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ARTICLE INFO ABSTRACT

Keywords: Although remote sensing has long been used to aid in the estimation of population, it has usually been in the
Population context of spatial disaggregation of national census data, with the census counts serving both as observational
Se.ttle'ment mapping data for specifying models and as constraints on model outputs. Here we present a framework for estimating
Nigeria ) populations from the bottom up, entirely independently of national census data, a critical need in areas without
pDzhrfz)OgraPhICS recent and reliable census data. To make observations of population density, we replace national census data

with a microcensus, in which we enumerate population for a sample of small areas within the states of Kano and
Kaduna in northern Nigeria. Using supervised texture-based classifiers with very high resolution satellite ima-
gery, we produce a binary map of human settlement at 8-meter resolution across the two states and then a more
refined classification consisting of 7 residential types and 1 non-residential type. Using the residential types and
a model linking them to the population density observations, we produce population estimates across the two
states in a gridded raster format, at approximately 90-meter resolution. We also demonstrate a simulation fra-
mework for capturing uncertainty and presenting estimates as prediction intervals for any region of interest of
any size and composition within the study region. Used in concert with previously published demographic
estimates, our population estimates allowed for predictions of the population under 5 in ten administrative
wards that fit strongly with reference data collected during polio vaccination campaigns.

1. Introduction data are needed for small areas, rather than at national or provincial

levels.

Current and spatially precise population estimates are a critical data
input for efforts in governance, planning, and public health. Without an
accurate count or estimate of the population denominator for an area,
rates describing demographic compositions, births and deaths, disease
incidence, health intervention coverage, technology penetration, ser-
vice accessibility and voting turnout, for instance, are both difficult to
measure and of limited value in future planning. More than one-third of
the indicators established to measure progress on the United Nations
(UN) Sustainable Development Goals (SDGs) (United Nations, 2016) are
defined in terms of total population or a specific demographic sub-
population, despite the fact that the capacity to measure these de-
nominators varies greatly from country to country, especially when

One example of the critical need to ascertain populations for small
areas can be found in the work of the Global Polio Eradication Initiative
(GPEI) in Nigeria, which conducts regular vaccination campaigns with
the aim of vaccinating every child under the age of five. Despite a host
of innovative interventions in recent years (Vaz et al., 2016), the polio
eradication effort in Nigeria has been hampered by areas of insecurity
and a lack of access to all communities and children. The limited access,
along with the inadequacy of available geodemographic data, make the
accurate assessment of vaccination coverage a challenge, compromising
the GPEI's ability to assess the effectiveness and efficacy of the vacci-
nation campaigns (Barau et al., 2014). Even in the ideal case, when
supplies, logistics, and freedom to operate allow access to all children in
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all areas, not knowing where all vaccine-eligible children reside can
lead to children being missed by the campaigns. Similarly, the effec-
tiveness of the routine immunization services provided by local health
districts cannot be measured without an accurate target population
denominator.

For locating and quantifying the number of vaccine-eligible chil-
dren, national census data have limitations. The last national census in
Nigeria occurred in 2006 and provided counts of the total population as
well as the populations by sex and 5-year age groups at the level of the
Local Government Area (LGA). This level of aggregation did not allow
determination of the population of individual settlements within LGAs,
a problem the National Population Commission acknowledged and at-
tributed to the lack of authoritative lists and maps of localities (National
Population Commission, 2009). Now, a decade removed from the
census, ascertaining the population of large or small areas in Nigeria is
even more problematic, as the differential growth rates among LGAs
over that time is not accounted for in tabular projections using constant
growth rates. The case of Nigeria is far from unique, and it is re-
presentative of the challenges faced by governments and NGOs at-
tempting to implement ambitious programs in countries where the
availability of detailed geographic and demographic data is inadequate
(Tatem and Linard, 2011).

Although settings without recent and reliable census data are
common, most research in spatially precise population estimation relies
on national census data for observations of population counts. A
common approach is to estimate a population density for each class of
land cover or land use, whether by regressing the census populations on
the areas of the different land classes (Fisher and Langford, 1995;
Goodchild et al., 1993; Langford et al., 1991; Yuan et al., 1997) or by
compiling an empirical sample for each class by identifying enumera-
tion units that are completely (or mostly) covered by a single class
(Mennis, 2003; Mennis and Hultgren, 2006). The census data can also
be used to constrain estimates so that sums are preserved within the
enumeration units. Whether this constraint is imposed depends on
whether the goal of the estimation is a real interpolation of the census
counts or predictions outside of the context of model training, whether
for different regions or dates (Wu et al., 2005). Further refinements of
census-based methods include incorporation of additional ancillary
data in combination with land cover (Dobson et al., 2000; Stevens et al.,
2015) and the application of alternative spatial denominators (other
than area), such as building volume (Sridharan and Qiu, 2013), street
lengths (Reibel and Bufalino, 2005), or residential address points
(Zandbergen, 2011).

While the land classifications used in some early population esti-
mation work were hand-drawn and guided by “controlled guesswork”
(Wright, 1936), most modern techniques use data derived via remote
sensing. Although a variety of remote sensing data and methods have
been applied to population estimation problems, the increasing avail-
ability of high-resolution optical and radar imagery has contributed to a
gradual trend, recognized at least as early as 2004 (Tatem and Hay,
2004), toward window-based textural classifications, which have been
shown to be well suited for identifying and characterizing the complex
structures of human settlements (Cheriyadat et al., 2010; Martino et al.,
2003; Pesaresi, 2000). (Unless otherwise noted, our discussion of re-
solution throughout the text refers to spatial resolution.) In order to
deploy these principles at regional and global scales, scalable work-
flows have been developed within computational platforms such as the
Global Human Settlement (GHS) framework at the Joint Research
Centre (JRC) of the European Commission (Pesaresi et al., 2013), the
Settlement Mapper Tool (SMT) platform developed at Oak Ridge Na-
tional Laboratory (ORNL) (Cheriyadat et al., 2007; Patlolla et al.,
2012), and the German Aerospace Center (DLR)'s Urban Footprint
Processor (UFP) (Esch et al., 2013). The highest-resolution settlement
layer with global coverage from these platforms is currently DLR's
Global Urban Footprint (GUF), which can be licensed at 12-meter re-
solution for scientific use. Higher resolutions of 10 m (Florczyk et al.,
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2016) and 8 m (Patlolla et al., 2012), respectively, have been demon-
strated with the GHS and SMT platforms, but global coverages do not
exist at these resolutions.

Although most population estimation relies on census data, there
are a handful of relevant examples of census-independent (“bottom-
up”) approaches to mapping residential populations in data-poor en-
vironments. In one approach (Checchi et al., 2013), density estimates
derived from literature and internet sources were used in conjunction
with manual counts of structures from satellite imagery to estimate
counts of displaced persons in eleven sites (a mixture of camps and
urban neighborhoods) in Asia and Africa, and the largest estimation
errors were seen where the density reports were scarce or unreliable,
and/or where individual structures were difficult to discern from ima-
gery. Another study (Hillson et al., 2014) used field surveys in Bo,
Sierra Leone, to gather population observations and manual image in-
terpretation to count buildings and measure their rooftops. An occu-
pancy-based model (people per structure) was found to be more accu-
rate than a rooftop area-based model, but the authors stressed the
importance of practical considerations when choosing a density de-
nominator. A third study (Stewart et al., 2016) estimated daytime and
nighttime population using population density models derived from
literature and internet sources and linked to specific facility types.
Again, building footprints and classifications were identified manually
from satellite and street-level imagery.

In this paper, we tackle the problem of unreliable and outdated
census population counts through a bottom-up population mapping
approach that couples semi-automated high-resolution settlement
mapping with microcensus surveys, which are enumerations for sample
zones within the settlement area, to estimate residential populations
without relying on national census data. Our primary focus is on esti-
mating the total residential population with high spatial precision,
which can then serve as the denominator for estimating subpopulations
when used in concert with known or estimated demographic, socio-
economic, or epidemiological rates (or, conversely, for estimating such
rates in concert with observations of the numerators). We demonstrate
subpopulation estimation by estimating the population of children
under 5, a key demographic group for many health and development
applications, including polio eradication. But this is just one possible
application; the core of our approach has general applicability for any
initiative aiming to accurately locate human settlements and estimate
(sub-) populations in regions where census data are outdated or spa-
tially imprecise.

2. Methods
2.1. Overview

Our approach to estimating residential population counts relies on
three major components: a binary spatial layer of human-inhabited
areas (the settlement layer), a categorical spatial layer of residential
settlement types (the residential type layer), and a model of population
density. The settlement layer and residential type layer are generated
through remote sensing methods, while the population density model is
specified using survey data from a microcensus.

To demonstrate and validate an approach to applying the popula-
tion estimates toward the estimation of a subpopulation, we introduce a
fourth component, a set of previously published demographic estimates
(Alegana et al., 2015). We use the published estimates of the under-5
fraction of the population in conjunction with our population estimates
to derive estimates of under-5 population counts for ten wards in Kano
state, for which independent validation data are available. A graphical
outline of the overall approach is shown in Fig. 1.

From the top-down modeling literature, we borrow the concept of
estimating populations using land classes, but we adapt it to a census-
independent setting. Our approach resembles that of Mennis and
Hultgren (2006), but rather than selecting representative census
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Fig. 1. Overview of the population modeling approach. Rounded blue boxes indicate a major data collection, processing, or modeling component. Squared tan boxes indicate data, either
collected or generated within this workflow. All data items have a spatial component. (For interpretation of the references to color in this figure legend, the reader is referred to the web

version of this article.)

enumeration units as our sample, we instead employ field observations
(microcensus surveys) for density estimation, and rather than use re-
latively coarse land cover data, we map and classify settlements at a
very high resolution using recent imagery. Our use of surveys recalls the
bottom-up approach used by Hillson et al. (2014), but rather than
manually delineating rooftops, we employ automated settlement map-
ping, which more readily enables scaling across large areas. The density
denominator we use in our modeling is area of human settlement, which
is the denominator we can most readily and accurately measure across
the entire study region.

We assess the accuracy of our approach with two analyses. The first
is the validation of our under-5 population estimates using enumera-
tions collected as part of polio vaccination campaigns, and the second is
a comparison of our model with 2006 census counts and constant-
growth estimates derived therefrom, which we enable by repeating our
bottom-up mapping approach with 2006-vintage imagery for the me-
tropolitan area of Kano.

2.2. Study region

The study region consists of the states of Kano and Kaduna, in the
center of northern Nigeria. Three large cities, Kano, Kaduna, and Zaria,
lie within the study region, surrounded by many rural settlements of
various sizes. At the time this work was initiated (early 2014), this
region was still experiencing polio cases and was considered to be the
key battleground in the fight for eradication in Nigeria. The city of Kano
(the capital of Kano state) is the largest in northern Nigeria and serves
as a hub for resources and infrastructure related to a variety of huma-
nitarian efforts in the region, including extensive GIS database devel-
opment to support the polio effort (Barau et al., 2014).

2.3. Settlement mapping

SMT is a machine learning system for extracting settlement areas
from very high-resolution imagery (Cheriyadat et al., 2007; Patlolla
et al.,, 2012). This system classifies 16 X 16-pixel blocks into settled
and non-settled regions using a support vector machine (SVM) classifier
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that is trained on various low-level contextual image features. The
overall system is built on the principle that the spatial arrangements of
structural attributes of the built environment (building edges, building
corners, linear infrastructure) are better indicators of settlement than
are per-pixel spectral measurements. Therefore, features that represent
textural and structural attributes are prioritized. These include Histo-
gram of Oriented Gradients (HOG) (Dalal and Triggs, 2005), Gray Level
Co-occurrence Matrix (GLCM) (Cheriyadat et al., 2007; Haralick et al.,
1973; Martino et al., 2003; Pesaresi et al., 2008), textons (Malik et al.,
2001), and Dense Scale Invariant Feature Transform (Dense SIFT)
(Lowe, 2004). For additional spatial context, the features are calculated
at multiple scales surrounding each pixel block. SMT exploits the gra-
phics processing unit (GPU) cores of high performance machines to
rapidly extract settlements (Patlolla et al., 2012).

We obtained 3-band WorldView 2 imagery for all of Kano state from
DigitalGlobe and 4-band Pléiades 1A and 1B imagery for all of Kaduna
from Airbus. Both sets of imagery were pan-sharpened at 0.5 m spatial
resolution. In areas of overlapping imagery, the best imagery was se-
lected based on date and cloud cover; we selected 37 image strips in
Kano and 97 strips in Kaduna. For 90.3% of the area of the two states,
the imagery dates were from 2013 (68.7%) or 2014 (21.7%). The re-
maining 9.7% of the area required imagery from 2010 to 2012 due to
cloud cover in the more recent imagery.

For each image strip, analysts with college and/or graduate-level
training in GIS and remote sensing performed heads-up digitizing of
representative settled and non-settled areas within the SMT interface to
train an SVM model. After training, the model was applied to the re-
mainder of the image strip. Each model output was reviewed and ap-
proved by a senior analyst, and the raster output, at a resolution of 8 m
(16 times the 0.5m image resolution), was converted to a polygon
vector format, which was then given a more detailed review by a third
analyst, who edited polygons as needed to correct obvious commission
and omission errors. The most common commission errors occur at
locations where linear features and sharp gradients in reflectance are
confused for buildings, such as along sandy riverbanks and rural
highways. Omission errors usually occur in very small settlements,
often in settlements with round huts with thatched rooftops, which do
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not exhibit the reflectance gradients or the straight lines typical of most
other buildings in the region. Finally, a senior analyst reviewed and
approved each edited output.

The edited settlement polygons were converted back to raster
format at a resolution of 0.25 arc-seconds (= 7.7 m at the equator),
which approximates the 8-m resolution of the original results but is
optimal for aggregating neatly to the target resolution of the gridded
population layer, which is 3 arc-seconds (= 93 m). The 3 arc-second
resolution in turn aggregates neatly to the 30 arc-second (= 930 m)
resolution of several well-known global and regional gridded popula-
tion datasets, such as LandScan (Dobson et al., 2000), WorldPop
(Tatem, 2017), GRUMP (Center for International Earth Science
Information Network et al., 2011), and GPW (Doxsey-Whitfield et al.,
2015).

2.4. Block classification

The classification of settlement types was accomplished through a
combination of supervised image segmentation and manual correction
of errors and identification of non-residential land uses, all within the
framework of a topological set of polygon “blocks”. The blocks were
constructed from a selection of line features from OpenStreetMap data,
including roads and hydrographic features. The blocks provide a useful
preliminary structure, because boundaries between different residential
types (and between residential and non-residential land uses) often
follow natural or infrastructural features (e.g., streams or roads).
During manual review and editing, some blocks were subdivided as
needed when multiple settlement types can be seen within a single
block. Subdivision boundaries were drawn to follow visible linear fea-
tures whenever possible.

Each block (or sub-block, if split) was assigned a letter code corre-
sponding to its use type. These codes include six urban residential types
(A-F), one rural residential type (M), and a non-residential type (Z). As
in all supervised classification procedures, the target typology had to be
developed a priori, which we accomplished by inspecting imagery
across the study region and identifying visually distinct settlement
patterns. Representative images of the urban residential types are
shown in Fig. 3. Supervised factorization-based texture segmentation
(FSEG) (Yuan et al., 2015) was used to develop an initial layer of set-
tlement types for each large urban settlement in each state, and this
process was followed by a post-processing and review workflow.

The result of the supervised segmentation process was a per-pixel
classification, which was then summarized at the block level, in such a
way that the fraction of the settlement in each block corresponding to
each settlement type was recorded. For example, a block may be
summarized with the attributes, (A = 0.92, D = 0.03, F = 0.05). Each
block was automatically assigned an initial type corresponding to the
largest portion (which is A in this hypothetical example). Manual re-
view and editing of the results was then undertaken, which prioritized
the most heterogeneous blocks, as those blocks are most likely to be
misclassified and/or require subdividing into sub-blocks. Blocks above
a threshold of 90% homogenous were typically left alone unless an
analyst could clearly identify a misclassification error.

During manual review of the segmentation results, additional an-
cillary data was used to identify non-residential land uses, especially
where they only occupy a portion of a block. Sub-blocks of the non-
residential type Z were carved from the blocks to represent these non-
residential uses. The ancillary information used to guide this process
included spatial point and polygon data representing schools, medical
facilities, mosques, markets, etc., from the Vaccination Tracking System
(VTS) database (Barau et al., 2014), the Nigeria MDG Information
System (NMIS) (Center for Sustainable Development, 2014), and vo-
lunteered geographic information (VGI) sources: OpenStreetMap,
Google Map Maker, and Wikimapia.
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2.5. Microcensus surveys

Microcensus surveys were conducted by a local NGO (eHealth
Africa) in Kano and Kaduna to enumerate residents in representative
locations, in order to inform the population density model. Each mi-
crocensus location was defined by a sample point and a corresponding
microcensus enumeration zone (MEZ), which was manually delineated
around each sample point. The zones were drawn to follow roads and
other logical features, so that the boundaries would be clear to the
surveyors. Each MEZ covered approximately 25-50 residences. Every
building in each MEZ was visited and a population count for each
building (or tightly linked complex of buildings) was recorded in a
database. The total cost of data collection, including surveyors' time,
transportation, and data cleaning, was approximately $600 per MEZ. A
population density was calculated for each MEZ by dividing the sum of
the per-building counts by the area of the spatial intersection of the
MEZ and the settlement layer.

Two datasets of population density observations were collected as
part of the microcensus. Dataset 1 (DS1) consists of population densities
observed in the first round of the microcensus, in which a random
sample of 100 locations was taken within the entire settlement layer,
without any stratification across the different residential types (though
the locations were stratified across the two states—50 in Kano and 50 in
Kaduna). Because there was no stratification by type, DS1 consists
mostly of rural density observations, since the rural type (M) is by far
the most prevalent type in terms of area. In order to increase sample
sizes for urban types, a second dataset (DS2) was collected in a second
round of the microcensus, in which sample locations were stratified
across the portions of the settlement layer corresponding to the dif-
ferent urban residential types. Twelve locations were selected from
each type (six in each state). Sampled locations were discarded if they
fell within 500 m of a location already in the sample, which eliminated
the possibility of overlapping MEZ polygons. This condition sub-
stantially reduced the sample size of type E, which covers so little area
as to make it impractical to identify 12 locations that are all at least
500 m from every other point. One sample location fell within a block
originally identified as type F, but which was later (after sampling was
complete) found to have been misclassified. The block was corrected to
type D, resulting in thirteen sample locations for type D and eleven
sample locations for type F. The two datasets are summarized in
Table 1.

2.6. Population density modeling

Residential population density, in terms of residents per unit of
settlement area, can be understood as the multiplicative product of
several variables, including the spacing of buildings, building height,
and the number of residents per floor area within households. These
multiplicative effects result in a positively skewed, log-normal dis-
tribution of densities (Limpert et al., 2001). The distributions of values
by type (across both DS1 and DS2) are shown as a boxplot in Fig. 4.

In this and subsequent sections, a random variable will be denoted
with a capital letter (e.g., D) and, if needed, a categorical or object
indicator as a subscript (e.g., D,), while a vector of observed realizations
of a random variable will be denoted with a corresponding lowercase
letter, possibly subscripted with an index (e.g., d;), a categorical in-
dicator (e.g., dp, or both (e.g., d;;). A vector of simulated realizations of
a random variable will be denoted with a lowercase letter with a prime
symbol (e.g., d).

The distinct sampling approaches (non-stratified and stratified) re-
presented by DS1 and DS2 allowed for two modeling approaches to be
carried out and compared. The first, Model 1, represents a hypothetical
scenario in which settlement mapping results are available, but a re-
sidential classification is not. Therefore, all density observations from
DS1, regardless of type, were pooled together and described by a single
log-normally distributed random variable D:
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Table 1
Summary of microcensus datasets. Population densities are in persons per hectare.
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Overall Residential type

A B C D E F M
DS1
Number of sample locations 100 1 15 3 6 0 3 72
Mean of sample areas (ha) 3.16 0.82 2.74 2.89 4.50 - 8.53 2.95
Total area sampled (ha) 315.74 0.82 41.13 8.67 26.98 0.00 25.59 212.54
Mean population density 245.2 843.0 281.7 249.3 136.0 - 58.0 246.0
DS2
Number of sample locations 67 12 12 12 13 7 11 0
Mean of sample areas (ha) 2.55 1.38 1.64 2.42 3.08 1.22 5.18 -
Total area sampled (ha) 170.73 16.51 19.69 29.00 40.09 8.51 56.94 0.00
Mean population density 321.6 617.3 405.3 307.5 159.7 401.3 63.7 -
Combined (DS1 + DS2)
Number of sample locations 167 13 27 15 19 7 14 72
Mean of sample areas (ha) 2.91 1.33 2.25 2.51 3.53 1.22 5.89 2.95
Total area sampled (ha) 486.47 17.33 60.82 37.67 67.07 8.51 82.53 212.54
Mean population density 275.8 634.6 336.6 295.9 152.2 401.3 62.5 246.0

D~Lognormal (u, c?) @

where p and o are the mean and standard deviation of the natural
logarithm of D and were estimated from the DS1 density observations.

We do not propose Model 1 as the most appropriate model given the
data we have collected, but instead specify it only as a control with
which to contrast our proposed model, Model 2, which does take the
residential types into account. Fig. 4 shows that the population den-
sities are different across types, in terms of means but also in terms of
variances, and all types exhibit clear positive skewness, except type E.
Because of the clear differences among the means and variances, Model
2 consists of 8 sub-models—one for each residential type, and one for
the non-residential type. For each residential type, the combined den-
sity observations from DS1 and DS2 are described by a type-specific log-
normal distribution, while the densities of non-residential locations
(type Z) are fixed at zero:

D,~Lognormal (u,,c%),
D, =0,

if t e {A,B,C,D,E,F,M}

ift=2 @

2.7. Gridded population estimates

To make point estimates of population counts, a raster layer of
population density was produced by joining the relevant mean estimate
from Model 2 to each classified block polygon and converting the
polygons to a raster format. Population count estimates were first
computed at a resolution of 0.25 arc-second (= 7.7 m), and the results
were then aggregated to the final 3-arc-second (= 93 m) resolution. The
population count for each 0.25-arc-second cell is the product of three
input rasters: the density raster, representing the modeled population
density estimate in residents per hectare (residents per 10,000 m?) for
every location; the settlement raster, representing presence or absence
of settlement (1 or 0); and an area raster, representing the area of each
cell, in hectares. The estimated population count in each 3 arc-second
cell is the sum (rounded to yield an integer) of the population estimates
of the cell's 144 constituent 0.25 arc-second cells.

2.8. Population prediction intervals

To quantify uncertainty for zonal analyses (e.g., how many residents
are in a particular city ward), we can specify a prediction interval of the
form, [lower,upper], for any region of interest (ROI), such that:

1-p
2 3)

Prob(Cgor < lower) = Prob(Cgror > upper) =
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where Cro; represents the residential population count in the region of
interest and the confidence level is given by p. Alternatively, this in-
terval can be divided by the area of the ROI to yield an interval in
density terms at the same confidence level.

To generate an interval for an ROI, we employ a Monte Carlo si-
mulation method. We begin by defining a reference scale for each type.
For each residential type, we have a set of observed populations mea-
sured over roughly equal settlement areas, and the mean of the mea-
surement areas serves as that type's reference area, ¢ (in hectares). We
calculate a new reference population density for each observation by
multiplying the density by ¢, in order to express each density in terms of
the reference area. The distribution of these reference densities has the
same shape as the corresponding distribution from Eq. (2), but the
parameters are on a different scale due to the change in the area de-
nominator. Therefore, we have

Dyy~Lognormal (t,4,0°4) 4)
where D4 is a random variable describing the distribution of population
densities of type t for areas of size ¢, in terms of residents per §.

Zonal queries of the data may occur for any aggregate target area,
areagor€{kd |k = 1}. Determining prediction intervals requires evalu-
ating the quantiles of the distribution of the random variable, Cgroyp,
which describes the possible residential population counts for regions
having the size and type-composition of the ROI. We treat the problem
as one of summing independent and identically distributed (i.i.d.)
random variables, and we approximate the solution via simulation. In
the simplest case of an ROI of only one type, which is k times the size of
¢ (and k is an integer), this involves summing k instances of Dy, to
approximate the k-fold self-convolution of the distribution of Dy.
Specifically, we make k random draws from the D distribution to ar-
rive at one realization of the total population in the ROL (To include
parameter uncertainty, D, is randomly altered for each draw, per the
standard errors of its parameter estimates.) We generate 10,000 such
realizations, resulting in a simulated vector, cgo;, which represents
population counts for 10,000 hypothetical zones of the same size (k) as
the ROIL. We can then evaluate the quantiles at [0.05, 0.95] of cgor to
yield a prediction interval for p = 0.9. (If population density is desired,
dividing each value in cgo; by k¢ gives a vector dgro; of simulated
densities.)

In practice, ROIs will often contain more than one residential type,
and k will almost never be an integer. Therefore, simulations of actual
ROIs must often include draws from multiple distributions and must
handle the non-integer component of k. For example, the ward of
Rijiyar Lemo (in Fagge LGA, Kano state, Nigeria) consists of portions of
the residential types B, D, E, and M, each of which has a different



E.M. Weber et al.

Table 2
Area by type in Rijiyar Lemo ward, Fagge LGA, Kano state, Nigeria.

Type Area (ha) ¢ (ha) Area factor (k)
B 37.826 2.25 16.81

D 2.899 3.53 0.82

E 40.890 1.22 33.52

M 1.0745 2.95 0.36

reference distribution and a different non-integer k. The area of the
ward covered by each type, along with the type's reference area, ¢,, and
the applicable area factor, k, are shown in Table 2.

In a multi-type case, each simulation begins with one realization of
each type's portion of the ROI. For example, for type B in Rijiyar Lemo,
with an area factor of 16.81, seventeen draws are simulated (the se-
venteenth draw represents an area smaller than ¢ and is therefore
scaled by multiplying by 0.81). One realization of the entire ward is the
sum of the realizations of the types. Again, we repeat this 10,000 times
to generate a simulated vector of possible population counts, the
quantiles of which can be used to define prediction intervals for the true
population of the ward.

2.9. Estimating and validating sub-populations

One of the primary uses of estimates of the total population is as a
denominator for estimates of subpopulations, about which we may
know rates (e.g., percent female, percent impoverished) but not totals.
Here we demonstrate one such application, the estimation of the po-
pulation under 5 years of age, which is of interest for a variety of public
health applications, including polio eradication. Rates come from a set
of previously published demographic estimates (Alegana et al., 2015),
which were generated by a model that used freely available household
survey data. The estimates are gridded and have a resolution of 1 km?.

We generated estimates of the under-5 population in ten wards in
Kano. These wards were chosen due to the availability of an in-
dependent dataset that could be used for validation. The validation
dataset is the result of a pilot program to implement an electronic tally
(eTally) to supplement the paper tallies collected as part of the oral
polio vaccination (OPV) campaigns in northern Nigeria. The campaigns
are designed to ensure all children under five years of age are vacci-
nated, and are planned and implemented at the ward level, with teams
visiting every household over a four-day period. Traditionally, the
teams manually record on a paper tally sheet the number of children
under 5 years of age residing at each house and the number of children
vaccinated. At the end of the campaign, the “administrative coverage”
is calculated (the fraction of the target population vaccinated) to assess
quality and effectiveness of the campaigns. Since July of 2015, the
eTally has been conducted in selected areas to provide more timely and
accurate data for vaccination tracking. An additional supervisor ac-
companies the vaccination teams and collects the tally sheet data using
a custom application on a GPS-enabled Android phone. The eTally data
are uploaded each day to the VTS website (Barau et al., 2014). The
eTally was expanded in late 2015 and early 2016, ultimately covering
162 Wards in 32 states.

To check the reliability of the eTally data, the activity was repeated
in two Wards in Kano, Dugurawa and Rijiyar Lemo, in successive
campaigns (July-Sep). The July campaign data were collected by lo-
cally-hired supervisors, while the data for September were collected by
specially-trained staff of eHealth Africa, who also managed the training
and logistics for the project. The results (total number of children under
5years of age) for the August-September campaigns were nearly
identical: 1030 vs 1015 children, respectively, in Dugurawa, and 6309
vs 6376 in Rijiyar Lemo.

The eTally pilot included ten wards in our study region, all in Kano
state, which were visited between July 2015 and January 2016. Using
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the VTS database's boundaries as a starting point, we adjusted the
boundaries for these ten wards, so that the boundaries matched as
closely as possible the extent of the georeferenced eTally points, to
prevent boundary discrepancies from influencing the validation results.
The area covered by each residential type in each eTally ward in Kano
was recorded in a portion table of the format shown in Table 2, so that
the ward population could be simulated. The estimated under-5 popu-
lation is the product of the simulated total population of the ward and
the estimated under-5 fraction nearest the ward's centroid.

2.10. Bottom-up population mapping vs. census-based growth estimates

A major motivation for our work was the prevalence of postcensal
population estimates that are made by applying constant growth rates
to extrapolate outdated census counts, which can be problematic when
true growth rates vary from place to place and from year to year,
especially as the census date recedes further into the past. Without a
more current full census, there is no way to know with certainty how
large the errors are in such estimates, but our bottom-up approach, if
conducted for two separate points in time, offers an alternative method
for estimating growth rates. To demonstrate, we developed an historical
settlement layer for the metropolitan area of Kano, which we used in
conjunction with the population density model (Model 2) to make po-
pulation estimates that approximately align temporally with the census.
The historical settlement layer was based on Quickbird imagery from
late 2005/early 2006, while the recent imagery for the Kano me-
tropolitan area was collected in early 2014. Generating an output for
2006 to supplement our more current output allowed for comparison
between our model and the census counts for 2006, as well as a com-
parison between the postcensal growth rates suggested by our methods
and the constant growth rates commonly used. The metropolitan area
consists of eight LGAs: Dala, Fagge, Gwale, Kano Municipal, Kumbotso,
Nassarawa, Tarauni, and Ungogo.

3. Results
3.1. Settlement mapping

We used SMT to produce a settlement layer at approximately 7.5 m
resolution, representing developed and undeveloped land across Kano
and Kaduna. Table 3 shows that nearly all the land area of these states is
undeveloped. Less than 3% of the land area of Kano and < 1% of the
land area of Kaduna are covered by the settlement layer. The settlement
layer is thus the single most important input for locating where the
population resides in these states (by excluding the 98.54% of the land
area where people do not live). The residential classifications and the
associated population model have only to explain the variation in po-
pulation density within the 1.46% of the area that is populated.

3.2. Population estimates

We produced gridded estimates of population counts across all of
Kano and Kaduna, and generated prediction intervals for selected ROIs,
including every ward in the two states, as well as the entire state of
Kano. Because we implemented two distinct models of the residential
population in Kano and Kaduna (one that leveraged the information in
the residential classification (Model 2) and one that did not (Model 1)),

Table 3
Total area and settlement layer area by state.

State Total area (km?) Settlement area (km?) % settlement
Kaduna 46,053 423.3 0.92%
Kano 20,131 541.7 2.69%
Total 66,184 965.0 1.46%




E.M. Weber et al.

we were able to assess the impact that the residential classification had
on our ability to explain variations in population density. At high levels
of aggregation (specifically the state level), we found that Models 1 and
2 provide similar point estimates, but that Model 2 provides narrower
prediction intervals, owing to the explanatory power of the residential
type classification. In the case of the state of Kano, we estimated (per
Model 2) a total population of 13,688,669 in 2013 (the median year
represented by the input satellite imagery). While the mean predictions
between the two models were similar, Model 2's 90% prediction in-
terval for the state was [12,517,841, 14,922,332], while the equivalent
interval from Model 1 was [12,091,788, 15,041,447]. In other words,
incorporating the residential types resulted in an 18% reduction (about
545,000) in the width of the prediction interval between the two
models.

If we look at a finer spatial scale, specifically the ward level, pat-
terns in uncertainty across space become clearer. Fig. 5 shows predic-
tion interval widths for individual wards in the city centers of both
Kano and Kaduna, alongside the settlement type layer for each city.
Here, the effect of within-type variation becomes clear. Wards domi-
nated by types with low within-type variation, such as D and F, allow
for narrower prediction intervals than do wards with higher within-type
variation, such as A and B. (Refer to Fig. 4 for distributions by type.)

3.3. Estimating and validating sub-populations

The validation of our under-5 estimates against the eTally data is
summarized in Fig. 6, which shows that our estimates of the under-5
population are well correlated with the eTally counts, but that the es-
timates tend to be modestly lower than the eTally counts. Although the
estimates fit very well with the reference counts (predictive R?=10.98),
a zero-intercept linear regression suggests a slight underestimation bias,
whereby a function of 0.942 times the reference data exhibits a stronger
fit with the estimates (R? > 0.99).

3.4. Bottom-up population mapping vs. census-based growth estimates

Our settlement mapping results showed that the total settlement
area in the Kano metropolitan area increased by > 40% between 2006
and 2014 (the entire metropolitan area was covered by 2014 imagery).
A comparison of the settlement layers is shown in Fig. 7, and the built-
up portion of total metro area between 1986 and 2014 is shown in
Table 4. The 2006 and 2014 values are from our analysis, while the
others are drawn from a previous study (Ayila et al., 2014). Clearly,
there was a substantial increase in the rate of development in Kano after
2006. The imputed compound annual growth rate of built-up area be-
tween 2000 and 2006 was 2.02%, whereas between 2006 and 2014, it
was 4.37% per year. This acceleration can only be captured in a model
that directly accounts for the additional settlement area. The accel-
eration would be missed in projections based merely on tabular pro-
jections of past trends, such as the 2015 projection shown in Table 4.
(Ayila et al., 2014 appear to have made a mistake in the projection to
2015 by only simulating 5 years of growth between 2005 and 2015.
Simulating the full 10 years would result in a projection of about 23.7%
for 2015, still substantially lower than the 27.81% we observed for
2014.)

Table 4
Built-up (settlement) portion of Kano metropolitan area between 1986 and 2015.

Year Pct. built-up Source

1986 13.85% Ayila et al. (2014)

2000 17.38% Ayila et al. (2014)

2005 19.34% Ayila et al. (2014)

2006 19.61% This analysis

2014 27.81% This analysis

2015 21.70% Ayila et al. (2014); Projected
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Because the built-up area increased at a rate of 4.37% per year
between 2006 and 2014, a similar acceleration in the population
growth rate would be expected as well, but constant growth rates are
often applied for population estimates in these contexts. Table 5 shows
the Model 2 population estimates alongside UN estimates (United
Nations, Department of Economic and Social Affairs, Population
Division, 2014) and the 2006 census count. The UN estimates are for
the urban “agglomeration” of Kano, which is assumed to be roughly
equivalent to the eight-LGA metropolitan area shown in Fig. 7. There is
general agreement among the census, the UN and Model 2 for 2006; the
census count and the UN estimate fall within the prediction interval
albeit near the low end. By 2014, however, the Model 2 estimate is
higher than the UN estimate by more than one million people, which
demonstrates the hazard of applying a constant 2.1% growth rate to an
area being built up at a 4.37% annual rate. In the bottom-up paradigm,
we need not assume any particular growth rate, because we can instead
measure the built-up area via remote sensing for any point in the past
for which we have appropriate imagery, and we can apply the popu-
lation density model across that area. The further removed from the last
reliable census, the more important it is to apply remote sensing
methods to this problem.

4. Discussion
4.1. Representations of population estimates

We described two distinct ways to represent our modeled popula-
tion estimates, 1) a standard gridded format and 2) prediction intervals
that can be defined for any region of interest (ROI). While the gridded
format is familiar, straightforward, and convenient for many tasks, it
lacks the improvements in precision and interpretation offered by the
prediction interval framework. Performing zonal analyses in GIS soft-
ware for an ROI using the gridded estimates is easy, but it is imprecise
compared to the simulation method, which uses the size and compo-
sition of the ROI measured from the precise vector boundaries of the
input layers. The smaller an ROI is, the more important this precision
becomes. More importantly, the simulation method provides a way to
express uncertainty about spatial population estimates with un-
precedented flexibility. The ability to estimate prediction intervals that
are specific to the size and composition of one's region of interest is a
novel and important development. One limitation is that this re-
presentation cannot be shared simply as a single raster layer, as can
gridded estimates. It is instead a collection of input layers tied together
with software, which can render prediction intervals on the fly. An
important next step in this work will be to integrate this method into a
user-friendly application that can satisfy queries for intervals nearly as
quickly and easily as zonal queries are satisfied currently for gridded
layers.

4.2. Sources of uncertainty

The simulated prediction intervals presented in this work in-
corporate the natural within-type variation in population density across
Kano and Kaduna as well as the parameter uncertainty associated with
fitting the models to the sample. However, there are other sources of
uncertainty that would, if incorporated in this method and properly
accounted for, ultimately result in wider intervals.

First, we are treating each draw in the simulations as independent,
which misses any possible autocorrelation among densities of neigh-
boring small areas. Properly accounting for the spatial autocorrelation,
which would result in wider, more accurate intervals, should be a
priority for future work on this topic. Second, we are not accounting for
possible commission and omission errors in the settlement layer and
misclassifications in the residential type layer. These errors are sub-
stantially reduced by our supervision of the classifications, both in
providing labeled training sets for the models as well as in carefully
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Table 5
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Kano metropolitan area population counts/estimates by year (census, UN World Urbanization Prospects estimates, and Model 2 estimates).

Year Census count UN estimate UN growth rate Model 2 estimates (90% interval)
Lower Mean Upper

2006 2,826,307 2,957,573 - 2,823,909 3,223,453 3,678,770
2007 - 3,021,321 0.021 - - -

2008 - 3,086,534 0.021 - - -

2009 - 3,152,969 0.021 - - -

2010 - 3,220,929 0.021 - - -

2011 - 3,290,353 0.021 - - -

2012 - 3,361,373 0.021 - - -

2013 - 3,433,724 0.021 - - -

2014 - 3,507,632 0.021 3,886,128 4,466,607 5,134,557
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verifying that the results are correct and making manual adjustments as
needed. But there will always be some error present, and the current
lack of true reference data against which to measure the probability of
these spatial errors means it is infeasible at this time to explicitly in-
corporate the errors into the prediction intervals. However, as more
independent validation data become available and are investigated, we
are very likely to be pointed to instances of these problems (i.e., in any
case where a validation data point falls in a very low-density portion of
our modeled distributions, a spatial data problem is likely to be found),
which will help us better understand them and perhaps help in sug-
gesting ways to mitigate their effects in the future.

Aside from outright errors in the spatial data, there is also some
variation in a variable that we call the building area fraction (BAF),
which is the fraction of a given portion of the settlement layer that is
actually covered by buildings. This variation arises from the fact that
the settlement layer includes not just buildings, but also some sur-
rounding non-built land. BAF variation originates in part in the variety
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Fig. 2. Kano and Kaduna states in Nigeria, with their three lar-
gest cities: Kano, Kaduna, and Zaria.
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of geometrical arrangements of human settlements (much of which is
explained by the typology), but also in the variety of imagery and
training data used. We propose that the best approach to mitigating the
effects of BAF variation is to transition toward settlement mapping
methods that more precisely outline buildings, with as little non-
building area included as possible. For example, emerging building
extraction methods using fully convolutional neural networks (Bittner
et al., 2017; Maggiori et al., 2016; Yang et al., 2017) extract building
area at the pixel level, such that in a well-trained model, BAF values are
closer to one and less varied in comparison to coarser settlement
mapping methods. In addition to reducing overall uncertainty and
narrowing the population prediction intervals, reducing BAF variation
could also eventually reduce the need for detailed residential classifi-
cations, given that building spacing is one of the primary components of
the variation being captured by the residential typology (see Fig. 2).
Although the above concerns give us reason to suspect that our
modeled intervals as currently implemented are probably too narrow to
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Fig. 3. Exemplars of the urban residential (A-F), rural
residential (M), and non-residential (Z) types for Kano
and Kaduna states, Nigeria. The types vary in building
size, building shape, building spacing, and formality/
orthogonality of arrangement.
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Fig. 4. Population density by residential type.

some degree, the current implementation allows for an expression of
uncertainty not possible in the gridded representation of population as
a single value at each cell in a raster, which is the most unrealistically
narrow representation of all.

4.3. Model validation and assessment

Although our estimates of the under-5 population were very
strongly correlated with the reference data, we did find a slight but
consistent underestimation relative to the eTally counts. Because the
population density model, the demographic model, and the eTally
counts are derived from data collected using different survey meth-
odologies, and because there is such a strong linear relationship be-
tween our predicted under-5 population and the eTally counts, it is
likely that the explanation for the underestimations lies somewhere in
the methodological differences among the three surveys. The con-
tributing variables may include whether actual inhabitants (de facto) or
usual inhabitants (de jure) were counted, how ages of respondents'
children were ascertained and verified, and how non-compliant
households were handled. These methodological questions cannot be
treated adequately here, but a detailed exploration must be a priority
for future work for further improving our estimation of subpopulations
using disparate survey data. Another goal for future work should be to
identify additional demographic datasets to allow for more extensive
validations, beyond what was allowed by the ten-ward Kano eTally
dataset used in this study.

Our population estimates for the Kano metropolitan LGAs in 2006
were close to the census-reported counts, though with an apparent
modest overestimation with respect to the census. The census count
does, however, fall within the 90% prediction interval. Any inter-
pretation of this result must be accompanied by the caveats that the
boundary of the metropolitan area/urban agglomeration is uncertain,
that population densities within the settlement types may have been
somewhat different in 2006, the imagery dates and census date are not
perfectly aligned, and that the census counts themselves are uncertain.
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Fig. 5. a) Settlement layer, b) settlement types, c) gridded population estimates, and d) 90% prediction intervals for administrative wards in the city center of Kano and e-h) the same
layers in the city center of Kaduna. Intervals are in terms of population density (people per hectare).
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Fig. 6. Under-5 (U5) population of ten Kano wards. Observed counts from the eTally
program (see Section 2.9) are plotted against the model estimates. A zero-intercept re-
gression line (y = 0.942x) is superimposed.
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Therefore, rather than treating the census count as a gold standard
against which we are assessing our model, the discrepancy between the
census count and the model estimate should be thought of as a function
of all of these uncertainties (boundary discrepancies, density changes,
temporal alignment, census enumeration errors) as well as being a
function of the microcensus sampling error. More important is our
finding that the area of settlement of the metropolitan area increased at
a rate of 4.37% per year after 2006, which explains why our approach
yields a population estimate for Kano that is much higher than any
published estimates, which project the population using growth rates
that are much lower.

5. Conclusion

We have demonstrated a census-independent approach to making
high-resolution population estimates using remote sensing methods and
tailored microcensus surveys. Although there is inherent uncertainty
when estimating population from only a sample enumeration, we in-
troduced a method to quantify this uncertainty in the form of prediction
intervals for any region of interest. We demonstrated the usefulness of
residential classifications in explaining variability in population den-
sities, the ability to estimate an important subpopulation, and the ad-
vantage that remote sensing methods can have over trend-based
methods for postcensal estimation of populations for areas of rapid and
accelerating growth. We do not expect or advocate widespread re-
placement of national censuses with the microcensus-based approach
shown here, but we do recommend continued expansion of the use of

Fig. 7. Urban growth in the Kano Metropolitan Area,
2006-2014. The settlement area detected from 2006 ima-
gery is shown in tan and the additional settlement area
detected in 2014 imagery is shown in red. (For interpreta-
tion of the references to color in this figure legend, the
reader is referred to the web version of this article.)
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surveys and settlement mapping for helping to quantify and understand
the magnitude and characteristics of populations in areas where geos-
patial information is otherwise relatively scarce, inadequate, or out-
dated—which unfortunately includes much of the developing world.
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