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Abstract

Automated segmentation of portal vein (PV) for liver radiotherapy planning is a challenging task 

due to potentially low vasculature contrast, complex PV anatomy and image artifacts originated 

from fiducial markers and vasculature stents. In this paper, we propose a novel framework for 

automated PV segmentation from computed tomography (CT) images. We apply convolutional 

neural networks (CNN) to learn consistent appearance patterns of PV using a training set of CT 

images with reference annotations and then enhance PV in previously unseen CT images. Markov 

Random Fields (MRF) were further used to smooth the CNN enhancement results and remove 

isolated mis-segmented regions. Finally, CNN-MRF-based enhancement was augmented with PV 

centerline detection that relied on PV anatomical properties such as tubularity and branch 

composition. The framework was validated on a clinical database with 72 CT images of patients 

scheduled to liver stereotactic body radiation therapy. The obtained segmentation accuracy was 

DSC = 0.83 and η = 1.08 mm in terms of the median Dice coefficient and mean symmetric surface 

distance, respectively, when segmentation is encompassed into the PV region of interest. The 

obtained results indicate that CNN and anatomy analysis can be used for accurate segmentation of 

PV and potentially integrated into liver radiation therapy planning.
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Introduction

Liver cancer is among the most prevalent and lethal cancer types with estimated 40,710 new 

cases and 28,920 deaths in the US in 2017 [1]. Radiation therapy (RT) is considered to be 

one of the main treatment strategies for liver cancer and modern stereotactic body radiation 

therapy (SBRT) demonstrates two-year local control rates greater than 80% [2]. Planning of 

RT is a challenging ill-posed problem, where delivering tumoricidal dose to the cancer often 

involves irradiation of the surrounding healthy organs-at-risks (OARs). Such irradiation may 

compromise functioning of the OARs, and 9–30% of liver RTs result in OARs toxicities and 

hepatic function decline [3], [4]. A new type of post-treatment toxicity associated with 
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irradiation of hepatobiliary tract, so called central liver toxicity, has been recently discovered 

[5]. Having hepatobiliary tract anatomically defined as the area around portal vein (PV), it 

becomes important to segment PV from computed tomography (CT) images during RT 

planning, and configure the radiation beams in such a way that the dose delivered to the vein 

is below safe dose constraints. Manual PV segmentation from CT image is time and labor 

consuming and may be subjected to human errors, therefore there is a high demand in 

automated segmentation solutions.

Segmentation of liver vasculature is of great importance for diagnosis of vasculature disease, 

liver vascular surgeries, liver transplantation planning, tumor vascularization analysis, etc. 

and therefore its automation has been receiving considerable attention in the literature [6]. 

The majority of the existing methods focus on thin and medium-size vessels that are usually 

located deep inside or at the peripheral sides of the liver [6]. Such vessels have strongly 

tubular shapes and therefore their positioning and orientation can be reliably estimated using 

eigenvectors and eigenvalues, i.e. the principal component analysis (PCA). Moreover, to 

recognize medium-size vessels, a relatively small image region containing a vessel needs to 

be observed opening a room for filter-PCA-based segmentation approaches. Frangi et al. [7] 

discovered that Hessian image filters tend to have high-high-low magnitude eigenvalues 

when applied on tubular structures and proposed a multi-scale Hessian filter for vessel 

enhancement, which has become a reference standard in the field. Following this direction, 

Hessian filters were augmented with Gabor filters [8], Gaussian filters [9], linear operators 

[10], flux maximizing flow [11] wavelets [12] and other techniques [13], [14] for more 

accurate enhancement. As noise can significantly compromise the appearance of vessels, 

noise reduction is shown to improve the filter performance and consequently the quality of 

enhancement [15], [16].

Filter-based approaches usually fail to enhance thick vessels, such as PV, due to limited 

fields of view of the filters and complex shape of the PV [17]. Alternative enhancement 

approaches including context-based voting [18], region growing [19]–[21], Gaussian 

mixture models [13], [22], active contours [23], [24], graph-cut [25] and statistical shape 

analysis [25], [26] do not specifically address PV segmentation problem. Recently, Zeng et 

al. [27] applied single-layer neural networks for segmentation for liver vasculature which 

was successful on segmentation of thin and medium-size but demonstrated limited success 

on PV segmentation. Bruyninckx et al. [28] applied support vector machines to 

automatically detect bifurcations of PV and then found the optimal graph connecting those 

bifurcations. Esneault et al. [29] combined graph cut and region growing for PV 

segmentation but only visual results were given in their paper. Automatic PV segmentation 

was proposed for magnetic resonance (MR)-based liver transplantation planning [30], [31], 

where, however, PVs have very distinctive intensity appearance and can be well-

approximated using adaptive thresholding. We therefore conclude that PV segmentation has 

been poorly addressed in the literature and the existing results are not satisfactory for the 

clinical usage.

Segmentation of PV cannot be straightforwardly solved by the existing approaches due to 

highly variable vasculature contrast, which makes PV poorly visible in pre-radiotherapy CT 

images, and image artifacts originated from fiducial markers and vasculature stents, which 
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additionally compromise the PV appearance. Another challenge is highly variable PV 

anatomy, as non-standard confluence of vein branches, trifurcations, etc. occur in more than 

20% of cases [32]. The problem of labeling individual vessels of liver is non-trivial and can 

be partially automated using graph [33] and probabilistic [34] modeling. As a result, even 

manual or semi-automated PV segmentation may be inconsistent [35]. In this work, we 

develop a novel framework for automated PV segmentation from CT images of patients 

scheduled for liver SBRT (Fig. 1). There are three contributions of this research. First, we 

for the first time target the problem of segmenting PV for radiotherapy planning, where 

presence of tumor may significantly alter the PV anatomy and fiducial markers inserted into 

tumor may severely distort the PV appearance. Second, we propose an innovative 

segmentation methodology by combining the recent developments in deep learning with the 

PV anatomy features. Finally, we perform comprehensive validation of the proposed 

framework on a database of patients with liver metastases, hepatocellular carcinoma, 

cholangiocarcinoma and other primary liver cancers.

The paper is organized as follows. Section 2 presents the methodology of convolutional 

neural networks, i.e. a concept of deep learning for image analysis, PV centerline detecting 

and combining deep learning with centerlines for PV segmentation. Section 3 validates the 

proposed methodology on a database of liver CT images. The obtained results are analyzed 

in Section 4, and summarized in Section 5.

Methodology

Portal vein enhancement with convolutional neural networks

Convolutional neural network (CNN) is a special form of machine learning classifier that is 

designed to learn consistent patterns from a training set of reference images with annotations 

and make predictions about previously unseen images. Without a need for hand-crafted 

image features, which are usually geometrically and mathematically limited, CNNs 

effectively model consistent intensity patterns of depicted objects with complex and highly 

variable appearance. During CNN training, convolutional layers of the network 

automatically generate appearance features and combine them into a hierarchical prediction 

models. To form a convolutional layer , features slide across its preceding layer , 

where X0 is the input image:

(1)

where  is the m-th feature defined as a convolutional linear kernel of size Pl+1 and 

Rl+1,  is additive bias and function f applies non-linearity to feature responses. A cell of 

convolutional layer  is enhanced when the corresponding Pl+1 × Rl+1 region of the input 

layer  is similar to the feature  and suppressed otherwise. The non-linearity 

function f is defined using rectified linear units (ReLU) f(x) = max(x, 0) so that the regions 

of  that are very different from  have zero enhancement response in . Being 
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applied in a sequence, i.e. , convolutional layers combine 

ensembles of simple features into more complicated hierarchies that efficiently capture the 

consistent appearance patterns of the depicted objects.

It can be observed that small changes in the kernels of the first convolutional layers will 

affect all subsequent layers and will be amplified as the network deepens. During training of 

CNNs, the kernel coefficients of the first layers will get saturated quickly, which will slow 

down network convergence. Ioffe and Szegedy [36] demonstrated that normalizing each 

layer reduces the probability of network saturation, makes training less sensitive to the 

selection of learning rate parameter and dramatically accelerates convergence. Thus, 

convolutional layer  is augmented as:

(2)

where gbNorm normalize input features  to zero mean and unit variance. Naturally, bias 

 gets compensated during normalization and therefore can be removed.

In comparison to natural image analysis problems, where training images are easily 

accessible and require relatively short time for manual annotation, assembling databases of 

annotated medical three-dimensional (3D) images is very labor and time consuming and 

therefore such databases can hardly contain more than several hundred cases. The number of 

CNN parameters may be much higher than the number of training samples, which will lead 

to model overfitting and poor network performance on previously unseen images. To reduce 

overfitting, some network elements are randomly turned off during training [37] :

(3)

where  is a matrix of the same size as  containing random binary variables. Turning off 

some network elements prevents it from becoming highly restrictive.

We define the CNN for PV enhancement using a sequence of four convolution-batch 

normalization-ReLU-dropout layers and the final convolutional layer with softmax 

activation function. As a result the network analyzes a square image region of size K × K 
and produces the segmentation of its internal area of size k × k. Similar approach has been 

shown effective on segmentation of brain tumors [38] and placenta [39]. To apply such CNN 

for PV enhancement from 3D CT images, we first train CNN on a database T of CT images 

with PVs annotated by an experienced clinician. The intensity patterns of PV make it 
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distinguishable from other structures in the image. The trained CNN learn to extract these 

patterns and use them to enhance the vein in a new target image. Following the recent 

studies, combined two-dimensional (2D) CNNs trained on axial, sagittal and coronal patches 

exhibit similar performance to 3D CNNs, while 2D CNNs are less memory demanding and 

therefore more complex 2D networks can be used [40]. Portal vein enhancement is 

generated as a combination of axial, sagittal and coronal 2D CNNs (Fig. 2).

Although CNNs produce smooth enhancement map by simultaneously analyzing 

neighboring voxels, the results may still contain artifacts and isolated regions. We apply 

Markov Random Fields (MRFs) to additionally smoothen the enhancement results. For this 

aim, we describe the target image as a non-oriented graph  = { , ℰ}, where vertices 

correspond to image voxels, and edges ℰ connect neighboring voxels. The MRFs optimally 

label  by considering information about individual voxels – unary potentials, and 

neighboring voxels – binary potentials. If the CNN enhancement value for voxel y is y, the 

unary potential of MRF for this voxel is ϕ( y, ly) = (if (ly == 1) then 1 − y else y), i.e. the 

cost for marking y as PV (ly == 1) is 1 − y and marking y as background (ly == 0) is y. 

The total cost for all unary potential is minimized when all voxels are labeled according to 

the CNN enhancement. The binary potential for neighboring voxels y and z is 

, where  measures similarity 

between CNN enhancements y and z, and Δ(ly, lz) is an binary function that checks the 

identity of labels for y and z: Δ(ly, lz) = (if (ly == lz) then 0 else 1). The total cost for all 

binary potential is minimized when all voxels have the same label. The optimal labeling L of 

voxels  in the target image is achieved by minimizing both unary and binary potentials:

(4)

By optimizing Equation 4, the CNN-based enhancement results are additionally smoothed 

and small groups of isolated mis-labeled voxels are removed. The optimization was very 

efficiently performed using publicly available software FastPD [41]. The final enhancement 

 is the elementwise multiplication of CNN enhancement map  and MRF label map L.

Centerline identification from CNN-based enhancement

The proposed CNN+MRF-based algorithm will enhance not only PV but also structures that 

can be visually confused with PV (Fig. 3). Exclusion of such structures requires combined 

analysis of the appearance and anatomy of PV. We adopt the algorithm for center and 

centerline detection of anatomical structures that can be approximated with solids of 

revolution, e.g. vertebral bodies [42] and femoral heads [43]. Being a composition of tubular 

structures, a ray initialized at a PV surface point y and oriented according to the surface 

normal gy will meet another surface point z with normal gz oriented in the opposite direction 

|gy ∙ gz| ≈ −1 (Fig. 4). For every y, the location of the opposite point z can be obtained using 

the enhancement map :
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(5)

where ∇Qy and ‖∇Qy‖ are, respectively, the orientation and magnitude of the gradient 

computed at point y of the CNN enhancement map. Parameters Dmin and Dmax that 

represent the minimum and maximum diameter of PV define the searching domain for z. 

The local response for PV centerline detection is computed at the midpoint cy,z between y 
and z:

(6)

The local response A(cy,z) is higher for points that are likely to belong to the PV surface, i.e. 

with high gradient magnitudes ‖∇Qy‖ and ‖∇Qz‖, and with better congruence of gradient 

orientations |∇Qy ∙∇Qz| ≈ −1.

From the PV morphology, we can assume that a surface points y + Δy located close to y 
have the opposite points z + Δz with the distance d(y + Δy, z + Δz) similar to d(y, z). 

Moreover, the midpoints cy,z and cy+Δy,z+Δz for lines connecting the opposite points y and z, 

and y + Δy and z + Δz, respectively, will be located close to each other. We therefore detect 

PV centerline by accumulating the local responses (Eq. 6) for all points y and z:

(7)

where P serves to skip points with low gradient magnitude ‖∇Qy‖, i.e. the points that do not 

likely represent PV surface being located inside homogenous regions of the enhancement 

map . The PV centerline is the largest connected component in the response accumulation 

map A (Fig. 5).

Anatomy-based segmentation of portal vein

We combine the CNN+MRF-based enhancement map  with centerline map A to segment 

the PV in the target image. For a point y of the PV centerline, the surrounding enhanced 

region is expected to belong to the PV. At the same time, other parts of the liver vasculature 

can be located close to PV and therefore may be erroneously included into segmentation 

(Fig. 3). We avoided such inclusion by estimating the partial radius of PV at point y:

(8)

where g is an orientation vector. The optimal radius is computed at the point with high 

magnitude ‖∇Qgr+y‖ of the enhancement map gradient, and gradient orientation ∇Qgr+y 
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towards centerline point y. The average value of all partial radii at the point y for different 

directions g defines the PV radius at the point y:

(9)

where G is the set of all orientation vectors. Having radii along the PV centerline allows us 

to effectively identify and exclude liver vessels located close to the PV. The points inside the 

sphere with radius ry + Δr and center y are labeled as PV if the enhancement value is above 

0.5 of the most enhanced point inside the sphere. The resulting labeling represent 

segmentation of the PV in the target image.

Experiments and Results

Image database

We have collected a database of 72 CT images of patients who underwent SBRT for treating 

liver metastases (37 cases), hepatocellular carcinoma (17 cases) and cholangiocarcinoma (14 

cases) and other types of liver primary cancer (4 cases). The images were pre-selected from 

a collection of liver SBRTs administered at Stanford Medical Center from July 2004 to 

November 2015. The selection criteria was solely the level of contrast agent, which made at 

least a part of PV visually distinguishable for an experienced human observer. The presence 

of fiducial markers, stents and image artifacts was not considered a disqualifying factor. All 

images were axially reconstructed between 0.879 and 1.523 mm with the scan matrix of 512 

× 512, and the slice thickness between 0.80 and 2.50 mm. The target organ of interest was 

anatomically defined as the PV between splenic confluence to the first bifurcation of the left 

and right PV branches. In all selected image, the level of contrast agent allowed visual 

identification of the PV or its parts by a human observer. All PVs were manually segmented 

by an experienced oncologist using MIM Software version 6.5 (MIM Software Inc., 

Cleveland, OH).

Implementation

The proposed framework was implemented in C++ and C# without code optimization, and 

executed on a personal computer with Intel Core i7 processor at 4.0 GHz and 32 GB of 

memory. The framework employed two publicly available toolboxes, including 

Computational Network Toolkit (CNTK) [44] for CNN training and execution and FastPD 

[41] for MRF-based enhancement smoothing. The NVIDIA GeForce GTX Titan X graphical 

processing unit (GPU) with 12 GB of memory was used by CNTK for CNN operation. 

During the training phase, generating an individual CNN took 35 min. During the 

segmentation phase, running CNN for PV enhancement took around 35 sec, MRF-based 

smoothing took less than 1 sec and anatomy-based segmentation took around 4 sec.

Segmentation Results

All images were separated into eight folders with nine images for eight-fold cross-

validation, where, for example, segmentation of image with number 38 was based on 

Ibragimov et al. Page 7

Phys Med Biol. Author manuscript; available in PMC 2018 November 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



networks trained on images with numbers 1–36 and 46–72. For CNN training, we randomly 

extracted 30000 samples from each training CT image, i.e. 10000 axially, 10000 coronally 

and 10000 sagittally oriented patches, of 41 × 41 mm size with the corresponding 

segmentation of 29 × 29 mm size. An input patch passes through 17-layer CNN containing 

four convolutional layers, where first two layers had the filter size of 4 × 4 and the last three 

layers have the filter size of 3 × 3. The number of filters per convolutional layer equals 40, 

excluding the last convolution layer with one filter for generation of the enhancement 

results. We ensured that 50% of all training samples cover at least one voxel of PV, i.e. there 

is at least a single non-zero element in the corresponding segmentation matrix, in order to 

avoid CNNs learning only on background voxels. Training was performed using the 

stochastic gradient descent scheme and having learning rate of 0.005 and momentum of 0.9. 

The dropout rate was set to 0.2 meaning that every matrix  in average contains 

and  randomly positioned zeros and ones, respectively. All training sample were 

automatically separated into batches of 500 samples and analyzed in 20 epochs, i.e. training 

runs 20 times through all samples. No measurable improvement was observed when 

increasing the number of epochs. The minimum and maximum radii of PV were defined as 

Dmin = 4 mm and Dmax = 15 mm for PV centerline detection. The parameter that balances 

the contribution of unary and binary potentials in MRF was set to be α = 5. The maximum 

number of iterations for MRF was set to be 50.

The performance of PV segmentation was evaluated by computing Dice coefficient (DSC) 

and the mean symmetric surface distance (MSSD) η between manual and automatic 

segmentation masks. Dice coefficient is defined as DSC = 2TP/(2TP + FN + FP), where TP 

is the number voxels classified as PV in both manual and automated segmentation, FN is the 

number of PV voxels misclassified as background by automated segmentation and FP is the 

number of background voxels misclassified as PV by automated segmentation. The MSSD is 

computed as:

(10)

where Sman and Sauto are, respectively, the surface voxels for manual and automatic 

segmentation masks, ds,S is the distance between voxel s and the set of voxels S. Both error 

metrics were computed for segmentation using single axial, sagittal and coronal networks 

and combined axial-sagittal-coronal approach. Finally, we evaluated the segmentation 

performance when automated segmentation is restricted to the cuboid-shape region of 

interest (ROI) that is extracted from the corresponding manual segmentation. The goal of the 

ROIs is to separate segmentation error, where non-PV structures marked as PV, from over-

segmentation of PV branches, where CNN enhances PV along its branches. For all 72 CT 

images, the median Dice coefficient was DSC = 0.70 and MSSD η = 2.94 mm for the 

combined axial-sagittal -coronal CNNs with no ROI, and the median Dice coefficient was 

DSC = 0.83 and MSSD η = 1.08 mm for the combined axial-sagittal-coronal CNNs with 

manual ROI. Figure 6 summarizes the performance of the proposed framework with 

different settings, while Figure 7 shows segmentation results for several selected cases.
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Discussion

To the best of our knowledge, we presented the first attempt to segment PV from CT images 

using CNNs and PV anatomy features. Convolutional neural networks have demonstrated 

success on natural image analysis and dramatically outperform alternative machine learning 

algorithms [45]. In the field of medical imaging, CNNs won a challenge on brain structure 

segmentation [46] but, at the same, demonstrated moderate results on intervertebral disc 

segmentation challenge [47]. The CNNs performance considerably improves on structures 

with well-defined shape when CNNs are combined with statistical object models [48]. 

Although PV is a highly flexible object with no predefined shape, its anatomy, thickness and 

local tubularity can be used to distinguish PV from the surrounding structures with similar 

appearance. We detected the PV centerline from CNN-based enhancement by modifying the 

algorithm for vertebral body [42], femoral head [43] and human brain detection [49]. The 

resulting framework was successfully validated on a database of CT images of patients who 

underwent liver SBRT.

Segmentation of PV is an underinvestigated problem and, for the best of our knowledge, 

there is no publication with the similar settings that would allow us to directly compare the 

obtained results. Nevertheless, Bruyninckx et al. [28] segmented the whole portal vein 

including peripheral branches and obtained Dice coefficient from 0.53 to 0.68. Recently, 

Goceri et al. [31] reported Dice coefficient from 0.51 to 0.62 for segmentation of portal vein 

from MR images. The previous work emphasized that PV segmentation is compromised by 

image noise and the presence of hepatic arteries and other veins. Zeng et al. [27] has recently 

demonstrated the potential of single-layer neural networks for enhancement of liver vessels. 

As their work remains the only attempt of applying neural network for liver vasculature 

segmentation, our framework is novel and pioneers the usage of CNNs for liver vasculature 

segmentation. The CNNs has demonstrated promising results on medical images including 

segmentation of brain structures [46], [50] and OARs for head-and-neck radiotherapy [49]. 

As 3D CNNs usually require larger database and are more memory-demanding, we used a 

combination of 2D cross-sectional CNNs that are shown to produce accurate segmentation 

results [40]. The output of our CNNs is not a single value that corresponds to the 

enhancement of the central voxel of the 41 × 41 mm input patch but the enhancement map of 

29 × 29 mm. If the single enhancement value-based architecture, commonly adopted in 

computer vision [45], require a CNN to process n3 patches to generate segmentation of n × n 
× n image, the proposed architecture allow skipping of image voxels and may reduce the 

number of the processed patches to  for the same image size. For 3D images, the number 

of analyzed patches is such that each voxel is enhanced by each axial, sagittal and coronal 

CNN at least once.

The dramatic success of CNNs in computer vision is due to their ability to extract the 

distinctive appearance patters of natural objects of the same class even if the objects look 

very different [45]. In medical imaging, voxels that belong to the target organ usually have 

much more similar appearance but, at the same time, voxels of other organs and background 

may be very similar to the target organ too. The CNNs may therefore enhance voxels of 

arteries, other veins and vessel-like structures located near the PV. The appearance of such 
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structures is very similar (Fig. 3) and the PV anatomy analyze is required. We relied on 

tubularity of the PV and detected its centerline by accumulating PV surface normals. The 

PV centerlines were correctly detected even when PV enhancement was inconsistent due to 

image artifacts and contrast variability. The combination of CNNs and the anatomy model 

addresses the main challenge of PV segmentation, i.e. distinguishing it from the surrounding 

structures with similar to PV appearance. In particular, vessels of similar to PV size located 

outside the liver and thin vessels located inside the liver would be enhanced less that PV. The 

structures with similar to PV appearance inside the liver are shorter and do not have 

inconsistent positioning, and therefore will not have a connected centerline comparable in 

length to the centerline of PV. Combining machine learning with sophisticated shape models 

is shown to result in accurate segmentation for vertebra, corpus callosum and prostate [48], 

[51], [52], but cannot be straightforwardly applied for PV segmentation, as PV has highly 

variable shape and non-standard confluence of branches. We proposed an accurate, robust 

and computationally efficient approach for segmentation of enhanced PV.

The reference manual PV segmentation was generated by an experienced oncologists in the 

slice-by-slice manner so the margins where segmentation stops may slightly vary from 

image to image. The same or different specialist will most likely continue segmenting along 

the vein branches for a number of image cross-sections or stop earlier and do not segment a 

number of image cross-sections. Such segmentation variability reduces Dice coefficient but 

does not necessarily represent an error because it still allows to correctly estimate the 

radiation dose delivered to PV. Moreover, PV outside the liver may not receive any radiation 

during the treatment and therefore its over-segmentation towards pancreas may have no 

effect on dose/volume metrics calculation. To remove the error originated from subjective 

PV under- and over-segmentation along branches, we restricted automated PV segmentation 

with the ROIs computed from manual PV segmentation. The ROIs allow distinguishing the 

segmentation disagreement originated from expanded branches from the actual segmentation 

error. It is important to note that CNNs do not enhance vasculature located far away from the 

liver region. This observation suggests that not only the appearance of the PV is modeled but 

also the appearance of the surrounding liver tissue. Indeed, the PV is surrounded by a 

relatively homogeneous liver tissue, and there is no other vessel in the abdominal region 

with the similar surrounding. Moreover, the CNNs do not enhance vessels located deeper 

inside the liver because they are thinner than PV and therefore have different appearance.

By validating the proposed framework on a clinical database of 72 CT images, we achieved 

segmentation accuracy of median DSC = 0.83 and MSSD η = 1.08 mm, when segmentations 

are restricted with ROIs. Despite generally accurate segmentation results, a number of 

outliers with poor segmentations has been observed mainly because of the following 

conditions. First, a low level of contrast made PV poorly visible and therefore difficult to 

enhance and segment (Fig. 8a). Second, fiducial markers positioned inside the liver for better 

treatment planning generate ray-like image artifacts that may severely distort the appearance 

of the surrounding structures including PV (Fig. 8b). Finally, the traces of vasculature 

interventions, e.g. stents, may dramatically reduce visibility of PV (Fig. 8c). Nevertheless, 

we conclude that the framework can accurately and robustly segment PV for almost all of 

the observed cases.
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Conclusion

In this paper, we presented a novel CNN framework for segmentation of PV from CT 

images. The performance was validated on a clinical database of images of liver SBRT 

patients. The obtained results are accurate considering the complexity of the problem, 

presence of image artifacts and natural variability of PV appearance. The study show the 

potential of using CNN with anatomy analysis to facilitate liver RT planning in the future.
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Figure 1. 
Examples of portal vein manual segmentation (solid line) from liver CT images shown in 

axial, sagittal and coronal cross-sections. A relatively low level of contrast agent makes 

automated portal vein segmentation a challenging task.
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Figure 2. 
A schematic illustration of the convolutional neural network (CNN) architecture used for 

enhancement of portal vein (PV) from CT images. Individual CNNs are applied on each 

orthogonal cross-section of the CT image in order to generate three PV enhancement maps. 

The maps are then averaged to form the resulting PV enhancement.
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Figure 3. 
An example of structures that are visually very similar to portal vein in (a) CT images and 

may be erroneously enhanced by convolutional neural networks. (b) The portal vein is 

outlined with solid line whereas neighboring similar structures with dashed lines.
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Figure 4. 
A schematic illustration of finding the portal vein centerline. Having a surface point x, i.e. a 

point with high magnitude of portal vein enhancement, meets three points y1, y2 and y3 that 

can potentially represent portal vein surface. Point y2 is selected as the optimal due to the 

high magnitude of its gradient and congruential gradient orientation against gradient of x
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Figure 5. 
A schematic illustration of portal vein (PV) centerline detection. The original image is first 

analyzed by convolutional neural networks for enhancement of PV. To remove wrongly 

enhanced structures with the appearance similar to PV, we compute the locations where 

gradients computed on enhancement map mainly intersect. As PV can be roughly 

approximated with a set of tubular structures, the gradients on its surface intersect in the 

centerline of the PV.
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Figure 6. 
Results of portal vein segmentation from CT images given in terms of Dice and symmetric 

surface distance. The results are computed using axial, coronal, sagittal and combined CNNs 

and with or without a predefined region of interest. Manual regions of interest (ROIs) restrict 

the area where the portal vein is searched for. The ROIs serve to exclude the disagreement 

between manual and automated segmentations originated from vaguely defined borders of 

the PV region important for radiotherapy planning. The disagreement, which cannot be 

straightforwardly considered as an error, occurs when manual segmentation stops at a 

specific branch point, whereas CNN continues enhancing PV along the branch.
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Figure 7. 
Examples of segmentation results for four cases from the database. The results are shown in 

comparison to the original CT images (first raw) using axial (second raw) and coronal (third 

raw) cross-sections with segmentations. The Dice coefficient for each case is given in the 

fourth raw. The overlap between manual and automatic segmentation is colored in green, 

and mis-segmentations are colored in red.

Ibragimov et al. Page 20

Phys Med Biol. Author manuscript; available in PMC 2018 November 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 8. 
Examples of (top) CT images with (bottom) the corresponding manual segmentations of 

portal vein (blue) that are challenging to segment automatically. (a) Example of low level of 

contrast agent. (b) Example of strong image artifacts originated from fiducial markers. (c) 

Example of vasculature stent.
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