 5 and
17 months, with a phenotypic spectrum including
febrile and afebrile, hemiclonic, myoclonic, myoclonic-
atonic, absence, focal dyscognitive, focal, and general-
ized seizures; mild to moderate intellectual disability;
delayed speech development; and severe ataxia (Pena
and Coimbra, 2015; Syrbe et al., 2015). The KCNA2
spectrum also encompasses milder familial epilepsy
(Corbett et al., 2016). De novo KCNA2 mutations in
patients with neurodegenerative hereditary spastic
paraplegia and ataxia have also been reported
(Helbig et al., 2016;Manole et al., 2017). In heterologous
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expression systems, de novo mutations in KCNA2 can
cause both loss- and gain-of-function, all with a domi-
nant effect (Syrbe et al., 2015).
b. Mechanisms and potential targeted therapies.

The idea that loss-of-function can cause disease is
consistent with findings from animal models. Homozy-
gous KV1.2 knockout mice display severe seizures and
die early (Brew et al., 2007). Heterozygous KV1.2
knockout mice do not display spontaneous seizures
but are more sensitive to a proconvulsant challenge
compared with wild-type littermates (Brew et al., 2007).
The Pingu mutant mouse that carries a loss-of-function
mutation in Kv1.2, induced through N-ethyl-N-
nitrosourea mutagenesis, provides another potential
model of disease (Xie et al., 2010). This mouse carries
a mutation in the S6 segment, which is in close
proximity to the loss-of-function mutation found in
patients with epileptic encephalopathy, including
ataxia (Syrbe et al., 2015). Both heterozygous and
homozygous mutant mice display significant gait ab-
normalities (Xie et al., 2010). No mouse models with a
gain-of-function KCNA2 variant have been reported
to date.
The cellular basis of hyperexcitability due to either

loss- or gain-of-function KCNA2 mutations is not clear.
This is in part because Kv1.2 is found in both excitatory
and inhibitory neurons (Wang et al., 1994; Lorincz and
Nusser, 2008). It is also due to the fact that Kv1.2
channels potentially play dual roles in defining cellular
excitability. By rapidly repolarizing neurons, they can
help sustain rapid firing rates. In addition, they play a
critical role in defining membrane potential. Cellular
studies in mouse models highlight this complexity by
showing contrasting changes in firing patterns. Record-
ings from inhibitory cerebellar basket cells of the Pingu
mutant mouse show an increased firing rate (Xie et al.,
2010). In contrast, firing is reduced in KV1.2 knockout
glycinergic neurons (Brew et al., 2007).
Despite the limited understanding of the cellular

basis of disease, therapeutic strategies based on molec-
ular findings are possible. The 4-aminopyridine is an
approved K+ blocker already being trialed in patients
carrying gain-of-function mutations (H. Lerche, per-
sonal communication). The use of molecular knockdown
strategies may also prove to be useful in this patient
cohort. There are currently no obviousmechanism-based
therapeutic strategies for loss-of-function disease. How-
ever, Xie et al. (2010) have tested a nontargeted approach
and report that the carbonic anhydrase inhibitor, acet-
azolamide, is capable of rescuing the motor incoordina-
tion in Pingu mice. This led to a successful clinical
outcome in a single patient with ataxia and myoclonic
epilepsy caused by a KCNA2mutation, which highlights
the potential utility of the preclinical mousemodel (Pena
and Coimbra, 2015).
3. KCNB1. KCNB1 encodes the Kv2.1 pore-forming

and voltage-sensing a-subunit of the delayed-rectifier

K+ channel (Labro and Snyders, 2012; Maljevic and
Lerche, 2013). In the mammalian brain, the Kv2.1
subunit is expressed in both excitatory and inhibitory
neurons, and is localized to the soma, proximal den-
drites, and axon initial segments (Du et al., 1998;
Trimmer, 2015), where it plays a critical role in
regulating excitability (Mohapatra et al., 2007; Speca
et al., 2014). An interesting characteristic of this
channel is that its activity can be modulated by
phosphorylation (Mohapatra et al., 2007; Speca et al.,
2014). Increased neuronal activity leads to dephosphor-
ylation, which results in facilitated channel opening and
consequently suppressed neuronal excitability. Re-
duced neuronal activity leads to hyperphosphorylation
of Kv2.1 that has the opposite effect (Speca et al., 2014).
The widespread expression of Kv2.1 suggests that this
channel may have a major role in homeostatic suppres-
sion of both excitatory and inhibitory neuronal excit-
ability (Mohapatra et al., 2007; Speca et al., 2014).

a. Clinical syndrome and molecular findings.
Several de novo mutations in KCNB1 have been
identified in cases of infantile epileptic encephalopathy
(Torkamani et al., 2014; Saitsu et al., 2015; Thiffault
et al., 2015; Allen et al., 2016). The phenotypic spectrum
includes cognitive and motor dysfunction, severe in-
fantile generalized seizures with high-amplitude spike-
and-wave discharges, and prominent stimulus and
photosensitive epilepsy (Saitsu et al., 2015; Allen
et al., 2016). A range of functional impacts has been
reported for epilepsy-associatedKCNB1mutations. For
example, mutations located within the pore domain
of Kv2.1 were associated with a loss of K+ selectivity.
This could lead to an increased inward conductance of
cations, resulting in neuronal depolarization (Torkamani
et al., 2014; Thiffault et al., 2015). Other biophysical
findings include changes in gating, with mutant channels
showing less voltage dependence and an ability to be
constitutively open (Torkamani et al., 2014). Expression of
a de novo missense mutation in heterologous cells
revealed significant changes in protein expression and
localization (Thiffault et al., 2015).

b. Mechanisms and potential targeted therapies.
There are currently no good rodent models for KCNB1
disease. A homozygous KV2.1 knockout mouse model
exhibits no spontaneous seizures, but does exhibit a
reduced threshold for induced seizures, in addition to
reduced spatial learning and hyperactivity (Speca et al.,
2014). This mimics loss-of-function aspects of disease
and argues that it can cause some level of hyperexcit-
ability. However, given the biophysical changes seen,
including altered ion selectivity and changes in voltage
sensitivity, it is not entirely surprising that simple loss-
of-function does not recapitulate more severe disease.
Saitsu et al. (2015) have investigated the impact of two
different human epilepsy mutations on neuronal excit-
ability in an overexpression culture model. They report
that expression of both mutant channels slows action
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potential firing in excitatory pyramidal neurons by
reducing repolarization. How this translates to in-
creased network excitability in epilepsy remains un-
clear. Knock-in mutant mice based on human KCNB1
mutations are more likely to serve as better preclinical
models. Given the lack of functional insight, it is
difficult to propose potential targeted therapy in
KCNB1 disease.
4. KCNC1. KCNC1 encodes the KV3.1 channel,

which has biophysical properties optimized for high-
frequency action potential firing (Rudy and McBain,
2001). The channel is preferentially expressed in spe-
cific subsets of fast-spiking neurons, including fast-
spiking inhibitory GABAergic interneurons (Rudy and
McBain, 2001). KV3.1 channels are also expressed in
granule cerebellar neurons (Matsukawa et al., 2003).
a. Clinical syndrome and molecular findings. A

recurrent de novo mutation in KCNC1 has been iden-
tified as a major cause of progressive myoclonus epi-
lepsy (Muona et al., 2015; Oliver et al., 2017). This is a
distinctive epilepsy syndrome characterized by myoclo-
nus, generalized tonic-clonic seizures, and progressive
neurologic deterioration. An interesting clinical trait is
the transient clinical improvement that occurs with
fever in some patients (Oliver et al., 2017). In vitro
analysis has revealed two key biophysical changes
resulting from the recurrent KCNC1 mutation: a
dominant-negative impact that significantly reduces
currents, and a concomitant hyperpolarizing shift in
the activation voltage (Muona et al., 2015; Oliver et al.,
2017). A nonsense mutation in KCNC1 has also been
described in one family with intellectual disability, but
no epilepsy (Poirier et al., 2017).
b. Mechanisms and potential targeted therapies.

The cellular mechanism underlying KCNC1-mediated
disease is not understood. One possibility is that the
reduced current levels lead to an inability of fast-
spiking GABAergic interneurons to sustain firing, with
a consequent increase in network excitability caused by
disinhibition (Muona et al., 2015; Oliver et al., 2017).
However, the hyperpolarizing shift in activation would
act to increase channel function, tempering this reduced
current. Interestingly, in vitro analysis demonstrates
that the hyperpolarizing shift is enhanced at febrile
temperatures, and this may explain the clinical im-
provement seen with fever (Oliver et al., 2017). The
homozygous KV3.1 knockoutmouse displays only amild
phenotype that includes impaired coordinated motor
skills, but no spontaneous seizures, suggesting that this
mouse is not a good preclinical model of the disease (Ho
et al., 1997). RE1, a KV3.1 channel opener, provides a
potential therapeutic option. Importantly, RE1 par-
tially restores impaired firing in fast-spiking neurons
from a mouse model of 15q13.3 microdeletion syndrome
(Thelin et al., 2017). However, the utility of this and
other KV3.1 channel agonists is yet to be tested in
KCNC1 disease models.

5. KCNMA1. KCNMA1 encodes the a-subunit of the
large conductance Ca2+-sensitive K+ channel [also
known as BK (for Big K+), Maxi-K, KCa1.1, or Slo1] that
is widely expressed in the central nervous system.
KCNMA1 channels produce a robust hyperpolarizing
potential in response to elevation in intracellular Ca2+

and/or membrane depolarization, which influences the
shape, frequency, and propagation of action potentials
and modulates neurotransmitter release (Contet et al.,
2016).

a. Clinical syndrome and molecular findings. A
mutation in KCNMA1 was first reported in a large
family with autosomal dominant generalized epilepsy
and paroxysmal nonkinesigenic dyskinesia (Du et al.,
2005). Two de novo mutations and an autosomal re-
cessive homozygous frameshift duplication have also
been described (Zhang et al., 2015b). Functional anal-
ysis provided in the first study showed that the mutant
BK channel had a greater macroscopic current, likely
due to an increase in Ca2+ sensitivity. In contrast, the
homozygous frameshift duplication is likely to result in
loss-of-function.

b. Mechanisms and potential targeted therapies.
The activation of BK channels can both increase and
decrease firing activity in neurons depending on con-
text. Du et al. (2005) propose that enhancement of BK
channels leads to increased excitability by allowing
rapid repolarizing action potentials, resulting in in-
creased firing rates. A reduction in BK activity has been
implicated in causing neuronal depolarization at rest
that consequently increases excitability by taking the
neuron closer to the firing potential (Verma-Ahuja
et al., 1995). Therefore, predicting how a givenmutation
impacts excitability is difficult. The KCNMA1 knockout
mouse exhibits intention tremor and abnormal gait
consistent with cerebellar ataxia but is seizure-free and
is therefore not a goodmodel of epilepsy (Sausbier et al.,
2004). There are a range of small organic molecules and
peptides that can both activate and block BK channels
(Bentzen et al., 2014; Yu et al., 2016). These provide a
rich source of pharmacological tools that could be used
to probe efficacy once a good model of disease is
developed.

6. KCNQ2 and KCNQ3. Heteromeric and homo-
meric channels encoded byKCNQ2 (KV7.2) andKCNQ3
(KV7.3) can form homo- and heterotetramers that are
responsible for the M-current, a slow noninactivating
K+ current that regulates membrane potential at the
subthreshold voltage range and constrains repetitive
neuronal firing (Brown and Adams, 1980; Schroeder
et al., 1998; Delmas and Brown, 2005).

a. Clinical syndrome and molecular findings.
Mutations in both KCNQ2 and KCNQ3 cause an
autosomal-dominant self-limited epilepsy known as be-
nign familial neonatal epilepsy (Biervert et al., 1998;
Charlier et al., 1998; Schroeder et al., 1998; Singh et al.,
1998; Lerche et al., 1999; Maljevic and Lerche, 2014).
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More recently, screening of patients with neonatal onset
epileptic encephalopathy revealedmany cases of de novo
mutations in KCNQ2 (Weckhuysen et al., 2012, 2013;
Maljevic and Lerche, 2014), with fewer mutations re-
ported in KCNQ3 (Miceli et al., 2015a,b). Approximately
half of KCNQ2 mutations are predicted to truncate the
protein, with the other half being missense mutations
(Maljevic and Lerche, 2014). Functional analysis
revealed a loss-of-function caused by a different molecu-
lar mechanism (Maljevic and Lerche, 2014). It should be
noted that disease-related gain-of-function mutations
have been more rarely reported for both KCNQ2 and
KCNQ3 (Miceli et al., 2015b; Millichap et al., 2016). A
genotype–phenotype correlation has been suggested,
with mutations in severe epileptic encephalopathies
more likely to have a dominant-negative impact (Orhan
et al., 2014).
b. Mechanisms and potential targeted therapies.

KV7.2 and KV7.3 colocalize at the axon initial segment
and/or nodes of Ranvier (Devaux et al., 2004; Schwarz
et al., 2006), where they play an integral role in defining
excitability, including reducing spiking frequency dur-
ing trains of activity (spike-frequency adaption)
(Schwarz et al., 2006). A reduction in the M-current
will reduce adaptation and is the likely basis of
neuronal hyperexcitability in loss-of-function KCNQ2
and KCNQ3 disease. Support for this idea comes from a
conditional transgenic mouse that has spontaneous
seizures and carries a dominant-negative poremutation
(Peters et al., 2005). CA1 pyramidal neurons have a
smaller medium after-hyperpolarization current, and
as a consequence a reduced ability to adapt action
potential firing (Peters et al., 2005). CA1 pyramidal
neurons from a spontaneous KV7.2 mutant mouse also
have a reduced ability to adapt action potential firing
(Otto et al., 2006). Themechanism of disease for gain-of-
function mutations is less clear. Both KV7.2 and KV7.3
proteins are found in parvalbumin-positive hippocam-
pal interneurons (Lawrence et al., 2006; Nieto-Gonzalez
and Jensen, 2013; Grigorov et al., 2014) with a reduction
in spike adaption in these cells possibly increasing
network excitability. The KV7.2 (A306T) and KV7.3
(G311V) knock-in mouse models are both based on
loss-of-function mutations found in benign familial
neonatal convulsions (Singh et al., 2008; Otto et al.,
2009). In both cases, homozygous mice have spontane-
ous seizures, whereas heterozygous mice have in-
creased seizure susceptibility, suggesting that they
may act as reasonable models of mild disease (Singh
et al., 2008; Otto et al., 2009). No mouse models with
epileptic encephalopathy have been reported to date.
One striking feature of benign familial neonatal

seizures is that, within a few weeks or months of birth,
symptoms spontaneously remit in the vast majority of
patients. The developmental pattern of KV7.2 and KV7.3
protein expression seems unlikely to explain remission,
as the expression of both subunits increases during

maturation (Weber et al., 2006; Maljevic and Lerche,
2014). A plausible hypothesis is that remission coincides
with a switch of the inhibitory neurotransmitter GABA,
from a predominantly excitatory transmitter in early
development to amore traditional inhibitory role in later
development (Rivera et al., 1999).

From a therapeutic perspective, retigabine, a selec-
tive opener of the M-current (Rundfeldt and Netzer,
2000; Gunthorpe et al., 2012), is an obvious drug choice
for loss-of-function KCNQ2- and KCNQ3-mediated dis-
ease. More broadly, retigabine has been used in the
treatment of epileptic encephalopathy patients, with
studies revealing significant improvement in some
patients (Weckhuysen et al., 2013; Millichap et al.,
2016). Unfortunately, the side effects seen in some
patients have led to the removal from the market of
this drug (Tompson et al., 2016). Ongoing efforts to
develop similar but safer M-current activator are re-
quired, and these would be predicted to be particularly
efficacious in epilepsy caused by most mutations in
KCNQ2 and KCNQ3.

7. KCNT1. KCNT1 encodes KNa1.1, a Na+-activated
K+ channel subunit, that has been called Slack (sequence
like a Ca2+-activated K+ channel, also known as KCa4.1 or
Slo2.2).KNa1.1 is expressedwidely, including in the brain,
heart, and kidney. KNa1.1 is thought to be expressed in
the frontal cortex (Bhattacharjee et al., 2002), but more
studies are required to better map its expression pattern.
KNa1.1 channels may modulate the firing properties and
general excitability of many neuronal types, although
their precise function is yet to be fully resolved.

a. Clinical syndrome and molecular findings.
Mutations in KCNT1 have been identified in familial
and sporadic cases with autosomal dominant nocturnal
frontal lobe epilepsy (ADNFLE). It is also the cause of
about 40% of cases with a quite different syndrome,
epilepsy of infancy with migrating focal seizures
(Wilmshurst et al., 2000; Barcia et al., 2012; Heron
et al., 2012; Lim et al., 2016). Other epileptic encepha-
lopathies, such as Ohtahara syndrome, have also been
linked to this gene (Møller et al., 2015). All mutations in
KCNT1 described to date are missense mutations (Lim
et al., 2016). Notably, they all result in significantly
increased K+ current, which argues strongly that this is
the basis of disease. The extent of the gain-of-function
may correlate with seizure phenotype severity (Milligan
et al., 2014). However, the fact that two mutations have
been described causing both nocturnal frontal lobe
epilepsy and epilepsy of infancy with migrating focal
seizures suggests a more complex genotype–phenotype
correlation (Lim et al., 2016). KCNT1-mediated epi-
lepsy has become an example of how quickly targeted
therapy might enter the clinic through the repurposing
of already approved drugs (see below).

b. Mechanisms and potential targeted therapies.
The exact mechanisms underlying disease caused by
mutation in KCNT1 are still unclear. Rapid elevations
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of intracellular Na+ concentrations in neurons are
sensed by Na+-activated K+ channels influencing firing
patterns. For example, rapid repolarization by K+

channels can sustain rapid action potential firing, with
an increase in function potentially enabling excitatory
neurons to fire at aberrantly high rates (Bhattacharjee
and Kaczmarek, 2005). Alternatively, during sustained
activity, slow activation of such channels can lead to the
cessation of firing that could cause inhibitory dysfunc-
tion similar to that observed in SCN1A disease
(Bhattacharjee and Kaczmarek, 2005). Given that the
expression pattern of KNa1.1 is largely unknown, it is
difficult to make a prediction as to the likely mecha-
nism. To date, no mouse model based on gain-of-
function KCNT1 mutations has been reported.
Despite the lack of progress on the underlying cellular

basis of disease, the robust gain-of-function seen in all
KCNT1 disease provides a clear target. It has been
known for some time that the approved antiarrhythmic
drug, quinidine, is able to block rodent KNa1.1 channels
(Santi et al., 2006; Yang et al., 2006). Milligan et al.
(2014) showed that quinidine was able to also block
human KNa1.1 channels, including those expressing
epilepsy mutations. This has motivated clinical studies
in which quinidine was repurposed and trialed in
patients carrying KCNT1 mutations. Several case
reports suggested efficacy, particularly in very young
patients (Bearden et al., 2014; Mikati et al., 2015;
Fukuoka et al., 2017), whereas others have shown
limited or no efficacy (Mikati et al., 2015; Chong et al.,
2016; Fukuoka et al., 2017). Quinidine is not a safe drug,
with severe life-threatening cardiac liability, and a
small clinical trial in adults in ADNFLE failed to show
efficacy, and doses were limited by cardiac toxicity
(Mullen et al., 2017). The antiarrhythmic drug, clofi-
lium, which also blocks KNa1.1 channels, potentially
provides another repurposing opportunity, although it
too has significant cardiac side effects (Castle, 1991).
These drugs do form good lead compounds for the
development of more specific and better tolerated drugs
targeted against KNa1.1. The consistent gain-of-function
seen for all disease mutations in KCNT1 argues that
molecular strategies in which the channel is knocked
down are likely to be effective. Importantly, the homo-
zygous KCNT1 knockout mouse has only minor pheno-
types, suggesting that there may be a large therapeutic
window for such strategies (Bausch et al., 2015).
8. KCTD7. KCTD7 encodes a protein that has

homology to the T1 domain in voltage-gated K+ chan-
nels, a domain critical for tetramerization. The precise
nature and role of this protein are unclear. Given the
small size of KCTD7, it was thought to be unlikely to be
a transmembrane protein and consequently function as
a K+ channel. However, recent evidence argues that the
KCTD7 protein can support a K+ conductance (Moen
et al., 2016). KCTD7 was also reported to have a
modulatory role on the SAT2 neuronal glutamine

transporter (Moen et al., 2016). Modulation of cellular
proliferation, differentiation, apoptosis, and metabo-
lism has also been suggested for this class of protein
(Liu et al., 2013b).

a. Clinical syndrome and molecular findings.
Three members of a family with progressive myoclonic
epilepsy were reported to harbor a homozygous muta-
tion in KCTD7 (Van Bogaert et al., 2007). Progressive
myoclonic epilepsy is a disorder characterized by myo-
clonic and tonic-clonic seizures, ataxia, and cognitive
regression (see KCNC1). Numerous other cases of pro-
gressive myoclonic epilepsy caused by mutations in
KCTD7 have since been reported (Blumkin et al.,
2012; Kousi et al., 2012; Krabichler et al., 2012;
Staropoli et al., 2012; Farhan et al., 2014).

b. Mechanisms and potential targeted therapies.
As KCTD7 channels have no clearly defined role, it is
difficult to come up with a unifying mechanistic basis of
disease. The KCTD7 channel is widely expressed
throughout the brain, with immunohistochemical anal-
ysis identifying expression in cortical neurons, in
granular and pyramidal cell layers of the hippocampus,
and in cerebellar Purkinje cells (Kousi et al., 2012).
KCTD7 mutations have been recently reported to re-
duce the ability of KCTD7 channels to sustain a K+

conductance either through a trafficking or biophysical
deficit (Moen et al., 2016). This suggests the reduction in
function is likely to result in a more depolarized
membrane potential of excitatory neurons, leading to
hyperexcitability. K+ channel openers, such as retiga-
bine, may be expected to be beneficial based on this
mechanism. However, the impact of mutations on the
SAT2 neuronal glutamine transporter or other cellular
roles as a basis of excitability cannot be ruled out. No
good animal models of KCTD7-mediated disease have
been reported to date.

C. Hyperpolarization-Activated Cyclic Nucleotide-
Gated Channel 1

Hyperpolarization-activated cyclic nucleotide-gated
(HCN) channels are encoded by four genes (HCN1–4)
(Alexander et al., 2015a; http://www.guidetopharma-
cology.org/GRAC/FamilyDisplayForward?familyId=71).
HCN channels mediate hyperpolarization-activated
currents in the brain, where they contribute to resting
membrane potential and to the shaping of synaptic
inputs (He et al., 2014). They have also been implicated
in the generation of rhythmic and synchronized neu-
ronal activity. Both human and animal studies have
reported transcriptional changes in HCN expression
that associate with hyperexcitability in epilepsy (Reid
et al., 2012; DiFrancesco and DiFrancesco, 2015).

1. Clinical Syndrome and Molecular Findings.
Considering the strong evidence implicating transcrip-
tional changes in HCN channels and excitability in
animal models, there is surprisingly little evidence of
genetic changes associated with epilepsy. Nava et al.
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(2014) reported de novo HCN1 missense mutations in
patients suffering from early infantile epileptic enceph-
alopathy. These patients had symptoms that resembled
Dravet syndrome with intellectual impairment and
autism. Functional analysis revealed that the majority
of HCN1 mutations caused a gain-of-function through
changes in various biophysical properties, including
depolarized shifts in half activation and changes in
activation and deactivation kinetics (Nava et al., 2014).
Loss of HCN1 channel function was also reported (Nava
et al., 2014). Variations in HCN2 that cause gain-of-
function have been reported to confer susceptibility in
febrile seizure syndromes (Dibbens et al., 2010;
Nakamura et al., 2013), with a further report of a loss-
of-function homozygous HCN2 mutation in a patient
with sporadic GGE (DiFrancesco et al., 2011).
2. Mechanisms and Potential Targeted Therapies.

The reported gain- and loss-of-function caused by
mutations is consistent with the dual action HCN
channels can play in defining neuronal excitability
(Dubé et al., 2007; Dyhrfjeld-Johnsen et al., 2009). In
neurons, HCN channels are active at rest and contrib-
ute a depolarizing current to the resting membrane
potential. The majority of reported HCN1 mutations
caused a gain-of-function. An increase in HCN channel
function will therefore result in a more depolarized
restingmembrane potential, taking the neuron closer to
the firing potential (Chen et al., 2001; Brewster et al.,
2002; Dyhrfjeld-Johnsen et al., 2008). An increase in
neuronal hyperexcitability can also be explained for
loss-of-function HCN1 mutations. HCN1 channels are
expressed robustly on dendrites, where they influence
synaptic integration. A reduction in HCN1 channel
function increases the temporal summation of synaptic
input and facilitates dendritic burst firing (Strauss
et al., 2004; Kole et al., 2007). These properties are
proposed to contribute to network excitability in the
WAG/Rij model of absence epilepsy (Strauss et al.,
2004; Kole et al., 2007). This dual role of HCN channels
in the central nervous system makes it difficult to
develop targeted approaches for genetic epilepsy caused
by HCN1 mutations. Nevertheless, in gain-of-function
disease, blockers of HCN1 may be useful. Ivabradine is
a use-dependent broad-spectrum blocker of HCN chan-
nels approved for use in angina pectoris (Abed et al.,
2016; Giavarini and de Silva, 2016). Ivabradine has a
good safety profile potentially providing a repurposing
opportunity, although it is not clear whether it can cross
the blood brain barrier (Savelieva and Camm, 2006).
Moreover, the hypnotics propofol and ketamine, as well
as the anesthetic isoflurane, are reported to inhibit
HCN1 channels (Cacheaux et al., 2005; Chen et al.,
2005, 2009,a,b; Lyashchenko et al., 2007). Although far
from ideal, these drugs may provide some therapeutic
options in patients harboring gain-of-function HCN1
mutations. The antiepileptic drugs, lamotrigine and
gabapentin, have both been reported to enhance HCN

currents (Poolos et al., 2002; Surges et al., 2003; Strauss
et al., 2004), with patients harboring loss-of-function
mutations potentially benefitingmore from these drugs.

D. Voltage-Gated Calcium Channels

Voltage-gated Ca2+ channels support a number of
critical processes in neurons, from the control of pre-
synaptic transmitter release to the electrogenic proper-
ties of dendrites (Alexander et al., 2015a; http://www.
guidetopharmacology.org/GRAC/FamilyDisplayForward?
familyId=80). Electrophysiological studies indicate that
there are six Ca2+ channel types, as follows: L-, N-, P-,
Q-, R-, and T-type (Catterall, 2000). They can be divided
into high voltage–activated or low voltage–activated
classes based on the membrane potential range over
which the channel is activated. The key determinant of
the character of Ca2+ channel subtypes is their a1 pore-
forming subunit. The molecular diversity of voltage-
gated Ca2+ channels is enhanced by auxiliary subunits,
including the a1-, b-, a2d-, and g-subunits that modulate
trafficking and current properties (Campiglio and
Flucher, 2015). Rodent models that are null for auxillary
subunits, including a2d (ducky) and b4 (lethargic) mice,
display ataxia and spontaneous seizures (Felix, 2002).
However, to date there is little evidence linking voltage-
gatedCa2+ channel auxillary subunits to genetic epilepsy
in humans, and they will not be discussed further.

Much attention has been given to the low-threshold
T-type Ca2+ channels due to their role in supporting
burst-firing. These channels are found within the
thalamocortical loop that is responsible for the aberrant
activity that underlies spike-and-wave discharges
(Huguenard and McCormick, 1992; Destexhe et al.,
1996; Crunelli and Leresche, 2002). Early efforts found
that variants in CACNA1H, which encodes the CaV3.2
subunit, appear enriched in GGE (Chen et al., 2003;
Khosravani et al., 2004; Vitko et al., 2005; Heron et al.,
2007). The discovery of a CACNA1H variant in genetic
absence epilepsy rats from Strasbourg, a rodent model of
genetic generalized epilepsy, further supported the
importance of this gene (Powell et al., 2009). Interest-
ingly, the impact of this mutation on channel function
was splice-form specific, highlighting an important
concept in functional analysis (Powell et al., 2009).
Recent large-scale studies of common and rare variants
in GGE have not revealed a major impact of CACNA1H
variants (Heinzen et al., 2012; Steffens et al., 2012;
Epi4K Consortium and Epilepsy Phenome/Genome
Project, 2017). Moreover, many of the initially reported
variants have emerged in available databases at high
frequencies, suggesting that they are benign polymor-
phisms (Lek et al., 2016; Becker et al., 2017). However,
Glauser et al. (2017) have reported that genetic varia-
tion in CACNA1H and CACNA1 can play a role in the
differential drug response profile in CAE. At present,
the most compelling evidence implicates mutations in
CACNA1A as a cause of epilepsy in humans.
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1. CACNA1A. CACNA1A encodes the a1-subunit of
the Cav2.1 (P/Q-type) calcium channel that is critical for
transmitter release within the central nervous system
(Simms and Zamponi, 2014). The first link ofCACNA1A
to epilepsy was the discovery of a mutation in this gene
in the tottering mouse (Fletcher et al., 1996). Sub-
sequently, mutations in CACNA1A have been reported
to associate with several neurologic conditions, includ-
ing episodic ataxia (Jodice et al., 1997), spinocerebellar
ataxia (Jodice et al., 1997), and familial hemiplegic
migraine (Ducros et al., 1999).
a. Clinical syndrome and molecular findings.

Early evidence supported the idea that loss-of-function
CACNA1A mutations were associated with GGE
(Jouvenceau et al., 2001; Imbrici et al., 2004). Micro-
deletions that encompass CACNA1A and a single
truncating mutation have been associated with severe
epileptic encephalopathies that include infantile
spasms and West syndrome (Auvin et al., 2009; Damaj
et al., 2015; Hino-Fukuyo et al., 2015). More recently, de
novomissensemutations have been convincingly shown
to cause severe epileptic encephalopathies with seizure
types that typically include focal, tonic, and tonic-clonic
seizures; severe intellectual disability; and motor im-
pairment (Epi4K Consortium, 2016; Reinson et al.,
2016). Although the biophysical impacts of all muta-
tions are yet to be reported, the presence of deletions
and truncating mutations argues that a loss-of-channel
function is the primary underlying molecular deficit.
b. Mechanisms and potential targeted therapies.

Homozygous Cacna1a knockout mice have progressive
neurologic deficits that result in ataxia and dystonia,
withmice dyingwithin 4weeks of birth (Jun et al., 1999;
Fletcher et al., 2001). Similar phenotypes are seen in a
range of spontaneous Cacna1a gene mutant mice with
dystonia, ataxia, premature death, and epilepsy all
observed in leaner, tottering, rolling, and rocker mice
(Pietrobon, 2005). These potentially provide good pre-
clinical mouse models of CACNA1A disease. Most
reports investigating cellular mechanism in these
mouse models implicate a reduction in excitatory
synapse transmitter release, consistent with the in-
tegral role of these channels in this process. For
example, reduced evoked postsynaptic currents have
been measured at the Calyx of Held in the homozygous
Cacna1a knockout mouse (Caddick et al., 1999). Simi-
larly, a deficit has been reported at the cerebellar
parallel fiber–Purkinje cell synapses and excitatory
synapses within the ventrobasal nuclei in the leaner
mouse model (Caddick et al., 1999). Recently, analysis
of a conditional Cacna1a knockout mouse, in which
deletion is limited to layer VI, reports that reduced
excitatory neurotransmission at cortico-thalamic syn-
apses is sufficient to generate generalized seizures
(Bomben et al., 2016). How this change resulted in
increased network excitability is not known. This lack of
a robust cellular mechanism makes it difficult to

develop disease-targeted strategies. However, mouse
models may be predictive of pharmacosensitivity. For
example, high-power low-frequency oscillations, which
are thought to be a marker of cortical excitability in the
tottering mouse, were markedly decreased by acetazol-
amide and 4-aminopyridine, drugs that are treatment
options for episodic ataxia 2 (Cramer et al., 2015). Of
note is the finding that spontaneous seizures in the
Cacna1a knockout mouse can be abolished by knocking
out Cacna1g (Song et al., 2004). This suggests that
T-type Ca2+ channel blockers, including ethosuximide,
may be good therapeutic options (Zamponi, 2016).

III. Ligand-Gated Ion Channels in Epilepsy

A. N-Methyl-D-Aspartate Receptors

Glutamate activates three main groups of ionotropic
glutamate receptors named after their selective ago-
nists: N-methyl-D-aspartate-type (NMDA), amino-3-
hydroxy-5-methyl-4-isoxazole propionic acid-type, and
kainate (Smart and Paoletti, 2012; Alexander et al.,
2015b; http://www.guidetopharmacology.org/GRAC/
FamilyDisplayForward?familyId=75). There are seven
NMDA receptor subunits: GluN1, GluN2A–GluN2D,
GluN3A, and GluN3B, each encoded by their respective
gene, GRIN1, GRIN2A–D, and GRIN3A–B (Traynelis
et al., 2010). NMDA receptors assemble as a tetramer
requiring two glycine-binding GluN1 subunits and two
glutamate-binding GluN2 subunits (Traynelis et al.,
2010; Paoletti et al., 2013). GluN3 can incorporate into
NMDA receptors, although its functional role is unclear
(Traynelis et al., 2010). NMDA receptor subunits have a
structure composed of four modular domains: the
extracellular amino-terminal domain also known as
the N-terminal domain; the extracellular ligand-
binding domain; the transmembrane domain with four
hydrophobic regions M1–4, of which M1, M3, and M4
are membrane-spanning helices and M2 forms a
re-entrant loop; and the intracellular carboxyl-
terminal domain (Sobolevsky et al., 2009; Meyerson
et al., 2014).

NMDA receptors are nonselective cation channels
permeable to Na+, K+, and Ca2+ ions. For typical NMDA
receptors,;15% of the total inward current is carried by
the Ca2+ ion, which acts as a critical second messenger
(Burnashev et al., 1995; Schneggenburger, 1996). Due
to their extracellular Mg2+ block, NMDA receptors
require membrane depolarization to allow ion flow
(Mayer and Westbrook, 1987). This strong voltage de-
pendence means that NMDA receptors have the ability
to act as coincidence detectors of pre- and postsynaptic
activity, a feature that may be crucial to associative
synaptic plasticity (Lüscher and Malenka, 2012) and
dendritic electrogenesis (Palmer et al., 2012). The
different GluN2 subunits define the pharmacological
and kinetic properties of NMDA receptors (Traynelis
et al., 2010). For example, NMDA receptors containing
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GluN2A are highly sensitive to Zn2+ block (Paoletti,
2011). In disease studies, mutations in epilepsy patients
have been identified in GRIN1, GRIN2A, GRIN2B, and
GRIN2D.
1. GRIN1. GRIN1 encodes the GluN1 NMDA re-

ceptor subunit (also known as NMDAR1 and NR1),
which is ubiquitously expressed throughout the central
nervous system, in both the adult and developing brain
(Traynelis et al., 2010; Paoletti, 2011).
a. Clinical syndrome and molecular findings.

Both heterozygous and homozygous GRIN1 mutations
have been implicated in a spectrum of disease, including
epileptic encephalopathies and intellectual disability.
De novo heterozygous mutations seem to associate with
profound developmental delay, with a lack of speech as
a dominant feature. Associated phenotypes include
seizures, hyperkinetic movements, involuntary move-
ment, muscular hypotonia, oculogyric crises, and corti-
cal blindness (Allen et al., 2013; Ohba et al., 2015;
Lemke et al., 2016). Heterozygous GRIN1 mutations
have also been identified in autosomal-dominant men-
tal retardation (Hamdan et al., 2011; Redin et al., 2014;
Zhu et al., 2015; Zehavi et al., 2017). Functional anal-
ysis of pathogenic heterozygous de novo GRIN1 muta-
tions suggests they cause a loss-of-function (Lemke
et al., 2016). Different mutations in GRIN1 have been
shown to exhibit dominant-negative interactions of
varying degrees, but with no clear genotype–
phenotype correlation (Lemke et al., 2016). Patients
with homozygous GRIN1 truncation mutations experi-
ence continuous seizure activity and early death
(Lemke et al., 2016).
b. Mechanisms and potential targeted therapies.

Numerous studies use mouse lines that allow the
deletion of Grin1 in a subset of neurons potentially
modeling loss-of-function disease. Specific forebrain
Grin1 knockout results in impaired synaptic plasticity
and memory storage (Nakazawa et al., 2002; Cui et al.,
2004; Hasan et al., 2013). Seizures are not observed in
any of these rodent models. This said, the impaired
synaptic plasticity andmemory deficits recapitulate the
intellectual disability and motor disorders caused by
mutations in GRIN1. The homozygous Grin1 knockout
mice die as neonates, but have no seizures, suggesting
that they also only partially recapitulate the severe
clinical phenotype seen in humans harboring homozy-
gousGRIN1 truncation mutations (Forrest et al., 1994).
Therefore, although genetic mouse models exist, they
have not faithfully recapitulated key features of GRIN1
disease.
Molecular studies report that most mutations in

GRIN1 result in a loss-of-function. It is not immediately
clear how this would lead to increased excitability, and
it is possible that emerging pathologies are to blame.
Correcting the loss-of-function deficit may benefit pa-
tients harboring loss-of-function mutations. However,
activators of NMDA receptors are likely to increase

neuronal activity, arguing that such drugs would have a
narrow therapeutic window. The lack of good preclinical
models and, as a consequence, a lack of understanding
of the mechanisms behind the GRIN1 disease are
currently hampering progress in developing targeted
therapies.

2. GRIN2A. GRIN2A encodes the GluN2A NMDA
receptor subunit. This subunit binds glutamate and is
widely expressed throughout the brain (Akazawa et al.,
1994).

a. Clinical syndrome and molecular findings.
GRIN2A mutations have been associated with epilepsy
and speech disorders (also known as epilepsy–aphasia
spectrum disorders) that present as a broad clinical
spectrum. At the less severe end of the spectrum,
seizure phenotypes include typical or atypical rolandic
epilepsy (also known as childhood epilepsy with cen-
trotemporal spikes) (Lemke et al., 2013; Lesca et al.,
2013). More severe phenotypes include epileptic en-
cephalopathies such as Landau-Kleffner syndrome and
epilepsy with continuous spikes and waves during slow-
wave sleep (Endele et al., 2010; Carvill et al., 2013b;
Lemke et al., 2013; Lesca et al., 2013; Turner et al.,
2015; Gao et al., 2017). Speech impairment is seen in all
individuals with GRIN2A-related disorders and in-
cludes acquired aphasia, auditory agnosia, dysarthria,
speech dyspraxia, impaired intelligibility and language
delay, and regression (Turner et al., 2015; Myers and
Scheffer, 2016). Intellectual disability occurs in up to
70% of individuals (Lemke et al., 2013; Lesca et al.,
2013).

GRIN2Amutations includemissense, truncating, splice,
and copy number variants and can result in both gain- and
loss-of-function. To date, no clear genotype–phenotype
correlation has emerged (Strehlow et al., 2015). Causes
of gain-of-function include reduction of Zn2+-mediated
inhibition (Lemke et al., 2013; Serraz et al., 2016),
increased glutamate binding (Pierson et al., 2014), altered
duration of channel open and closed states (Lesca et al.,
2013), and reduced Mg2+ block (Endele et al., 2010).
Causes of loss-of-function for missense mutations include
reduced agonist potency, decreased total protein levels,
and reduced cell surface expression (Addis et al., 2017).
Mutations predicted to cause truncation and deletion
mutations further support the idea that loss-of-function
can result in disease (Reutlinger et al., 2010; Carvill et al.,
2013b; Lesca et al., 2013).

b. Mechanisms and potential targeted therapies.
How both loss-of-function and gain-of-function muta-
tions in GRIN2A cause disease is not clear. Gain-of-
function mutations in NMDA receptor activation will
increase hyperexcitability in brain networks. Blockers
of NMDA receptors are therefore a potential effective
targeted therapy. Pierson et al. (2014) have shown that
the approved use-dependent NMDA receptor antago-
nist, memantine, can reduce currents back to normal
levels for a gain-of-function mutation. Promisingly,
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memantine has been shown to reduce seizure activity in
a patient with this mutation, although cognitive func-
tion showed no improvement. The mechanism underly-
ing pathology in loss-of-function mutations is less
intuitive and likely to be part of an emerging pathology.
In this case, a targeted therapy would enhance GluN2A-
containing receptor function. Recently, a positive
allosteric modulator of GluN2A-containing receptors
(compound 275) has been reported to rescue loss-of-
function missense mutations providing a preclinical
pharmacologic tool, although this is yet to be tested in
rodent models (Yu et al., 2015; Addis et al., 2017). With
strategies for dealingwith both gain- and loss-of-function
available, epilepsy due to mutations in GRIN2A should
benefit from targeted therapy led by genetic diagnostics
and functional screening.
3. GRIN2B. GRIN2B encodes the NMDA receptor

subunit GluN2B. GluN2B is expressed prenatally, and
its expression decreases with age (Akazawa et al.,
1994), paralleled by an increase in GluN2A expression
(Monyer et al., 1994). This suggests a role for GluN2B in
brain development and circuit formation (Hall et al.,
2007).
a. Clinical syndrome and molecular findings.

Mutations in GRIN2B have been associated with early
infantile epileptic encephalopathies, including West
syndrome with severe developmental delay, Lennox-
Gastaut syndrome, and early-onset seizures with in-
tellectual disability (Allen et al., 2013; Lemke et al.,
2014; Zhang et al., 2015a; Smigiel et al., 2016). The
mutated gene has also been associated with milder
seizure syndromes, including early-onset focal epilepsy
(Lemke et al., 2014). Intellectual disability associated
with GRIN2B mutations can occur independently of
epilepsy (Endele et al., 2010; Hamdan et al., 2014).
Initial functional assessment showed a decrease of

Mg2+ block and higher Ca2+ permeability that corre-
lated with the clinical phenotype severity (Lemke et al.,
2014). These effects were seen for mutations located in
the extracellular glutamate-binding domain region, as
well as those variants affecting the re-entrant pore-
forming loop implicated in Mg2+ block. Early-onset
epileptic encephalopathy has also been associated with
a de novo GRIN2B splice-site mutation, providing
evidence for GRIN2B loss-of-function as a cause of
epileptic encephalopathies. Thus, both gain and loss of
NMDA receptor function can cause similar disease
phenotypes (Smigiel et al., 2016).
b. Mechanisms and potential targeted therapies.

It is yet to be understood how both gain- and loss-of-
GluN2B function leads to a similar disease phenotype.
The use-dependent NMDA receptor blocker, meman-
tine, would be predicted to be useful in gain-of-function
disease. However, despite some efficacy in vitro, mem-
antine had limited impact in patients with gain-of-
function GRIN2B mutations (Platzer et al., 2017). For
loss-of-functionGRIN2Bmutations, a strategy based on

selective antagonism may be beneficial, but has not
been tested. Again, a lack of good preclinical models is
hampering progress with heterozygous GluN2B knock-
out mice not displaying a seizure phenotype. Homozy-
gous Grin2b knockout mice die shortly after birth, but
this is thought to be due to a defect in the suckling
response (Kutsuwada et al., 1996).

4. GRIN2D. GRIN2D encodes the GluN2D NMDA
receptor subunit. GluN2D expression is widespread
during early development in the brain and decreases
during adulthood (Akazawa et al., 1994; Monyer et al.,
1994; von Engelhardt et al., 2015; Perszyk et al., 2016).
In the adult hippocampus, striatum, and cortex,
GluN2D is expressed in interneurons (Monyer et al.,
1994; Standaert et al., 1996; Perszyk et al., 2016).

a. Clinical syndrome and molecular findings. A
recurrent de novo mutation in GRIN2D has been
identified in patients with early infantile epileptic
encephalopathy, with phenotypes that include severe
developmental delay, intellectual disability, and move-
ment disorders (Li et al., 2016). The missense mutation
found in GRIN2D occurs in the M3 transmembrane
domain and results in a gain-of-function through slower
deactivation, increased channel open probability, and
increased glutamate and glycine potency (Li et al.,
2016).

b. Mechanisms and potential targeted therapies.
Transfection of cortical neurons with mutant GluN2D
subunits leads to cell death. This is consistent with
NMDA receptor overactivation and is blocked by the
NMDA receptor blocker, memantine (Li et al., 2016).
A clinical study using oral memantine decreased sei-
zures in patients in which conventional antiepileptic
drugs were unsuccessful (Li et al., 2016). One patient,
who developed status epilepticus, improved with treat-
ment of ketamine and magnesium, both NMDA re-
ceptor blockers (Li et al., 2016).

GluN2D knockout mice partially recapitulate some of
the clinical features of human disease, with a reduction
in spontaneous locomotor activity similar to that seen in
patients (Ikeda et al., 1995). However, no seizures have
been reported in heterozygous or homozygous GluN2D
knockout mice (Ikeda et al., 1995). There is a clear need
for a knock-in mouse model to provide further insights
into the disease mechanism. Given the importance of
this subunit in early development, the engineering of
conditional mouse models will be important in dissect-
ing out developmental versus acute impact of the
mutation in defining seizure susceptibility (Perszyk
et al., 2016).

B. GABAA Receptors

The neurotransmitter GABA drives the majority of
inhibitory signaling in the mature brain. It can activate
two classes of receptors: the ligand-gated ionotropic
GABAA receptors and the G protein–coupled metabo-
tropic GABAB receptors (Alexander et al., 2015b;
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http://www.guidetopharmacology.org/GRAC/Family-
DisplayForward?familyId=72). The GABAA receptors
are members of the Cys-loop receptor family and are
heteropentameric proteins that assemble from various
combinations of proteins encoded by the a, b, g, d, ɛ, u,
and r subunit gene families. These subunit combina-
tions introduce considerable receptor heterogeneity and
vary in their functional properties, response to phar-
macological agents, and brain expression patterns. The
common subunit combinations exist as two a-, two b-,
and one g- or d-subunit (Macdonald and Olsen, 1994;
Fritschy and Panzanelli, 2014).
GABAA-mediated inhibition acts predominately

through GABA release from synaptic vesicles onto
postsynaptically located GABAA receptors. In the ma-
ture central nervous system, this leads to a brief inward
flow of Cl2 and an inhibitory postsynaptic potential.
This transient receptor activation, with high GABA
concentrations acting at the synapse, is termed phasic
inhibition. There is a less spatially and temporally
restricted GABAA-mediated inhibition, in which low
concentrations of GABA can act remotely from the
synapse, termed tonic inhibition (Farrant and Nusser,
2005). Mutations in several genes encoding GABAA

receptor subunits have been implicated in epilepsy.
These includeGABRA1,GABRB3, andGABRG2, which
will be discussed in more detail below. Variants in
GABRB2,GABRD, andGABRA3 have also been report-
ed (Dibbens et al., 2004; Lenzen et al., 2005; Srivastava
et al., 2014; Ishii et al., 2017; Niturad et al., 2017).
1. GABRA1. GABRA1 encodes the GABAA receptor

a1-subunit, which is among the most abundantly
expressed GABAA receptor subunits in the brain
(Pirker et al., 2000). The a1-subunit containing GABAA

receptors form the majority of postsynaptic GABAA

receptors. These receptors mediate phasic inhibition
(Hörtnagl et al., 2013).
a. Clinical syndrome and molecular findings.

GABRA1 mutations have been reported to associate
with GGE (Cossette et al., 2002; Maljevic et al., 2006;
Lachance-Touchette et al., 2011; Johannesen et al.,
2016). Epilepsy syndromes include JME, CAE, and
febrile seizures (Cossette et al., 2002; Maljevic et al.,
2006; Lachance-Touchette et al., 2011; Johannesen
et al., 2016). More recent evidence implicates GABRA1
mutations in early infantile epileptic encephalopathies,
including phenotypes of Dravet, Ohtahara, or West
syndromes (Carvill et al., 2014; Johannesen et al.,
2016; Kodera et al., 2016). Both GGE and the severe
encephalopathies share common clinical features, in-
cluding myoclonic seizures, tonic-clonic seizures, and
photosensitivity (Cossette et al., 2002; Lachance-
Touchette et al., 2011; Johannesen et al., 2016). Func-
tional analysis has unanimously shown loss-of-function,
including reduced surface expression of the assembled
GABAA receptor (Lachance-Touchette et al., 2011). This
can be caused by increased endoplasmic degradation of

the misfolded protein, as noted for the GABRA1
(A322D) variant (Gallagher et al., 2004, 2005). A re-
duction in the sensitivity to GABA has also been
reported (Krampfl et al., 2005; Carvill et al., 2014).
Interestingly, there is a correlation between GABRA1
mutations causing severe epilepsy and a significant loss
of the GABA sensitivity of the receptor (Johannesen
et al., 2016).

b. Mechanisms and potential targeted therapies.
Heterozygous Gabra1 knockout mice have spontaneous
electrographic spike-wave discharges and behavioral
absence-like seizures (Arain et al., 2012), recapitulating
some of the milder GGE phenotypes. The GABRA1
(A322D) knock-in mouse model based on a JME muta-
tion (Cossette et al., 2002) also develops a spike-and-
wave electrographic phenotype (Arain et al., 2015). A
direct comparison with the Gabra1 knockout indicated
that both equally expressed the spike-and-wave dis-
charge phenotype, suggesting that simple haploinsuffi-
ciency was the basis of disease (Arain et al., 2015). Both
mutant mice develop myoclonic seizures later in life,
which may model JME (Arain et al., 2015). These mice
lines therefore are good preclinical models of GGE,
providing an opportunity to devise and test new ther-
apeutic strategies. New models that recapitulate more
severe disease are still required.

Given that GABRA1 mutations impair GABAergic
inhibition, it is not surprising that they increase
neuronal excitability and consequently result in seizure
phenotypes. Drugs that specifically increase GABAA

function are therefore likely to be highly effective in
patients carrying GABRA1 mutations. Consistent with
this, vigabatrin and sodium valproate, both of which
have been shown to maintain high GABA concentra-
tions in the synaptic cleft (Connelly, 1993; Johannessen,
2000), successfully control seizures of patients with
GABRA1 mutations (Kodera et al., 2016). Unfortu-
nately, barbiturates and benzodiazepines that specifi-
cally target phasic GABAA inhibition have significant
side effects (Kwan et al., 2001).

2. GABRB3. GABRB3 encodes the GABAA receptor
b3-subunit. The b3-subunit is expressed at high levels
in the embryonic brain, but its expression decreases to
lower levels in the adult, except in the hippocampus.
Additionally, b3-subunit expression overlaps signifi-
cantly with a2-subunit expression (Hörtnagl et al.,
2013; Fritschy and Panzanelli, 2014).

a. Clinical syndrome and molecular findings.
The Epi4K Consortium and Epilepsy Phenome/Genome
Project were the first to provide strong evidence
of GABRB3 mutations in early infantile epileptic en-
cephalopathy (Allen et al., 2013). Several more
recent studies have confirmed this original finding
(Allen et al., 2013; Hamdan et al., 2014; Zhang et al.,
2015a; Papandreou et al., 2016; Møller et al., 2017). The
affected patients display a broad spectrum of seizure
types, which includes absence, tonic, myoclonic, and
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generalized tonic-clonic seizures. Some of them also
show delayed development, and mild to severe intellec-
tual disabilities (Allen et al., 2013; Papandreou et al.,
2016; Møller et al., 2017). Epilepsy syndromes reported
include Lennox-Gastaut, infantile spasms, West, and
Dravet syndromes (Allen et al., 2013; Møller et al.,
2017). Milder syndromes caused by mutations in
GABRB3 include GEFS+, early-onset absence epilepsy,
epilepsy with myoclonic-atonic seizures, and multifocal
epilepsy (Møller et al., 2017). Mutations in GABRB3,
typically whole-gene deletions, have also been associ-
ated with Angelman syndrome (Tanaka et al., 2012).
Functional analysis uniformly suggests loss-of-func-

tion of GABRB3 variants through a variety of bio-
physical and trafficking deficits (Janve et al., 2016;
Møller et al., 2017). As seen for GABRA1 mutations,
some GABRB3mutations causing more severe epilepsy
show a significant loss of GABA sensitivity, suggesting
a potential genotype–phenotype correlation (Møller
et al., 2017). Similarly, mutations associated with
Lennox-Gastaut syndrome have reduced GABA-
evoked current amplitudes, whereas infantile seizure
variants show changes in current kinetics (Janve et al.,
2016).
b. Mechanisms and potential targeted therapies.

Given the role of GABRB3 in neuronal migration,
synaptogenesis, and overall brain development, muta-
tions in GABRB3 are likely to be linked to abnormal
development of neuronal networks (Noebels et al., 2012;
Tanaka et al., 2012). Therefore, targeting therapies in
early development may be required to rescue seizure
and neurodevelopmental symptoms in these patients.
Homozygous Gabrb3 knockout mice show increased
mortality and seizures and impaired social behavior,
cognition, and motor coordination, whereas heterozy-
gousmice have increased epileptiform EEG activity and
seizure susceptibility (Homanics et al., 1997; DeLorey
et al., 1998, 2008). These features recapitulate some of
the phenotypes seen in GABRB3 disease, including
Angelman syndrome.
3. GABRG2. GABRG2 encodes the g2-subunit

found in themost commonGABAA receptor in the brain,
the a1b2g2 complex.
a. Clinical syndrome and molecular findings.

Mutations in GABRG2 have been associated with
GEFS+, Dravet syndrome, CAE, familial febrile sei-
zures, and epileptic encephalopathy (Baulac et al., 2001;
Wallace et al., 2001; Harkin et al., 2002; Kananura
et al., 2002; Audenaert et al., 2006; Shen et al., 2016;
Hernandez et al., 2017). In vitro studies suggest a range
of mutation-mediated functional deficits, including
changes in benzodiazepine sensitivity, receptor kinet-
ics, assembly, trafficking, and cell surface expression
(Baulac et al., 2001; Bianchi et al., 2002; Bowser et al.,
2002; Sancar and Czajkowski, 2004; Hales et al., 2005;
Krampfl et al., 2005; Kang et al., 2006; Eugène et al.,
2007; Kang and Macdonald, 2016; Hernandez et al.,

2017). In general, these functional analyses suggest
that epilepsy-causing mutations result in a reduction in
GABAA receptor-mediated inhibition, albeit through
varying mechanisms. A consequent reduction in both
phasic and/or tonic inhibition is proposed to underlie
increases in neuronal hyperexcitability, resulting in
seizures.

b. Mechanisms and potential targeted therapies.
The GABRG2 (R43Q) knock-in mouse model was one of
the first syndrome-specific models developed for genetic
epilepsy, and faithfully recapitulates both the absence
epilepsy and febrile seizures seen in the family (Tan
et al., 2007). The GABRG2 (R43Q) mutation mouse
model also recapitulates some of the genetic complexity
seen in patients. Namely, the GABRG2 (R43Q) mice
only display an absence phenotype in a spike-and-wave
prone mouse strain (DBA), whereas the febrile seizure
phenotype is robust in all mouse strains tested. This
observation matches the penetrance seen in humans,
which is low for absence seizures, whereas febrile
seizures segregate as a highly penetrant autosomal
dominant trait (Wallace et al., 2001). This implies that
genetic principles that occur in human populations can
be recapitulated in mouse models, providing the tools to
interrogate complex heritability. The GABRG2 (R43Q)
mouse model also has an expected pharmacosensitivity
profile responding to first-line anti-absence drugs,
ethosuximide and sodium valproate (Tan et al., 2007;
Kim et al., 2015). The GABRG2 (Q390X) knock-in
mouse model recapitulates the more severe seizure
phenotype seen in patients with truncation mutations
(Warner et al., 2016). Thesemodels provide an excellent
opportunity to identify cellular mechanisms, and act as
good preclinical models of disease.

A comparison between GABRG2 knock-in and knock-
out mice reveals that the molecular mechanisms for
different seizure phenotypes may result from distinct
molecular deficits. A spike-and-wave discharge pheno-
type in both the GABRG2 (R43Q) and heterozygous
Gabrg2 knockout mice suggested that haploinsuffi-
ciency was sufficient to cause absence seizures (Reid
et al., 2013; Warner et al., 2016). In contrast, only the
GABRG2 (R43Q) model displayed a thermogenic sei-
zure phenotype, suggesting a mechanism over and
above haploinsufficiency was responsible for febrile
seizures. In the GABRG2 (Q390X) mouse, which models
a more severe epilepsy phenotype, a reduction in the
expression of the GABAA g2-subunit is greater than
that seen in the Gabrg2 knockout, suggesting a
dominant-negative effect of the mutant on the wild-
type subunits (Warner et al., 2016). Whether disease
caused by these distinct molecular mechanisms will
require different targeted therapeutic strategies is yet
to be determined.

The conditional GABRG2 (R43Q) mouse model pro-
vides an opportunity to explore the impact of the
mutation in early development (Chiu et al., 2008). Mice
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harboring the GABRG2 (R43Q) mutation from birth
were reported to be more susceptible to seizures (Chiu
et al., 2008). This argues that mutation-mediated
dysfunction can trigger a cascade of events (e.g.,
morphologic and/or transcriptional changes) that define
long-term network stability. Therefore, targeted treat-
ment early in development may be necessary to fully
rescue patients harboring epilepsy-causing mutations.
In summary, mouse models of GABRG2-associated

epilepsy have provided key insights into disease mech-
anisms. They suggest that phenotype severity may
depend on the extent of dominant-negative impact of
mutations and that different therapeutic strategies
may be required for different seizure phenotypes. These
models also highlight the potential need to treat early in
development. Clearly, activators of the GABAA recep-
tors, such as benzodiazepines, are likely to benefit these
patients, with the early use of this class potentially
overcoming the developmental consequences of harbor-
ing GABRG2 mutations (Haas et al., 2013).

C. Nicotinic Acetylcholine Receptors (CHRNA4,
CHRNB2, and CHRNA2)

Vertebrate nicotinic acetylcholinergic receptors
(nAChRs) are pentameric ligand-gated ion channels
assembled from homologous subunits. CHRNA4 and
CHRNB2 encode the a4- and b2-subunits, respectively,
which combine to form themost abundant nAChR in the
brain (Gotti et al., 1997; Hogg et al., 2003; Alexander
et al., 2015b; http://www.guidetopharmacology.org/
GRAC/FamilyDisplayForward?familyId=76). CHRNA2
encodes the a2-subunit that is found predominantly in
GABAergic interneurons (Son and Winzer-Serhan,
2006). Synaptic responses mediated by nAChRs appear
to mediate only a small fraction of cholinergic trans-
mission (Dani, 2001). Consistent with this, nAChRs are
predominantly located on presynaptic, perisynaptic,
and extrasynaptic sites (Hurst et al., 2013). A major
role of central nAChRs is to modulate the release of
other neurotransmitters, including glutamate, GABA,
dopamine, and noradrenaline (Hurst et al., 2013).
1. Clinical Syndrome and Molecular Findings.

As the first epilepsy gene, CHRNA4 holds an important
place in the history of research into the genetic basis of
epilepsy (Steinlein et al., 1995). It was discovered in an
Australian family that presented with ADNFLE, an
idiopathic epileptic syndrome with focal seizures aris-
ing from the frontal regions that occur predominantly
during stage 2 of sleep (Scheffer et al., 1994). Several
other mutations in CHRNA4, CHRNA2, and CHRNB2
have been found in families with ADNFLE (Steinlein
et al., 1995, 1997; Hirose et al., 1999; De Fusco et al.,
2000; Phillips et al., 2001; Bertrand et al., 2005; Aridon
et al., 2006; Conti et al., 2015; Trivisano et al., 2015). A
range of biophysical consequences of the various iden-
tified mutations has been reported (Sutor and Zolles,
2001; Becchetti et al., 2015). However, a common effect

of mutations in the a4-, b2-, and a2-subunits is an
increase in the sensitivity of the receptor to acetylcho-
line, suggesting a convergent physiologic pathway may
underpin disease (Bertrand et al., 2002, 2005; Aridon
et al., 2006; Hoda et al., 2008).

2. Mechanisms and Potential Targeted Therapies.
CHRNA4 (S252F) and CHRNA4 (+L264) knock-in
mouse models based on human mutations provide
support for a gain-of-function of the nAChR in ADNFLE
(Klaassen et al., 2006). Mutant mice display abnormal
EEG patterns consistent with seizure activity
(Klaassen et al., 2006), as well as a dystonic phenotype
that may form part of the spectrum observed in
ADNFLE (Teper et al., 2007). One striking cellular
phenotype is a more than 20-fold increase in nicotine-
evoked synaptic release exclusively at inhibitory syn-
apses (Klaassen et al., 2006). This implicates increased
inhibitory activity as the basis of hyperexcitability, an
idea supported by the fact that seizures are blocked by
subconvulsive doses of a GABAA receptor antagonist.
Although seemingly paradoxical, it has been proposed
by others that circuit level increases in neocortical
GABAA receptor-mediated current can be epileptogenic
(Mann and Mody, 2008).

A transgenic mousemodel based on a gain-of-function
mutation in CHRNB2 displays a spontaneous epileptic
phenotype with very frequent interictal spikes and
seizures (Manfredi et al., 2009). Mutant b2-subunit
expression is driven under a conditionally controlled
promoter allowing the silencing of transgene expres-
sion. Using this model, it was shown that silencing
during early development was sufficient to prevent the
occurrence of seizures in adulthood (Manfredi et al.,
2009). This is similar to findings in the conditional
GABRG2 (R43Q) mouse model (see above), and high-
lights that mutation-mediated long-lasting alterations
of neuronal networks in the developing brain may
lead to epilepsy. Cellular analysis in this mouse
model is limited to the relatively crude synaptosome
preparation, but does reveal increased sensitivity
of acetylcholinergic-mediated release of dopamine
(O’Neill et al., 2013). A transgenic rat with a gain-of-
functionmutation also displays infrequent spontaneous
epileptic seizures that are described as being similar to
paroxysmal arousals observed in human ADNFLE,
providing another potential preclinical model (Shiba
et al., 2015).

Despite being identified over 20 years ago, no targeted
therapies for mutations in acetylcholinergic receptor
have eventuated. The mainstay of therapy in patients
with nAChR mutations is carbamazepine with approxi-
mately 70% showing remission on low doses. Molecular
and cellular studies argue that drugs that block nAChR
should be effective in disease caused by mutation in
CHRNA4, CHRNB2, and CHRNA2. Several studies
have shown the potential of nAChR antagonists as anti-
seizure drugs (Ghasemi and Hadipour-Niktarash, 2015).
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Mechanistic studies in rodent models suggest that
increased release of GABA may underlie hypersyn-
chrony at the neuronal network scale (Klaassen et al.,
2006). Therefore, low-dose GABAA receptor antagonists
may benefit patients harboring CHRNA4 mutations.
However, this is unlikely to become a treatment strat-
egy given the obvious narrow therapeutic window of
such drugs. Finally, the developmental impact of the
gain-of-function CHRNB2 mutation suggests that it
may be necessary to treat patients early to fully over-
come the epileptogenic process.

IV. Conclusion

The last two decades have begun to unravel the
complexity of the genetic architecture of human epi-
lepsy. It is now clear that hundreds of genes can play a
pathogenic role in the disease. Table 1 summarizes the
ion channels discussed and the proposed molecular and
cellular deficits. Much of the hidden genetics in epilepsy
that has not been apparent from traditional clinical
studies can be explained by de novo mutations and
mosaicism (Thomas and Berkovic, 2014). However,
most common epilepsy syndromes still lack comprehen-
sive genetic models. Electrophysiological testing on
heterologously expressed ion channels remains the
mainstay of functional validation. These are opaque to
a number of important biologic readouts, and newer,
more sophisticated in vitromodels need to be developed,
with assays based on human iPSC-derived neurons
showing some promise. For loss-of-function mutations,
standard knockout rodent models have proven to be
useful. However, in most cases, the development of
syndrome-specific mouse models based on human mu-
tation (Table 1) has become the new expected standard.
It is remarkable how frequently these knock-in mouse
models recapitulate the disease phenotypes seen in
patients and allow cellular and neuronal network func-
tion to be probed. They also act as good preclinical tools.
Using a combination of these tools, we have been
developing a much clearer idea of disease mechanisms
in genetic epilepsy and consequently devising thera-
peutic strategies based on these mechanisms. Some
success has been achieved in the repurposing of drugs
that target the disease processes. Epilepsy is also
well placed to take advantage of newer molecular and
antibody technologies that can selectively target
the affected genes. This includes antisense technol-
ogy to reduce function where mutations cause a
gain-of-function. Also, ingenious application of new
molecular technologies can be used to increase function
in loss-of-function disease. For example, the use of
CRISPR-on could activate genes to increase activity to
restore function (Cheng et al., 2013). Genetic epilepsy is
primed to benefit from the genetic revolution, with the
promise of further powerful and targeted therapeutic
strategies to come.
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