
Next-generation sequencing in the clinic: Promises and 
challenges

Jiekun Xuana,b, Ying Yua, Tao Qinga, Lei Guob,*, and Leming Shia,b,*

aSchool of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, China

bNational Center for Toxicological Research, US Food and Drug Administration, 3900 NCTR 
Road, Jefferson, AR 72079, USA

Abstract

The advent of next generation sequencing (NGS) technologies has revolutionized the field of 

genomics, enabling fast and cost-effective generation of genome-scale sequence data with 

exquisite resolution and accuracy. Over the past years, rapid technological advances led by 

academic institutions and companies have continued to broaden NGS applications from research 

to the clinic. A recent crop of discoveries have highlighted the medical impact of NGS 

technologies on Mendelian and complex diseases, particularly cancer. However, the ever-

increasing pace of NGS adoption presents enormous challenges in terms of data processing, 

storage, management and interpretation as well as sequencing quality control, which hinder the 

translation from sequence data into clinical practice. In this review, we first summarize the 

technical characteristics and performance of current NGS platforms. We further highlight 

advances in the applications of NGS technologies towards the development of clinical diagnostics 

and therapeutics. Common issues in NGS workflows are also discussed to guide the selection of 

NGS platforms and pipelines for specific research purposes.
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1. Introduction

Increased awareness that decoding the human genome provides critical clues to the genetics 

of diseases as well as the development of more specific preventive, diagnostic and 

therapeutic strategies has driven extensive sequencing and mapping efforts in the past 

decades. After the completion of the first human genome sequence in 2004 [1], the growing 

need to sequence a large number of individual genomes in a fast, low-cost and accurate way 

has directed a shift from traditional Sanger sequencing methods towards new high-

throughput genomic technologies. In 2005, the first massively parallel DNA sequencing 

platforms emerged, ushering in a new era of next-generation sequencing (NGS) [2,3]. To 
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date, the development of NGS technologies has vastly accelerated the pace of data 

generation—on the order of hundreds of gigabases of nucleotide sequence per instrument 

run, while reducing sequencing cost by over five orders of magnitude. Owing to these 

advantages, NGS technologies have been widely used for many applications, such as rare 

variant discovery by whole genome resequencing or targeted sequencing, transcriptome 

profiling of cells, tissues and organisms, and identification of epigenetic markers for disease 

diagnosis.

Here, we first provide a brief overview of the characteristics, strengths and limitations of 

current NGS platforms (Table 1). We then discuss the major applications of NGS 

technologies, with a focus on cancer diagnosis and prognosis. Finally, we discuss the 

bioinformatics tools and challenges in NGS data analysis.

2. Overview of NGS technologies

The technical details of the three major NGS platforms have been well described elsewhere 

[4]. The following section primarily focuses on the performance of each sequencing system.

2.1. Roche/454

The 454 sequencing system is based on the combination of emulsion PCR and 

pyrosequencing technology [2]. In emulsion PCR, single-stranded template carrying beads 

are confined to individual emulsion droplets in which millions of copies of each template are 

produced by PCR amplification. Amplicon-bearing beads are subsequently enriched and 

deposited into individual wells of a picotiter plate where solid-phase pyrosequencing is 

carried out. In this sequencing-by-synthesis method, luminescence emission from the release 

of pyrophosphate upon template-directed nucleotide incorporation is monitored in real time. 

The strength of the 454 system lies in its ability to sequence long reads. The latest 454 GS 

FLX platform with Titanium chemistry can produce approximately one million reads with 

lengths of up to 1000 bp per instrument run. Owing to this advantage, despite the higher 

costs compared with other NGS platforms, the 454 platform is best suitable for several 

applications, including de novo assembly [5] and metagenomics [6]. However, the 454 

technology has an inherent problem in the detection of homopolymers, stretches of the same 

nucleotide. Due to the lack of a terminating moiety, multiple incorporations of identical 

nucleotides can occur in homopolymeric regions during a single sequencing cycle. This can 

lead to nonlinearity between the signal intensity and the length of homopolymer stretches 

when more than three or four nucleotides are consecutively incorporated. Consequently, the 

454 system has a relatively high error rate for calling insertions and deletions (indels) in 

homopolymers [7].

2.2. Illumina/Solexa

The Illumina sequencing system employs an array-based DNA sequencing-by-synthesis 

technology with reversible terminator chemistry [8]. In this approach, template DNA 

fragments are hybridized to a reaction chamber on an optically transparent solid surface (i.e., 

flow cell). Reversible terminators [9], a series of four modified nucleotides each labeled with 

a different removable fluorescent dye at the 3′-hydroxyl terminus, are used for step-by-step 
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DNA synthesis. Millions of clonal clusters can be generated in each lane of the flow cell, 

which contains eight independent lanes for multiple libraries to be sequenced in parallel. 

The Genome Analyzer (GA), the first Illumina sequencing platform, originally produced 35-

bp reads and generate more than 1 gigabase (Gb) of high-quality sequence per run in 2–3 

days. The upgraded platforms, such as GA IIx and HiSeq 2000, yield much higher sequence 

output with increased read lengths. Despite its ultra-high-throughput and cost-effective 

advantages, the utility of the Illumina systems is limited to short-read sequencing. The 

limitation in read lengths is primarily due to dephasing effects [4]. Decreased or increased 

efficacy of nucleotide incorporation and failures in removing or adding terminating moieties 

in any given cycle can cause incomplete extension or overextension of the growing strand 

along the template, resulting lagging-strand or leading-strand dephasing. Moreover, signal 

dephasing can be caused by decay in fluorescent signal, incorporation of nucleotides without 

a fluorescent label (dark nucleotides) or incomplete removal of fluorescent labels, leading to 

base-calling errors. Consequently, base substitution error rates increase with read length. In 

addition, uneven read coverage has been revealed across AT-rich and GC-rich regions, with a 

bias towards the latter.

2.3. Life Technologies/SOLiD

The SOLiD system uses a ligation-based sequencing technology originated from previous 

work [3]. The sequencing library is prepared by emulsion PCR as in the 454 protocol. 

Sequencing is performed through successive cycles of ligation, in which each sequencing 

primer is ligated to a specific fluorescence-labeled octamer probe according to the 

complementarity between the di-bases of the probe and the template. Since each four di-

bases (e.g., AG, GA, TC, CT) are tagged with one of four fluorescent dyes, the di-

nucleotides at the same positions of each template are associated with a unique fluorescent 

color. Across ligation cycles, di-nucleotides are read at intervals of five bases, that is, di-

nucleotides at position 4– 5, 9–10, 14–15, 19–20 and so forth. After five ligation rounds, 

each nucleotide in the template is read twice by two fluorescent signals, greatly improving 

base-calling accuracy. Among the current NGS platforms, the SOLiD system presents the 

lowest error rate. Its most common error type is substitution. In addition, an 

underrepresentation of AT-rich regions has also been shown in the SOLiD data [10].

2.4. Emerging technologies

The emergence of single-molecule sequencing has provided a technological leap forward in 

the evolution of next generation sequencing. The promise of this technology lies in its ability 

to directly sequence single DNA or RNA molecules in biological samples without 

amplification. The single-molecule sequencing strategy promises significant advantages over 

current NGS technologies in that it minimizes sample handling, reduces sample input 

requirements, avoids amplification-induced bias and errors, increases read length flexibility 

and enables accurate quantitation of nucleic acid molecules. The simplicity, sensitivity and 

quantitative capabilities of single-molecule sequencing make it highly promising for 

molecular diagnostics [11].

The Helicos Genetic Analysis System is the first commercially available single-molecule 

sequencing platform [12]. In this system, poly(A)-tailed single-stranded DNA templates are 
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captured by poly(T) oligonucleotide primers tethered to the surface of a flow cell. 

Sequencing is performed through iterative cycles of DNA polymerase- mediated single-base 

primer extension using a series of four fluorescent Virtual Terminator nucleotides, each of 

which represents a 3′-unblocked reversible terminator with a fluorophore-labeled inhibitory 

moiety [13]. In a standard run, the sequencer with two 25-channel flow cells is capable of 

capturing billions of single DNA molecules and generating over 21–35 Gb of sequence data 

with an average read length of 35 bp. Although the sequencing process is asynchronous in 

the Helicos system, dephasing effects that commonly exist in amplification-based 

sequencing platforms are not present. Moreover, there is no GC-content bias in read 

coverage. However, the current error rate in Helicos reads is relatively high (~3–5%), and 

the dominant error type is deletion, which presumably results from incorporation of 

unlabeled nucleotides and/or detection errors. The use of Virtual Terminator chemistry 

solves the homopolymer sequencing problem, and the base-by-base incorporation manner 

results in very low substitution error rates (typically 0.2%). When a two-pass strategy is 

applied, in which individual template molecules are sequenced twice, the error rates can be 

further reduced.

Other single-molecule sequencing technologies with longer read lengths, higher sequencing 

speed or lower overall cost are also emerging. One example is the PacBio RS, a single-

molecule real-time sequencing system developed by Pacific Biosciences [14]. In this system, 

a single template-bound DNA polymerase molecule is immobilized to the bottom of a zero-

mode waveguide, which functions as a nanophotonic visualization chamber for monitoring 

the polymerization reaction in a detection volume on the order of zeptoliters (10−21 l). 

During sequencing, template-directed incorporation of four fluorescent phospholinked 

nucleotides into the growing complementary strand is optically recorded in real time. The 

fluorescent dye attached to the terminal phosphate moiety of each phospholinked nucleotide 

is naturally removed by enzymatic cleavage upon incorporation. This allows rapid and 

processive DNA synthesis by the polymerase, yielding sequence reads of thousands of bases. 

Nonetheless, the PacBio system presently offers a throughput of approximately 50–100 Mb 

per run, which is much lower than current NGS platforms. Moreover, the single-read error 

rate is typically 15%, exceeding the error tolerance of many applications. A second example 

is nanopore sequencing technologies, in which single-stranded nucleic acid molecules are 

electrophoretically driven through a nanometer-sized pore and detected by their effect on an 

ionic current or optical signal [15]. Nanopore sequencing potentially offers long read lengths 

of up to tens of kilobases, minimal requirements of reagent and sample preparation, and high 

sequencing pace at low cost. However, several problems remain to be solved before the 

application of nanopore sequencing. The high speed of DNA translocation through 

nanopores makes it challenging to distinguish base signals from background noises by an 

electronic sensor. The random motion of molecules during translocation also adds to the 

difficulty in reaching single-base resolution. As a solution, IBM is developing a DNA 

transistor technology that incorporates alternating layers of metal and dielectric material 

within a nanopore to control the rate of DNA translocation [16]. Oxford Nanopore 

Technologies is also commercializing electronic nanopore sensing systems based on 

exonuclease and strand sequencing techniques. Exonuclease sequencing [17] employs a 

modified α-hemolysin nanopore with a bound exonuclease that cleaves off single 
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nucleotides, allowing successive passage and detection of each nucleotide in a polymer, 

while strand sequencing uses a polymerase to pass single-stranded DNA polymers through 

the nanopore.

Other new sequencing technologies are also under development, such as fluorescence 

resonance energy transfer (FRET)-based single-molecule sequencing technology from 

VisiGen Biotechnologies, Ion semiconductor sequencing technology from Ion Torrent, now 

part of Life Technologies, and DNA nanoball sequencing technology from Complete 

Genomics. Despite remarkable advantages of these new technologies, there remains much 

room for improvement before introducing them into clinical practice.

The LifeTech Ion Torrent and Proton platforms are strikingly different from other NGS 

platforms, because they measure pH changes rather than e.g. fluorescence during 

sequencing. While the data output is still relatively low per chip, the fast turnaround time per 

chip makes the Ion Torrent and Proton very suitable to smaller, focused sequencing projects, 

16S sequencing projects, SNP detection and validation, as well as sequencing of small 

genomes. Hence, they may gain more relevance for the clinics with increase in read length in 

the coming years and decrease in costs. Similarly, smaller and more affordable sequencing 

instruments, like the Illumina MiSeq, may become an instrument of choice for diagnostic 

and prognostic clinical centers and smaller laboratories.

Cost per platform, especially running cost, is important to the end user but difficult to 

estimate. Based on our own recent experience in a large sequencing project, the Sequencing 

Quality Control (SEQC) project, the cost per Gb data for the three major platforms is $46.8 

for HiSeq 2000, $77.2 for SOLiD4, and $12,210 for Roche 454. That is, the ratio of per Gb 

cost is 1:1.65:261 for Illumina:LifeTech:454.

Although the Illumina HiSeq 2000 or 2500 platform is the most cost-effective tool for 

whole-genome sequencing, but it still takes days to have one genome sequenced. The 

expected rate of dropping in sequencing cost and increase in sequencing throughput has not 

been maintained over the past one and half years because of the lack of competition – 

Illumina has been dominating the sequencing market. Newer sequencing platforms, like 

nanopore-based technologies, have yet to demonstrate their viability in terms sequencing 

throughput and accuracy. In the next two to three years, Illumina will likely continue to 

dominate the sequencing market and the cost per genome at 30× coverage is almost 

impossible to drop to below $1000. Note that the cost for storing, analysis, and interpreting 

whole-genome sequencing data is even higher than the cost of generating the data. 

Therefore, sequencing cost will remain a concern for most people including patients and 

insurers.

3. Applications of NGS

3.1. Genome-wide discovery of causal variants

Most common diseases and quantitative traits in human populations have a complex genetic 

basis. The identification of genetic variants that underlie susceptibility to common diseases 

and traits has been challenging. Genome-wide association studies, which have thus far 
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focused on common variants (minor allele frequency, MAF > 5%), have achieved only 

modest success in explaining the heritability of most complex traits. Although over 7000 

strong SNP-trait associations (p < 1.0 × 10−5) have been identified to date, as listed in the 

National Human Genome Research Institute (NHGRI)’s Catalog of Published Genome-

Wide Association Studies, the majority of these SNPs only have small effect sizes and very 

few are causal variants. The ‘common disease – common variant’ hypothesis [18], which 

posits that common traits are most likely attributed to genetic variants with high frequencies 

has been refuted. The missing heritability observed in GWA studies has been attributed to 

several causes, including rare variants of large effects undetected by available genotyping 

arrays, structural variants poorly captured by current technologies, a large number of small-

effect common variants uncovered by existing arrays, insufficient power to identify gene–

gene interactions, and underestimate of environmental and epigenetic effects. An important 

role of rare variants in conferring susceptibility to common diseases and traits has been 

recognized.

With the advent of NGS technologies, it has become feasible to sequence whole genomes in 

relatively large cohorts of individuals to identify rare variants. The 1000 Genomes Project, 

as an example, is developing a more detailed catalog of genetic variants with frequencies 

down to 1% in multiple human populations [19,20]. The UK10K project is a more ambitious 

sequencing effort underway, which will sequence 10,000 human genomes from two well-

phenotyped UK population-based cohorts to identify rare variants in several types of 

diseases. Large-scale genome sequencing of other species has also been launched [21]. 

These advances will largely facilitate the discovery of disease-causing variants. Of note, 

recent whole genome sequencing studies have discovered a number of novel abnormalities 

in cancer genomes [22–28] (Table 2). Furthermore, the characterization of unique mutational 

patterns of individual cancer genomes has shown great promise in personalized cancer 

therapy [29,30].

3.2. Targeted sequencing

Although whole-genome sequencing (WGS) is the most straightforward and comprehensive 

strategy for genome analysis, large-scale WGS studies are still unaffordable for many 

research laboratories and clinical settings. In comparison, targeted sequencing can yield 

much higher coverage of genomic regions of interest while reducing the sequencing cost and 

time. The most commonly used target-enrichment techniques include PCR and array-based 

or solution-based hybridization [31].

PCR-based enrichment methods have the advantage of even coverage and high specificity. 

Generally, primer sets specifically targeting genomic sequences of interest are used to 

generate multiple overlapping amplicons, which can be pooled and converted into a library 

for sequencing. The utilization of PCR-based enrichment methods for massively parallel 

targeted sequencing faces several challenges. First, PCR specificity largely depends on 

primer design and reaction optimization, which can require extensive computational analysis 

to avoid non-specific priming, primer cross-reactivity and dimer formation. PCR primers are 

usually derived from reference gene sequences. The existence of variants in primer 

annealing sites may decrease priming efficiency and cause allelic bias or dropout [32]. 
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Moreover, large rearrangements (e.g., insertions, deletions, translocations) in cancer 

genomes may be undetectable unless primer pairs in flanking regions are defined. Second, 

multiplex amplification of target sequences using multiple primer sets in a single tube can 

result in an excessive amount of non-specific products. Several technologies have been 

developed to get around this problem, including microfluidic PCR [33,34], emulsion PCR 

[35,36], and microdroplet PCR [37]. These strategies enable many singleplex PCRs to be 

performed independently and simultaneously in a single reaction, where primer-pair cross-

interactions and product-product hybridization are prevented. Third, the size of PCR 

amplicons is limited (<10 kb) due to the potential loss of fidelity and efficiency in longer 

PCRs. Thus, PCR amplification of large regions can involve thousands of parallel reactions 

that need tedious optimization, resulting in dramatic increases in cost, labor intensity and 

input DNA amount. Consequently, the scale of PCR-based target enrichment is limited to 

several megabases. Despite these drawbacks, PCR-based strategies may find wide 

applications in clinical practice, considering their high specificity that can ensure clinical 

accuracy. Two major commercial products for PCR-based target enrichment are 

RainDance’s RainStorm (microdroplet-based) and Fluidigm’s Access Array (microfluidic-

based). Their applications in the context of NGS have successfully identified disease-

causing mutations for diagnostic testing [38– 40].

Hybridization-based enrichment methods can directly capture targets of interest from a NGS 

library using complementary oligonucleotides either in solution or on array. The major 

advantage of the methods is their capability to cover large genomic regions, which have been 

scaled to the entire human exome (~30 Mb) [41–43]. In array-based hybridization methods, 

target-specific capture probes are synthesized on high-density DNA microarrays. A number 

of studies have shown the flexibility of on-array hybridization in capturing both short-non-

continuous regions and long-continuous regions [41,42,44–47]. Nevertheless, these methods 

are difficult to scale to large numbers of samples due to the high cost of microarrays. 

Moreover, a vast excess of input DNA is required to ensure sufficient hybridization of each 

probe with its target. Solution- based hybridization methods have been developed to 

overcome these disadvantages. In the methods, an excess of biotinylated single-stranded 

RNA [48,49] or DNA oligos [43] is presented as capture probes in solution. A relatively 

small amount of input DNA-fragment library is required for hybridization reactions in 

aqueous phase. Consequently, both sample DNA quantity and cost per assay for target 

enrichment are substantially reduced. Currently, three major commercial products including 

Agilent’s Sure- Select (array-based and solution-based), Nimblegen’s SeqCap (array-based 

and solution-based) and Illumina’s TruSeq (solution-based) in conjunction with NGS 

platforms have been proven highly effective in exome sequencing [50,51]. Thus far, a 

number of studies have reported the identification of causal mutations by exome sequencing 

for many genetic diseases [52,53] and cancers [54–63] (Table 2).

3.3. RNA-Seq

RNA-Seq applies NGS technologies to qualitatively and quantitatively profile the full set of 

transcripts (i.e., transcriptome), including mRNAs, small RNAs and other non-coding 

RNAs. Transcriptome profiling provides a snapshot of gene expression patterns and 

regulatory elements in a cell, tissue or organism under different physiological states, which 
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is important to the understanding of biological processes in development and disease. 

Though a transcriptome only represents a small fraction of the human genome (<5%) [64], it 

is very complex in that transcripts derived from alternative splicing [65], gene fusion [66], 

antisense transcription [67] and RNA editing [68] largely increase the diversity of 

transcriptome. Initial high-throughput analysis of transcriptomes mainly relied on 

microarray technologies, but their abilities are limited due to the dependence on prior 

knowledge about the genome, the limited dynamic range of detection and cross-

hybridization issues [69]. As an alternative approach, RNASeq offers a direct sequencing 

strategy that is able to define at single base resolution the complete repertoire of RNA 

transcripts across a broad range of expression levels. Recently, RNA-Seq has been 

increasingly applied to study complex diseases, particularly cancer, taking advantage of its 

superior sensitivity and efficiency in detecting allele-specific expression, fusion transcripts 

and non-coding RNAs.

Gene fusions represent a common feature of cancer [70]. They have mostly been found in 

hematological malignancies and bone and soft tissue sarcomas but less frequently in 

epithelial carcinomas [71]. The identification of gene fusions in common solid tumors has 

been largely hindered by the limitations of cytogenetic techniques (FISH, metaphase 

karyotyping and array-CGH) and clonal heterogeneity. RNA-Seq has greatly facilitated the 

discovery of novel gene fusions in various cancer types, including prostate cancer [72–77], 

breast cancer [78,79], lymphoma [80,81], sarcoma [82] and melanoma [83]. Its superiority 

has been shown for unveiling not only recurrent gene fusions arising from chromosomal 

rearrangements that are not detectable at the genomic level, but also recurrent chimeric read-

through transcripts (e.g., SLC45A3-ELK4, CDK2-RAB5B) in the absence of DNA 

aberrations. The occurrence of some fusion events has been linked to the mechanisms of 

carcinogenesis in specific tissues or organs, which could be used to develop diagnostic 

markers. For example, the MHC class II transactivator CIITA has been found to present as a 

partner of various gene fusions in B-cell lymphomas, suggesting that CIITA rearrangements 

may represent a novel oncogenic mechanism in lymphoid cancers [80]. Additionally, a new 

subtype of bone sarcoma caused by a BCOR-CCNB3 gene fusion mechanism has been 

defined [82]. On the contrary, some gene fusions are present across different cancer types. 

For example, recurrent fusions involving RAF pathway genes have been identified in 

prostate cancer, gastric cancer and melanoma, providing therapeutic targets for all three 

cancers [74].

Non-coding RNAs (ncRNAs) are emerging as functional elements in a wide range of 

biological processes, including proliferation, differentiation, development and apoptosis. 

Aberrant functions of ncRNAs have been implicated in the pathogenesis of many human 

diseases, particularly cancer [84]. Long non-coding RNAs (lncRNAs) are a group of 

ncRNAs more than 200 nucleotides in length that take part in a broad spectrum of cellular 

functions, including epigenetic modifications, transcriptional regulation and post-

transcriptional processing of mRNAs [85]. The involvement of lncRNAs in cancer biology 

has been proven by the characterization of dozens of lncRNAs (e.g., DD3/PCA3 [86,87], 

MALAT-1 [88,89], HULC [90,91], ANRIL [92,93], HOTAIR [94–97]) that are differentially 

expressed in cancers [98]. However, though it has been recognized that the human genome 

produces a vast repertoire of lncRNAs, including intergenic, antisense, and intronic 
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transcripts, their functional catalog is still far from fully defined [99,100]. A recent study 

reported the discovery of a novel lncRNA PCAT-1 as an important actor in prostate cancer 

progression through transcriptome analysis of 102 prostate cancer tissues and cell lines by 

RNA-Seq, highlighting the potential of NGS technologies to comprehensively identify 

unannotated ncRNAs that can be clinically valuable markers of disease states [101].

MicroRNAs (miRNAs) are small ncRNAs of ~22 nucleotides that function as key regulators 

of gene expression by binding to complementary sequences in target sites and inducing 

mRNA degradation and/or translational repression [102]. Dysregulated expression of 

miRNAs is a hallmark of many cancers, in which miRNAs can act as oncogenes or tumor 

suppressors. Previous studies have shown distinct miRNA expression patterns in paired 

normal and tumor tissues and also in different tumors, suggesting that miRNA profiles can 

be accurate indicators of tumor type and malignant progression [103–106]. miRNA profiling 

by next-generation sequencing has been proven a powerful tool in the identification of novel 

cancer signatures for diagnosis and prognosis in recent studies [107– 114]. Notably, the 

discovery of tumor-specific circulating miRNAs in body fluids opens up promising avenues 

for developing non-invasive diagnostic and prognostic markers in cancer [115]. Other 

ncRNAs, such as PIWI-interacting RNAs (piRNAs), small nucleolar RNAs (snoRNAs), 

transfer RNAs (tRNAs) and ribosomal RNAs (rRNAs), have also been linked to cancer 

development [84,116]. A recent NGS analysis of small ncRNA species in organ-confined 

and metastatic prostate cancer successfully revealed differentially expressed snoRNAs and 

tRNAs as well as miRNA signatures that are associated with disease promotion [114].

The reliable quantification of gene expression abundance with RNA-Seq depends on the 

depth of sequence data collected on each sample and the inherent expression level of the 

gene of interest. For genes expressed at lower abundance in a sample, many more sequence 

reads are required to achieve accurate quantification, whereas for highly expressed genes, 

much fewer reads are required for their accurate quantification. Roughly, 50–100 million 

reads per sample are required for an RNA-Seq profile to reach similar performance of an 

Affymetrix gene expression microarray. One emerging approach for large-scale clinical 

genomic studies is to first use deep RNA-Seq as a discovery tool to identify transcriptomic 

features relevant to the disease process or treatment outcome and then use custom-designed 

arrays to reliably screen a large number of patient samples as a validation phase or in routine 

clinical applications [117].

3.4. Epigentic profiling

Epigenetic modification of DNA is involved in many aspects of cancer progression. Heyn 

and Esteller [118] have presented a general overview of the importance, applications, and 

challenges of DNA methylation monitoring in the clinic, and it is expected that DNA 

methylation status will be valuable for future diagnosis, prognosis and prediction of 

response to therapies. Carvalho et al. [119] conducted genome-wide DNA methylation 

profiling on non-small cell lung carcinomas and found that while hypomethylated 

differentially methylated regions (DMRs) did not correlate to any particular functional 

category of genes, the hypermethylated DMRs were strongly associated with genes encoding 

transcriptional regulators.
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4. Bioinformatics challenges and solutions

The dramatic reduction in sequencing cost and time allows current NGS platforms to 

generate an unprecedented volume of sequence data, as many as millions or billions of short 

reads (~50– 150 bp) per run, posing great bioinformatics challenges in terms of NGS data 

storage, quality control, alignment, assembly and annotation. Thus far, a number of 

computational tools have been developed for analyzing NGS data in the following scopes: (i) 

base calling; (ii) alignment of sequence reads to a reference; (iii) de novo assembly; and (iv) 

variant detection and genome annotation (Table 3).

Base calling is a process of identifying nucleotide sequences of DNA templates from 

fluorescence intensity signals produced by sequencers. This procedure is critical to the 

interpretation of NGS data, since any introduced sequence errors would have an influence on 

downstream analyses, including alignment, SNP and genotype calling. The technological 

differences among NGS platforms combined with the use of different base-calling 

algorithms lead to platform-dependent error characteristics. The 454 platform tends to have 

insertion and deletion (indel) errors caused by broaden signal distributions in homopolymers 

[167]. In the Illumina platform, the average raw error rate is typically 1% [168]. Error rates 

increase towards the end of reads due to the accumulation of asynchrony in the synthesis 

process. Substitution errors are more frequent than indel errors, and certain substitution (A > 

C transversion) errors are more prevalent [169]. In the SOLiD platform, the raw error rate 

increases from ~2% to ~8% towards the 3′-end [170]. The bias in the distributions of 

fluorescence intensities appears in later sequencing cycles, which can be alleviated by an 

intensity normalization [171]. A number of improved base callers have been developed to 

reduce the error rate for each platform, including Rsolid [171] for the SOLiD platform, 

Pyrobayes [172] for the 454 platform, and BayesCall [173], Ibis [174], Seraphim [175], and 

AYB [176] for the Illumina platform. Base-calling algorithms use quality scores to estimate 

error probabilities for each base call, most of which can be transformed to Phred quality 

score (Q) [177]. An estimated base-calling error rate is 10−Q/10. That is, if a Phred quality 

score of 20 is assigned, the probability to erroneously call a base is 1% (10−2). Improvement 

of base-calling performance remains a computational challenge. Theoretically, faster and 

more accurate base callers should be developed for various NGS platforms. Unfortunately, in 

sequencing practice, the fluorescent intensity signal data files are usually no longer provided 

to the end user because of their huge storage requirements. Thus, the end user has to live 

with whatever the platform provider has implemented in their base calling algorithms.

Incorrect mapping of reads can readily lead to erroneous identification of sequence variants, 

highlighting the importance of alignment accuracy. The most common alignment problem 

arises from reads that map to multiple locations on the reference sequence, so-called multi-

reads. Thus far, it remains challenging to correctly assign multi-reads to their original sites. 

Three strategies have been used to cope with multi-reads. The first strategy is to discard all 

multi-reads and only utilize reads that map uniquely to the reference genome. However, this 

can cause the omission of up to 30% of mappable reads, rendering those variants in 

repetitive elements and gene families that may be of functional significance undetectable. In 

contrast, the other two strategies will not limit alignments to repetitive sequences. One is the 

best-match approach, in which each read is assigned to the location(s) with the fewest 
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mismatches. When more than one best-match location is found, the alignment program will 

report all locations or one of them by random selection. The third strategy is to report all 

alignments until the predefined maximum number is reached. However, these two strategies 

can introduce incorrect alignments, especially in regions of high diversity between the 

sequenced genome and the reference genome. In this case, use of longer reads and paired-

end reads can efficiently reduce the ambiguity and improve alignment accuracy.

Calling SNPs from DNA sequence data remains a major challenge. For a given sample, the 

number and identities (locations) of SNPs called by different software packages can be quite 

divergent. Consequently, SNPs identified to be associated with the phenotype (disease status 

or treatment response) can be largely different, making validation of the findings very 

difficult. Without a “gold standard” SNP calling algorithm, one may focus on those SNPs 

that are called by two or more SNP calling algorithms to ensure a better chance of 

validation.

Reconstruction of a genome in the absence of a reference sequence requires de novo 
assembly of reads into longer contiguous sequences (i.e., contigs) followed by correctly 

ordering contigs into scaffolds. The short length of NGS reads greatly adds to the difficulty 

of genome assembly. A compromise solution is to increase the depth of coverage, but it’s 

still unable to counteract the problems with assembly of repetitive regions. It is a substantial 

challenge for an assembler to distinguish genomic regions that share repeats, especially 

when the repeats are longer than the reads used for assembly. Such repeats not only create 

gaps, their flanking regions can also be incorrectly connected, thus generating misassembled 

chimeras by linking distant regions together. Two approaches have been developed to solve 

the problem: overlap graph and de Bruijn graph [178]. The latter is superior in short-read 

assembly but requires information from paired-end reads to resolve repeats. Hence, efficient 

generation and algorithmic analysis of read pairs would be the key to assembling large 

genomes with short reads. Although there is rarely a need for de novo assembly of the 

human genome in clinical applications, the relevance of metagenomes [179,180] to human 

health makes de novo assembly a necessity.

Transcriptome analysis with RNA-Seq data brings additional computational challenges. One 

challenge is to map reads that span splice or fusion junctions. Conventional mapping 

programs such as ELAND, Bowtie [121] and MAQ [123] that need to allocate reads to 

contiguous sequences are inappropriate for spliced alignment. New algorithms have been 

developed to map splice-crossing reads, some of which utilize previously known splice 

events (e.g., ERANGE [129]), while others (e.g., GSNAP [130], MapSplice [131], RUM 

[132], SpliceMap [133], TopHat [134]) do not rely upon prior knowledge. In particular, 

some algorithms have been specifically designed for the identification of gene fusions, 

including deFuse [157], FusionSeq [158], ShortFuse [159] and TopHat-Fusion [160]. 

Despite high sensitivity of these aligners in detecting junctions, misalignment of multi-reads 

can readily occur and lead to a high false positive rate of identification. Most algorithms 

handle this problem by discarding multi-reads. However, this may result in inaccurate 

estimation of the expression levels of genes located in repetitive regions.
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Gene expression measurement is another challenge in RNA-Seq data analysis. The standard 

approach to estimate the expression level of a gene is to calculate the count of reads mapped 

to that gene. However, the read count is a function of the length and molar concentration of 

the transcript. One common solution is to normalize the read count by the transcript length 

and the number of million mappable reads or fragments (read pairs) to obtain the 

measurement, which is expressed as reads per kilobase per million (RPKM) or fragments per 

kilobase per million (FPKM). Moreover, multireads that originate from multiple isoforms of 

the same gene and homologs of gene families can lead to incorrect estimation of gene 

expression. Given the disadvantages of discarding multi-reads, an alternative strategy has 

been developed to rescue multi-reads by allocating them in proportion to the number of 

reads uniquely mapped at the same loci [181]. Several methods have also been reported to 

estimate expression levels of isoforms and homologous genes in the presence of multi-reads 

with a probabilistic generative model optimized by an Expectation–Maximization (EM) 

algorithm [182,183].

NGS technology is coupled with immense data storage requirements, which needs to be 

considered prior to the decision of employing such platforms in clinical practices, at least for 

now. This is because the huge amount of raw sequence data for each patient, usually 

hundreds of Gbs, needs to be stored for potential future analysis and interpretation when 

analytical algorithms improve. The transfer of NGS data from the sequencing facility to the 

data analysis center presents another challenge. In our experience, shipping the data on hard 

drives with 2 Tbs or 3 Tbs storage space is a routine mechanism. Making the Tbs of 

sequence data readily accessible to the computing power could be the bottleneck. However, 

with the improvement and standardization of sequencing platforms and data analysis 

algorithms, within a few years down the road it may become unnecessary to store the raw 

sequence data anymore. What need to be stored and transferred may be the variant calling 

results that are much smaller in size compared to the raw sequence data.

5. Cancer-specific concerns

5.1. Issues with tumor samples

Fresh or fresh-frozen tumor tissues can provide good-quality samples for massively parallel 

sequencing of cancer genomes, but they are limited in supply in most hospitals. Clinical 

tissue samples are routinely formalin-fixed and paraffin-embedded (FFPE) for 

histopathological examination and long-term storage. Undoubtedly, the use of FFPE material 

could provide a rich sample source for molecular studies of cancer. However, the preparation 

procedure of FFPE samples can lead to significant degradation and chemical modification of 

nucleic acids. It is known that formalin fixation adds hydroxymethyl groups to nucleic acid 

bases and induces cross-linking with proteins. As a consequence, artificial sequence 

alterations can occur in DNA extracted from FFPE samples during PCR. It has been 

assumed that such artifacts are caused by formalin cross-linking of cytosine nucleotides, 

which misleads DNA polymerase to incorporate an adenine instead of a guanosine, resulting 

in a C > T or G > A transition [184]. On the other hand, the poly(A) tail of mRNA isolated 

from FFPE samples is likely to be heavily modified, blocking the annealing of oligo (dT) 

primers to the poly(A) tail in the reverse transcription reaction [185].
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Given these concerns, it is necessary to assess fixation-induced nucleic acid damage and 

minimize error rates when performing massively parallel sequencing of FFPE samples. One 

strategy for removing damage-derived artifacts is to use more stringent alignment criteria. 

However, this can lead to a reduction in coverage depth and may also remove genuine 

mutations. As a solution, a recent study reported a novel post-alignment filtering method that 

integrates global nucleotide mismatch rates and local mismatch rates to remove false 

positive calls caused by formalin fixation [186]. Another strategy is to increase sequencing 

depth. In a whole-exome sequencing study, a high rate of discordant loci as false positives in 

FFPE tissues compared to paired snap-frozen tissues was detected at 20× coverage [187]. 

While false positives were reduced but still present at 40× coverage, no discordance was 

observed at 80× coverage. Hence, it is seen that accurate detection of somatic mutations in 

FFPE tumor samples can be achieved at high coverages, especially using targeted 

sequencing approaches [187,188].

5.2. Tumor heterogeneity

Phenotypic and functional heterogeneity across different tumors in the same individual 

(inter-tumor heterogeneity) as well as cell subpopulations within a single tumor (intra-tumor 

heterogeneity) has been recognized as a hallmark of cancer. The heterogeneous nature of 

tumors can lead to inaccurate diagnosis and therapeutic resistance. Several mechanisms have 

been postulated to account for tumor cell heterogeneity but their relative contribution 

remains controversial [189]. The most widely accepted mechanism involves clonal evolution 

of tumor cell populations driven by genomic instability, which has been supported by 

morphological and cytogenetic findings. However, thus far, tumor heterogeneity has not 

been well defined at the molecular level due to limitations in experimental and analytical 

tools. Recently, taking advantage of NGS technologies, high-resolution genome-wide studies 

of genetic diversity among tumor cells are emerging, leading to a deeper understanding of 

tumor clonal architecture and evolution. In a pilot study, Gerlinger et al. [190] revealed 

branched mutation profiles in multiple spatially separated specimens taken from a single 

tumor by whole-exome sequencing. A more sophisticated view of intra-tumor heterogeneity 

could be obtained with the development of single-cell sequencing technology. Several 

studies have made breakthroughs in reconstructing mutational pathways and tumor evolution 

history based on single-cell genetic architecture [191]. In addition to genomic heterogeneity, 

transcriptome diversity in individual tumors has also been revealed at the single-cell level 

[192]. Single-cell RNA-Seq technology has been established for identifying gene expression 

signatures as well as tumor-associated mutations with small amounts of sample RNA [193]. 

Despite these advances, single-cell sequencing is still not applicable in clinical settings until 

sequencing cost and time are reduced to a reasonable level to make the analysis of hundreds 

of single cells affordable. However, it holds great promise to translate the knowledge of 

tumor heterogeneity into clinical practice, enabling precise diagnosis, targeted therapy and 

personalized medicine to improve the clinical management of cancer patients.

6. Concluding remarks

In the past few years, NGS technologies have made great strides in both basic and clinical 

research, providing deeper insights into the complex genomic landscapes of many diseases. 
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However, implementing NGS into clinical settings still faces some hurdles. First, the rapid 

generation of enormous amounts of sequence data presents a huge challenge for data 

integration. For instance, whole genome sequencing can easily discover numerous genetic 

variations between patients and healthy volunteers, but it will be difficult to extract clinically 

useful and actionable information and validate significant genotype-phenotype associations. 

Notably, a person’s genetic make-up is not the only determinant of disease risk and drug 

response. A variety of demographic and clinical factors (such as age, gender, ethnicity, 

pathological stage, and medical history) could potentially complicate clinical decision-

making. Therefore, it is important to control for confounding factors in the development of 

reliable and reproducible molecular markers. Second, there lacks a standard for quality 

control of sequence data. The problem of sequencing errors remains significant, since such 

errors are not distinguishable from genetic variants and could be misidentified as phenotype-

associated mutations. It is known that all commercially available NGS platforms have 

different error types and error rates. Each error type needs to be carefully assessed and 

corrected in order to minimize the potential impact on downstream data analysis. 

Additionally, applying different bioinformatics strategies could significantly affect the 

output of NGS data analysis. Thus, it is necessary to understand the principles, advantages 

and limitations of bioinformatics tools so as to establish appropriate pipelines capable of 

generating reliable analytical results. These issues are being addressed by the Sequencing 

Quality Control (SEQC) project, a community-wide collaborative effort led by the US Food 

and Drug Administration (www.fda.gov/Micro-ArrayQC/) as a follow-up of its MicroArray 

Quality Control (MAQC) project [194,195]. How to implement regulatory quality control 

standards in translational research and clinical testing requires more attention in the future. 

There is a need to establish reference DNA/RNA samples and reference data sets. Third, the 

massive accumulation of genomic data also raises ethical issues. Whether and how to return 

sequence results to patients remains questionable. The reality with NGS data is that 

clinically and biologically important information is frequently buried in huge amounts of 

noise or false positives and the cost of false-positive diagnosis can be tremendous. Protection 

of the privacy and confidentiality of individual genomic information is also of concern. Only 

when patients are willing to share their medical information and their sequence data can new 

biomedically important findings be discovered and utilized for the benefits of large 

populations. Finally, it is important to note that demonstrated technical performance of NGS 

or any other genomics technologies does not automatically translate to diagnostic assays of 

clinical utilities, because markers reported by most studies are not sufficiently predictive for 

taking clinical actions. Despite these challenges, NGS has provided unprecedented 

opportunities for clinical diagnostics and personalized medicine.

References

1. International Human Genome Sequencing Consortium. Finishing the euchromatic sequence of the 
human genome. Nature. 2004; 431:931–945. [PubMed: 15496913] 

2. Margulies M, Egholm M, Altman WE, Attiya S, Bader JS, Bemben LA, et al. Genome sequencing 
in microfabricated high-density picolitre reactors. Nature. 2005; 437:376–380. [PubMed: 16056220] 

3. Shendure J, Porreca GJ, Reppas NB, Lin X, McCutcheon JP, Rosenbaum AM, et al. Accurate 
multiplex polony sequencing of an evolved bacterial genome. Science. 2005; 309:1728–1732. 
[PubMed: 16081699] 

Xuan et al. Page 14

Cancer Lett. Author manuscript; available in PMC 2017 December 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



4. Metzker ML. Sequencing technologies – the next generation. Nat Rev Genet. 2010; 11:31–46. 
[PubMed: 19997069] 

5. Gilles A, Meglécz E, Pech N, Ferreira S, Malausa T, Martin JF. Accuracy and quality assessment of 
454 GS-FLX titanium pyrosequencing. BMC Genomics. 2011; 12:245. [PubMed: 21592414] 

6. Loman NJ, Misra RV, Dallman TJ, Constantinidou C, Gharbia SE, Wain J, Pallen MJ. Performance 
comparison of benchtop high-throughput sequencing platforms. Nat Biotechnol. 2012; 30:434–439. 
[PubMed: 22522955] 

7. Wommack KE, Bhavsar J, Ravel J. Metagenomics: read length matters. Appl Environ Microbiol. 
2008; 74:1453–1463. [PubMed: 18192407] 

8. Bentley DR, Balasubramanian S, Swerdlow HP, Smith GP, Milton J, Brown CG, et al. Accurate 
whole human genome sequencing using reversible terminator chemistry. Nature. 2008; 456:53–59. 
[PubMed: 18987734] 

9. Turcatti G, Romieu A, Fedurco M, Tairi AP. A new class of cleavable fluorescent nucleotides: 
synthesis and optimization as reversible terminators for DNA sequencing by synthesis. Nucleic 
Acids Res. 2008; 36:e25. [PubMed: 18263613] 

10. Harismendy O, Ng PC, Strausberg RL, Wang X, Stockwell TB, Beeson KY, et al. Evaluation of 
next generation sequencing platforms for population targeted sequencing studies. Genome Biol. 
2009; 10:R32. [PubMed: 19327155] 

11. Milos PM. Emergence of single-molecule sequencing and potential for molecular diagnostic 
applications. Expert Rev Mol Diagn. 2009; 9:659–666. [PubMed: 19817551] 

12. Harris TD, Buzby PR, Babcock H, Beer E, Bowers J, Braslavsky I, et al. Single-molecule DNA 
sequencing of a viral genome. Science. 2008; 320:106–109. [PubMed: 18388294] 

13. Bowers J, Mitchell J, Beer E, Buzby PR, Causey M, Efcavitch JW, et al. Virtual terminator 
nucleotides for next-generation DNA sequencing. Nat Methods. 2009; 6:593–595. [PubMed: 
19620973] 

14. Eid J, Fehr A, Gray J, Luong K, Lyle J, Otto G, et al. Real-time DNA sequencing from single 
polymerase molecules. Science. 2009; 323:133–138. [PubMed: 19023044] 

15. Branton D, Deamer DW, Marziali A, Bayley H, Benner SA, Butler T, et al. The potential and 
challenges of nanopore sequencing. Nat Biotechnol. 2008; 26:1146–1153. [PubMed: 18846088] 

16. Polonsky S, Rossnagel S, Stolovitzky G. Nanopore in metal-dielectric sandwich for DNA position 
control. Appl Phys Lett. 2007; 91:153103.

17. Clarke J, Wu HC, Jayasinghe L, Patel A, Reid S, Bayley H. Continuous base identification for 
single-molecule nanopore DNA sequencing. Nat Nanotechnol. 2009; 4:265–270. [PubMed: 
19350039] 

18. Reich DE, Lander ES. On the allelic spectrum of human disease. Trends Genet. 2001; 17:502–510. 
[PubMed: 11525833] 

19. Kaiser J. DNA sequencing. A plan to capture human diversity in 1000 genomes. Science. 2008; 
319:395. [PubMed: 18218868] 

20. 1000 Genomes Project Consortium. A map of human genome variation from population-scale 
sequencing. Nature. 2010; 467:1061–1073. [PubMed: 20981092] 

21. Genome 10K Community of Scientists. Genome 10K: a proposal to obtain whole-genome 
sequence for 10,000 vertebrate species. J Hered. 2009; 100:659–674. [PubMed: 19892720] 

22. Roberts KG, Morin RD, Zhang J, Hirst M, Zhao Y, Su X, et al. Genetic alterations activating 
kinase and cytokine receptor signaling in high-risk acute lymphoblastic leukemia. Cancer Cell. 
2012; 22:153–166. [PubMed: 22897847] 

23. Stacey SN, Sulem P, Jonasdottir A, Masson G, Gudmundsson J, Gudbjartsson DF, et al. A germline 
variant in the TP53 polyadenylation signal confers cancer susceptibility. Nat Genet. 2011; 
43:1098–1103. [PubMed: 21946351] 

24. Bass AJ, Lawrence MS, Brace LE, Ramos AH, Drier Y, Cibulskis K, et al. Genomic sequencing of 
colorectal adenocarcinomas identifies a recurrent VTI1A-TCF7L2 fusion. Nat Genet. 2011; 
43:964–968. [PubMed: 21892161] 

25. Fujimoto A, Totoki Y, Abe T, Boroevich KA, Hosoda F, Nguyen HH, et al. Whole-genome 
sequencing of liver cancers identifies etiological influences on mutation patterns and recurrent 
mutations in chromatin regulators. Nat Genet. 2012; 44:760–764. [PubMed: 22634756] 

Xuan et al. Page 15

Cancer Lett. Author manuscript; available in PMC 2017 December 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



26. Berger MF, Hodis E, Heffernan TP, Deribe YL, Lawrence MS, Protopopov A, et al. Melanoma 
genome sequencing reveals frequent PREX2 mutations. Nature. 2012; 485:502–506. [PubMed: 
22622578] 

27. Cheung NK, Zhang J, Lu C, Parker M, Bahrami A, Tickoo SK, et al. St. Jude Children’s Research 
Hospital–Washington University Pediatric Cancer Genome Project. Association of age at diagnosis 
and genetic mutations in patients with neuroblastoma. JAMA. 2012; 307:1062–1071. [PubMed: 
22416102] 

28. Rafnar T, Gudbjartsson DF, Sulem P, Jonasdottir A, Sigurdsson A, Jonasdottir A, et al. Mutations 
in BRIP1 confer high risk of ovarian cancer. Nat Genet. 2011; 43:1104–1107. [PubMed: 
21964575] 

29. Roychowdhury S, Iyer MK, Robinson DR, Lonigro RJ, Wu YM, Cao X, et al. Personalized 
oncology through integrative high-throughput sequencing: a pilot study. Sci Transl Med. 2011; 
3:111ra121.

30. Guan YF, Li GR, Wang RJ, Yi YT, Yang L, Jiang D, et al. Application of next-generation 
sequencing in clinical oncology to advance personalized treatment of cancer. Chin J Cancer. 2012; 
31:463–470. [PubMed: 22980418] 

31. Mamanova L, Coffey AJ, Scott CE, Kozarewa I, Turner EH, Kumar A, et al. Target-enrichment 
strategies for next-generation sequencing. Nat Methods. 2010; 7:111–1118. [PubMed: 20111037] 

32. Ikegawa S, Mabuchi A, Ogawa M, Ikeda T. Allele-specific PCR amplification due to sequence 
identity between a PCR primer and an amplicon: is direct sequencing so reliable? Hum Genet. 
2002; 110:606–608. [PubMed: 12107448] 

33. Kirkness EF. Targeted sequencing with microfluidics. Nat Biotechnol. 2009; 27:998–999. 
[PubMed: 19898452] 

34. Zhang Y, Ozdemir P. Microfluidic DNA amplification – a review. Anal Chim Acta. 2009; 638:115–
125. [PubMed: 19327449] 

35. Williams R, Peisajovich SG, Miller OJ, Magdassi S, Tawfik DS, Griffiths AD. Amplification of 
complex gene libraries by emulsion PCR. Nat Methods. 2006; 3:45–50.

36. Xu MY, Aragon AD, Mascarenas MR, Torrez-Martinez N, Edwards JS. Dual primer emulsion PCR 
for next-generation DNA sequencing. Biotechniques. 2010; 48:409–412. [PubMed: 20569215] 

37. Tewhey R, Warner JB, Nakano M, Libby B, Medkova M, David PH, et al. Microdroplet-based 
PCR enrichment for large-scale targeted sequencing. Nat Biotechnol. 2009; 27:1025–1031. 
[PubMed: 19881494] 

38. Hopp K, Heyer CM, Hommerding CJ, Henke SA, Sundsbak JL, Patel S, et al. B9D1 is revealed as 
a novel Meckel syndrome (MKS) gene by targeted exon-enriched next-generation sequencing and 
deletion analysis. Hum Mol Genet. 2011; 20:2524–2534. [PubMed: 21493627] 

39. Jones MA, Bhide S, Chin E, Ng BG, Rhodenizer D, Zhang VW, et al. Targeted polymerase chain 
reaction-based enrichment and next generation sequencing for diagnostic testing of congenital 
disorders of glycosylation. Genet Med. 2011; 13:921–932. [PubMed: 21811164] 

40. Hollants S, Redeker EJ, Matthijs G. Microfluidic amplification as a tool for massive parallel 
sequencing of the familial hypercholesterolemia genes. Clin Chem. 2012; 58:717–724. [PubMed: 
22294733] 

41. Hodges E, Xuan Z, Balija V, Kramer M, Molla MN, Smith SW, et al. Genome-wide in situ exon 
capture for selective resequencing. Nat Genet. 2007; 39:522–527.

42. Ng SB, Turner EH, Robertson PD, Flygare SD, Bigham AW, Lee C, et al. Targeted capture and 
massively parallel sequencing of 12 human exomes. Nature. 2009; 461:272–276. [PubMed: 
19684571] 

43. Bainbridge MN, Wang M, Burgess DL, Kovar C, Rodesch MJ, D’Ascenzo M, et al. Whole exome 
capture in solution with 3 Gbp of data. Genome Biol. 2010; 11:R62. [PubMed: 20565776] 

44. Albert TJ, Molla MN, Muzny DM, Nazareth L, Wheeler D, Song X, et al. Direct selection of 
human genomic loci by microarray hybridization. Nat Methods. 2007; 4:903–905. [PubMed: 
17934467] 

45. Okou DT, Steinberg KM, Middle C, Cutler DJ, Albert TJ, Zwick ME. Microarray-based genomic 
selection for high-throughput resequencing. Nat Methods. 2007; 4:907–909. [PubMed: 17934469] 

Xuan et al. Page 16

Cancer Lett. Author manuscript; available in PMC 2017 December 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



46. Hodges E, Rooks M, Xuan Z, Bhattacharjee A, Benjamin Gordon D, Brizuela L, et al. Hybrid 
selection of discrete genomic intervals on custom-designed microarrays for massively parallel 
sequencing. Nat Protoc. 2009; 4:960–974. [PubMed: 19478811] 

47. Mokry M, Feitsma H, Nijman IJ, de Bruijn E, van der Zaag PJ, Guryev V, Cuppen E. Accurate 
SNP and mutation detection by targeted custom microarray-based genomic enrichment of short-
fragment sequencing libraries. Nucleic Acids Res. 2010; 38:e116. [PubMed: 20164091] 

48. Gnirke A, Melnikov A, Maguire J, Rogov P, LeProust EM, Brockman W, et al. Solution hybrid 
selection with ultra-long oligonucleotides for massively parallel targeted sequencing. Nat 
Biotechnol. 2009; 27:182–189. [PubMed: 19182786] 

49. Tewhey R, Nakano M, Wang X, Pabón-Peña C, Novak B, Giuffre A, et al. Enrichment of 
sequencing targets from the human genome by solution hybridization. Genome Biol. 2009; 
10:R116. [PubMed: 19835619] 

50. Clark MJ, Chen R, Lam HY, Karczewski KJ, Chen R, Euskirchen G, et al. Performance 
comparison of exome DNA sequencing technologies. Nat Biotechnol. 2011; 29:908–914. 
[PubMed: 21947028] 

51. Casci T. DNA sequencing: exome sequencing technologies compared. Nat Rev Genet. 2011; 
12:741. [PubMed: 22005978] 

52. Wu CH, Fallini C, Ticozzi N, Keagle PJ, Sapp PC, Piotrowska K, et al. Mutations in the profilin 1 
gene cause familial amyotrophic lateral sclerosis. Nature. 2012; 488:499–503. [PubMed: 
22801503] 

53. Veltman JA, Brunner HG. De novo mutations in human genetic disease. Nat Rev Genet. 2012; 
13:565–575. [PubMed: 22805709] 

54. Yan XJ, Xu J, Gu ZH, Pan CM, Lu G, Shen Y, et al. Exome sequencing identifies somatic 
mutations of DNA methyltransferase gene DNMT3A in acute monocytic leukemia. Nat Genet. 
2011; 43:309–315. [PubMed: 21399634] 

55. Banerji S, Cibulskis K, Rangel-Escareno C, Brown KK, Carter SL, Frederick AM, et al. Sequence 
analysis of mutations and translocations across breast cancer subtypes. Nature. 2012; 486:405–
409. [PubMed: 22722202] 

56. Agrawal N, Frederick MJ, Pickering CR, Bettegowda C, Chang K, Li RJ, et al. Exome sequencing 
of head and neck squamous cell carcinoma reveals inactivating mutations in NOTCH1. Science. 
2011; 333:1154–1157. [PubMed: 21798897] 

57. Quesada V, Conde L, Villamor N, Ordóñez GR, Jares P, Bassaganyas L, et al. Exome sequencing 
identifies recurrent mutations of the splicing factor SF3B1 gene in chronic lymphocytic leukemia. 
Nat Genet. 2011; 44:47–52. [PubMed: 22158541] 

58. Xiong D, Li G, Li K, Xu Q, Pan Z, Ding F, et al. Exome sequencing identifies MXRA5 as a novel 
cancer gene frequently mutated in non-small cell lung carcinoma from Chinese patients. 
Carcinogenesis. 2012; 33:1797–1805. [PubMed: 22696596] 

59. Liu P, Morrison C, Wang L, Xiong D, Vedell P, Cui P, et al. Identification of somatic mutations in 
non-small cell lung carcinomas using whole-exome sequencing. Carcinogenesis. 2012; 33:1270–
1276. [PubMed: 22510280] 

60. Krauthammer, M., Kong, Y., Ha, BH., Evans, P., Bacchiocchi, A., McCusker, JP., et al. Exome 
sequencing identifies recurrent somatic RAC1 mutations in melanoma. Nat Genet. 2012. http://
dx.doi.org/10.1038/ng.2359

61. Wei X, Walia V, Lin JC, Teer JK, Prickett TD, Gartner J, Davis S, Stemke-Hale K, Davies MA, 
Gershenwald JE, Robinson W, Robinson S, Rosenberg SA, Samuels Y. NISC Comparative 
Sequencing Program. Exome sequencing identifies GRIN2A as frequently mutated in melanoma. 
Nat Genet. 2011; 43:442–446. [PubMed: 21499247] 

62. Barbieri CE, Baca SC, Lawrence MS, Demichelis F, Blattner M, Theurillat JP, et al. Exome 
sequencing identifies recurrent SPOP, FOXA1 and MED12 mutations in prostate cancer. Nat 
Genet. 2012; 44:685–689. [PubMed: 22610119] 

63. Zang ZJ, Cutcutache I, Poon SL, Zhang SL, McPherson JR, Tao J, et al. Exome sequencing of 
gastric adenocarcinoma identifies recurrent somatic mutations in cell adhesion and chromatin 
remodeling genes. Nat Genet. 2012; 44:570–574. [PubMed: 22484628] 

Xuan et al. Page 17

Cancer Lett. Author manuscript; available in PMC 2017 December 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://dx.doi.org/10.1038/ng.2359
http://dx.doi.org/10.1038/ng.2359


64. Ponting CP. The functional repertoires of metazoan genomes. Nat Rev Genet. 2008; 9:689–698. 
[PubMed: 18663365] 

65. Keren H, Lev-Maor G, Ast G. Alternative splicing and evolution: diversification, exon definition 
and function. Nat Rev Genet. 2010; 11:345–355. [PubMed: 20376054] 

66. Akiva P, Toporik A, Edelheit S, Peretz Y, Diber A, Shemesh R, et al. Transcription-mediated gene 
fusion in the human genome. Genome Res. 2006; 16:30–36. [PubMed: 16344562] 

67. Katayama S, Tomaru Y, Kasukawa T, Waki K, Nakanishi M, Nakamura M, et al. RIKEN Genome 
Exploration Research Group; Genome Science Group (Genome Network Project Core Group); 
FANTOM Consortium. Antisense transcription in the mammalian transcriptome. Science. 2005; 
309:1564–1566. [PubMed: 16141073] 

68. Gott JM, Emeson RB. Functions and mechanisms of RNA editing. Annu Rev Genet. 2000; 
34:499–531. [PubMed: 11092837] 

69. Wang Z, Gerstein M, Snyder M. RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev 
Genet. 2009; 10:57–63. [PubMed: 19015660] 

70. Stratton MR, Campbell PJ, Futreal PA. The cancer genome. Nature. 2009; 458(2009):719–724. 
[PubMed: 19360079] 

71. Mitelman F, Johansson B, Mertens F. The impact of translocations and gene fusions on cancer 
causation. Nat Rev Cancer. 2007; 7:233–245. [PubMed: 17361217] 

72. Maher CA, Kumar-Sinha C, Cao X, Kalyana-Sundaram S, Han B, Jing X, et al. Transcriptome 
sequencing to detect gene fusions in cancer. Nature. 2009; 458:97–101. [PubMed: 19136943] 

73. Maher CA, Palanisamy N, Brenner JC, Cao X, Kalyana-Sundaram S, Luo S, et al. Chimeric 
transcript discovery by paired-end transcriptome sequencing. Proc Natl Acad Sci USA. 2009; 
106:12353–12358. [PubMed: 19592507] 

74. Palanisamy N, Ateeq B, Kalyana-Sundaram S, Pflueger D, Ramnarayanan K, Shankar S, et al. 
Rearrangements of the RAF kinase pathway in prostate cancer, gastric cancer and melanoma. Nat 
Med. 2010; 16:793–798. [PubMed: 20526349] 

75. Pflueger D, Terry S, Sboner A, Habegger L, Esgueva R, Lin PC, et al. Discovery of non-ETS gene 
fusions in human prostate cancer using next-generation RNA sequencing. Genome Res. 2011; 
21:56–67. [PubMed: 21036922] 

76. Nacu S, Yuan W, Kan Z, Bhatt D, Rivers CS, Stinson J, et al. Deep RNA sequencing analysis of 
readthrough gene fusions in human prostate adenocarcinoma and reference samples. BMC Med 
Genomics. 2011; 4:11. [PubMed: 21261984] 

77. Ren S, Peng Z, Mao JH, Yu Y, Yin C, Gao X, et al. RNA-seq analysis of prostate cancer in the 
Chinese population identifies recurrent gene fusions, cancer-associated long noncoding RNAs and 
aberrant alternative splicings. Cell Res. 2012; 22:806–821. [PubMed: 22349460] 

78. Edgren H, Murumagi A, Kangaspeska S, Nicorici D, Hongisto V, Kleivi K, et al. Identification of 
fusion genes in breast cancer by paired-end RNA-sequencing. Genome Biol. 2011; 12:R6. 
[PubMed: 21247443] 

79. Ha KC, Lalonde E, Li L, Cavallone L, Natrajan R, Lambros MB, et al. Identification of gene fusion 
transcripts by transcriptome sequencing in BRCA1-mutated breast cancers and cell lines. BMC 
Med Genomics. 2011; 4:75. [PubMed: 22032724] 

80. Steidl C, Shah SP, Woolcock BW, Rui L, Kawahara M, Farinha P, et al. MHC class II transactivator 
CIITA is a recurrent gene fusion partner in lymphoid cancers. Nature. 2011; 471:377–381. 
[PubMed: 21368758] 

81. Scott DW, Mungall KL, Ben-Neriah S, Rogic S, Morin RD, Slack GW, et al. TBL1XR1/TP63: a 
novel recurrent gene fusion in B-cell non-Hodgkin lymphoma. Blood. 2012; 119:4949–4952. 
[PubMed: 22496164] 

82. Pierron G, Tirode F, Lucchesi C, Reynaud S, Ballet S, Cohen-Gogo S, et al. A new subtype of bone 
sarcoma defined by BCOR-CCNB3 gene fusion. Nat Genet. 2012; 44:461–466. [PubMed: 
22387997] 

83. Berger MF, Levin JZ, Vijayendran K, Sivachenko A, Adiconis X, Maguire J, et al. Integrative 
analysis of the melanoma transcriptome. Genome Res. 2010; 20:413–427. [PubMed: 20179022] 

84. Esteller M. Non-coding RNAs in human disease. Nat Rev Genet. 2011; 12:861–874. [PubMed: 
22094949] 

Xuan et al. Page 18

Cancer Lett. Author manuscript; available in PMC 2017 December 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



85. Mercer TR, Dinger ME, Mattick JS. Long non-coding RNAs: insights into functions. Nat Rev 
Genet. 2009; 10:155–159. [PubMed: 19188922] 

86. Bussemakers MJ, van Bokhoven A, Verhaegh GW, Smit FP, Karthaus HF, Schalken JA, et al. DD3: 
a new prostate-specific gene, highly overexpressed in prostate cancer. Cancer Res. 1999; 59:5975–
5979. [PubMed: 10606244] 

87. de Kok JB, Verhaegh GW, Roelofs RW, Hessels D, Kiemeney LA, Aalders TW, et al. DD3(PCA3), 
a very sensitive and specific marker to detect prostate tumors. Cancer Res. 2002; 62:2695–2698. 
[PubMed: 11980670] 

88. Ji P, Diederichs S, Wang W, Böing S, Metzger R, Schneider PM, et al. MALAT-1, a novel 
noncoding RNA, and thymosin beta4 predict metastasis and survival in early-stage non-small cell 
lung cancer. Oncogene. 2003; 22:8031–8041. [PubMed: 12970751] 

89. Tripathi V, Ellis JD, Shen Z, Song DY, Pan Q, Watt AT, et al. The nuclear-retained noncoding RNA 
MALAT1 regulates alternative splicing by modulating SR splicing factor phosphorylation. Mol 
Cell. 2010; 39:925–938. [PubMed: 20797886] 

90. Panzitt K, Tschernatsch MM, Guelly C, Moustafa T, Stradner M, Strohmaier HM, et al. 
Characterization of HULC, a novel gene with striking upregulation in hepatocellular carcinoma, as 
non-coding RNA. Gastroenterology. 2007; 132:330–342. [PubMed: 17241883] 

91. Wang J, Liu X, Wu H, Ni P, Gu Z, Qiao Y, et al. CREB up-regulates long noncoding RNA, HULC 
expression through interaction with microRNA-372 in liver cancer. Nucleic Acids Res. 2010; 
38:5366–5383. [PubMed: 20423907] 

92. Pasmant E, Laurendeau I, Héron D, Vidaud M, Vidaud D, Bièche I. Characterization of a germ-line 
deletion, including the entire INK4/ARF locus, in a melanoma-neural system tumor family: 
identification of ANRIL, an antisense noncoding RNA whose expression coclusters with ARF. 
Cancer Res. 2007; 67:3963–3969. [PubMed: 17440112] 

93. Yap KL, Li S, Muñoz-Cabello AM, Raguz S, Zeng L, Mujtaba S, et al. Molecular interplay of the 
noncoding RNA ANRIL and methylated histone H3 lysine 27 by polycomb CBX7 in 
transcriptional silencing of INK4a. Mol Cell. 2010; 38:662–674. [PubMed: 20541999] 

94. Rinn JL, Kertesz M, Wang JK, Squazzo SL, Xu X, Brugmann SA, et al. Functional demarcation of 
active and silent chromatin domains in human HOX loci by noncoding RNAs. Cell. 2007; 
129:1311–1323. [PubMed: 17604720] 

95. Gupta RA, Shah N, Wang KC, Kim J, Horlings HM, Wong DJ, et al. Long non-coding RNA 
HOTAIR reprograms chromatin state to promote cancer metastasis. Nature. 2010; 464:1071–1076. 
[PubMed: 20393566] 

96. Kogo R, Shimamura T, Mimori K, Kawahara K, Imoto S, Sudo T, et al. Long noncoding RNA 
HOTAIR regulates polycomb-dependent chromatin modification and is associated with poor 
prognosis in colorectal cancers. Cancer Res. 2011; 71:6320–6326. [PubMed: 21862635] 

97. Kim, K., Jutooru, I., Chadalapaka, G., Johnson, G., Frank, J., Burghardt, R., et al. HOTAIR is a 
negative prognostic factor and exhibits pro-oncogenic activity in pancreatic cancer. Oncogene. 
2012. http://dx.doi.org/10.1038/onc.2012.193

98. Spizzo, R., Almeida, MI., Colombatti, A., Calin, GA. Long non-coding RNAs and cancer: a new 
frontier of translational research?. Oncogene. 2012. http://dxdoi.org/10.1038/onc.2011.621

99. Guttman M, Amit I, Garber M, French C, Lin MF, Feldser D, et al. Chromatin signature reveals 
over a thousand highly conserved large non-coding RNAs in mammals. Nature. 2009; 458:223–
227. [PubMed: 19182780] 

100. Ponting CP, Oliver PL, Reik W. Evolution and functions of long noncoding RNAs. Cell. 2009; 
136:629–641. [PubMed: 19239885] 

101. Prensner JR, Iyer MK, Balbin OA, Dhanasekaran SM, Cao Q, Brenner JC, et al. Transcriptome 
sequencing across a prostate cancer cohort identifies PCAT-1, an unannotated lincRNA 
implicated in disease progression. Nat Biotechnol. 2011; 29:742–749. [PubMed: 21804560] 

102. Pasquinelli AE. MicroRNAs and their targets: recognition, regulation and an emerging reciprocal 
relationship. Nat Rev Genet. 2012; 13:271–282. [PubMed: 22411466] 

103. Lu J, Getz G, Miska EA, Alvarez-Saavedra E, Lamb J, Peck D, et al. MicroRNA expression 
profiles classify human cancers. Nature. 2005; 435:834–838. [PubMed: 15944708] 

Xuan et al. Page 19

Cancer Lett. Author manuscript; available in PMC 2017 December 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://dx.doi.org/10.1038/onc.2012.193
http://dxdoi.org/10.1038/onc.2011.621


104. Calin GA, Ferracin M, Cimmino A, Di Leva G, Shimizu M, Wojcik SE, et al. A MicroRNA 
signature associated with prognosis and progression in chronic lymphocytic leukemia. N Engl J 
Med. 2005; 353:1793–1801. [PubMed: 16251535] 

105. Volinia S, Calin GA, Liu CG, Ambs S, Cimmino A, Petrocca F, et al. A microRNA expression 
signature of human solid tumors defines cancer gene targets. Proc Natl Acad Sci USA. 2006; 
103:2257–2261. [PubMed: 16461460] 

106. Yanaihara N, Caplen N, Bowman E, Seike M, Kumamoto K, Yi M, et al. Unique microRNA 
molecular profiles in lung cancer diagnosis and prognosis. Cancer Cell. 2006; 9:189–198. 
[PubMed: 16530703] 

107. Chen X, Ba Y, Ma L, Cai X, Yin Y, Wang K, et al. Characterization of microRNAs in serum: a 
novel class of biomarkers for diagnosis of cancer and other diseases. Cell Res. 2008; 18:997–
1006. [PubMed: 18766170] 

108. Vaz C, Ahmad HM, Sharma P, Gupta R, Kumar L, Kulshreshtha R, Bhattacharya A. Analysis of 
microRNA transcriptome by deep sequencing of small RNA libraries of peripheral blood. BMC 
Genomics. 2010; 11:288. [PubMed: 20459673] 

109. Schulte JH, Marschall T, Martin M, Rosenstiel P, Mestdagh P, Schlierf S, et al. Deep sequencing 
reveals differential expression of microRNAs in favorable versus unfavorable neuroblastoma. 
Nucleic Acids Res. 2010; 38:5919–5928. [PubMed: 20466808] 

110. Persson H, Kvist A, Rego N, Staaf J, Vallon-Christersson J, Luts L, et al. Identification of new 
microRNAs in paired normal and tumor breast tissue suggests a dual role for the ERBB2/Her2 
gene. Cancer Res. 2011; 71:78–86. [PubMed: 21199797] 

111. Han Y, Chen J, Zhao X, Liang C, Wang Y, Sun L, et al. MicroRNA expression signatures of 
bladder cancer revealed by deep sequencing. PLoS ONE. 2011; 6:e18286. [PubMed: 21464941] 

112. Ugras S, Brill E, Jacobsen A, Hafner M, Socci ND, Decarolis PL, et al. Small RNA sequencing 
and functional characterization reveals MicroRNA-143 tumor suppressor activity in liposarcoma. 
Cancer Res. 2011; 71:5659–5669. [PubMed: 21693658] 

113. Volinia S, Galasso M, Sana ME, Wise TF, Palatini J, Huebner K, Croce CM. Breast cancer 
signatures for invasiveness and prognosis defined by deep sequencing of microRNA. Proc Natl 
Acad Sci USA. 2012; 109:3024–3029. [PubMed: 22315424] 

114. Martens-Uzunova ES, Jalava SE, Dits NF, van Leenders GJ, Møller S, Trapman J, et al. 
Diagnostic and prognostic signatures from the small non-coding RNA transcriptome in prostate 
cancer. Oncogene. 2012; 31:978–991. [PubMed: 21765474] 

115. Cortez MA, Bueso-Ramos C, Ferdin J, Lopez-Berestein G, Sood AK, Calin GA. MicroRNAs in 
body fluids – the mix of hormones and biomarkers. Nat Rev Clin Oncol. 2011; 8:467–477. 
[PubMed: 21647195] 

116. White RJ. RNA polymerases I and III, non-coding RNAs and cancer. Trends Genet. 2008; 
24:622–629. [PubMed: 18980784] 

117. Xu W, Seok J, Mindrinos MN, Schweitzer AC, Jiang H, Wilhelmy J, et al. Human transcriptome 
array for high-throughput clinical studies. Proc Natl Acad Sci USA. 2011; 108:3707–3712. 
[PubMed: 21317363] 

118. Heyn H, Esteller M. DNA methylation profiling in the clinic: applications and challenges. Nat 
Rev Genet. 2012; 13:679–692. [PubMed: 22945394] 

119. Carvalho RH, Haberle V, Hou J, van Gent T, Thongjuea S, van Ijcken W, et al. Genome-wide 
DNA methylation profiling of non-small cell lung carcinomas. Epigenetics Chromatin. 2012; 5:9. 
[PubMed: 22726460] 

120. Homer N, Merriman B, Nelson SF. BFAST: an alignment tool for large scale genome 
resequencing. PLoS ONE. 2009; 4:e7767. [PubMed: 19907642] 

121. Langmead B, Trapnell C, Pop M, Salzberg SL. Ultrafast and memory-efficient alignment of short 
DNA sequences to the human genome. Genome Biol. 2009:R25. [PubMed: 19261174] 

122. Li H, Durbin R. Fast and accurate short read alignment with Burrows– Wheeler transform. 
Bioinformatics. 2009; 25:1754–1760. [PubMed: 19451168] 

123. Li H, Ruan J, Durbin R. Mapping short DNA sequencing reads and calling variants using 
mapping quality scores. Genome Res. 2008; 18:1851–1858. [PubMed: 18714091] 

Xuan et al. Page 20

Cancer Lett. Author manuscript; available in PMC 2017 December 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



124. Alkan C, Kidd JM, Marques-Bonet T, Aksay G, Antonacci F, Hormozdiari F, et al. Personalized 
copy number and segmental duplication maps using next-generation sequencing. Nat Genet. 
2009; 41:1061–1067. [PubMed: 19718026] 

125. Smith AD, Xuan Z, Zhang MQ. Using quality scores and longer reads improves accuracy of 
Solexa read mapping. BMC Bioinformatics. 2008; 9:128. [PubMed: 18307793] 

126. Rumble SM, Lacroute P, Dalca AV, Fiume M, Sidow A, Brudno M. SHRiMP: accurate mapping 
of short color-space reads. PLoS Comput Biol. 2009:e1000386. [PubMed: 19461883] 

127. Li R, Yu C, Li Y, Lam TW, Yiu SM, Kristiansen K, Wang J. SOAP2: an improved ultrafast tool 
for short read alignment. Bioinformatics. 2009; 25:1966–1967. [PubMed: 19497933] 

128. Ning Z, Cox AJ, Mullikin JC. SSAHA: a fast search method for large DNA databases. Genome 
Res. 2001; 11:1725–1729. [PubMed: 11591649] 

129. Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B. Mapping and quantifying 
mammalian transcriptomes by RNA-Seq. Nat Methods. 2008; 5:621–628. [PubMed: 18516045] 

130. Wu TD, Nacu S. Fast and SNP-tolerant detection of complex variants and splicing in short reads. 
Bioinformatics. 2010; 26:873–881. [PubMed: 20147302] 

131. Wang K, Singh D, Zeng Z, Coleman SJ, Huang Y, Savich GL, et al. MapSplice. accurate mapping 
of RNA-seq reads for splice junction discovery. Nucleic Acids Res. 2010; 38:e178. [PubMed: 
20802226] 

132. Grant GR, Farkas MH, Pizarro AD, Lahens NF, Schug J, Brunk BP, et al. Comparative analysis of 
RNA-Seq alignment algorithms and the RNA-Seq unified mapper (RUM). Bioinformatics. 2011; 
27:2518–2528. [PubMed: 21775302] 

133. Au KF, Jiang H, Lin L, Xing Y, Wong WH. Detection of splice junctions from paired-end RNA-
seq data by SpliceMap. Nucleic Acids Res. 2010; 38:4570–4578. [PubMed: 20371516] 

134. Trapnell C, Pachter L, Salzberg SL. TopHat: discovering splice junctions with RNA-Seq. 
Bioinformatics. 2009; 25:1105–1111. [PubMed: 19289445] 

135. Simpson JT, Wong K, Jackman SD, Schein JE, Jones SJ, Birol I. ABySS: a parallel assembler for 
short read sequence data. Genome Res. 2009; 19:1117–1123. [PubMed: 19251739] 

136. Butler J, MacCallum I, Kleber M, Shlyakhter IA, Belmonte MK, Lander ES, et al. ALLPATHS: 
de novo assembly of whole-genome shotgun microreads. Genome Res. 2008; 18:810–820. 
[PubMed: 18340039] 

137. Miller JR, Delcher AL, Koren S, Venter E, Walenz BP, Brownley A, et al. Aggressive assembly of 
pyrosequencing reads with mates. Bioinformatics. 2008; 24:2818–2824. [PubMed: 18952627] 

138. Bryant DW Jr, Wong WK, Mockler TC. QSRA: a quality-value guided de novo short read 
assembler. BMC Bioinformatics. 2009; 10:69. [PubMed: 19239711] 

139. Li RQ, Zhu HM, Ruan J, Qian W, Fang XD, Shi ZB, et al. De novo assembly of human genomes 
with massively parallel short read sequencing. Genome Res. 2010; 20:265–272. [PubMed: 
20019144] 

140. Zerbino DR, Birney E. Velvet: algorithms for de novo short read assembly using de Bruijn graphs. 
Genome Res. 2008; 18:821–829. [PubMed: 18349386] 

141. Trapnell C, Williams BA, Pertea G, Mortazavi A, Kwan G, van Baren MJ, et al. Transcript 
assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching 
during cell differentiation. Nat Biotechnol. 2010; 28:511–515. [PubMed: 20436464] 

142. Schulz MH, Zerbino DR, Vingron M, Birney E. Oases: robust de novo RNA-seq assembly across 
the dynamic range of expression levels. Bioinformatics. 2012; 28:1086–1092. [PubMed: 
22368243] 

143. Guttman M, Garber M, Levin JZ, Donaghey J, Robinson J, Adiconis X, et al. Ab initio 
reconstruction of cell type-specific transcriptomes in mouse reveals the conserved multi-exonic 
structure of lincRNAs. Nat Biotechnol. 2010; 28:503–510. [PubMed: 20436462] 

144. Robertson G, Schein J, Chiu R, Corbett R, Field M, Jackman SD, et al. De novo assembly and 
analysis of RNA-seq data. Nat Methods. 2010; 7:909–912. [PubMed: 20935650] 

145. Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, et al. Full-length 
transcriptome assembly from RNA-Seq data without a reference genome. Nat Biotechnol. 2011; 
29:644–652. [PubMed: 21572440] 

Xuan et al. Page 21

Cancer Lett. Author manuscript; available in PMC 2017 December 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



146. McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, et al. The genome 
analysis toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. 
Genome Res. 2010; 20:1297–1303. [PubMed: 20644199] 

147. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. Genome project data 
processing subgroup. The sequence alignment/map format and SAMtools. Bioinformatics. 2009; 
25:2078–2079. [PubMed: 19505943] 

148. Simola DF, Kim J. Sniper: improved SNP discovery by multiply mapping deep sequenced reads. 
Genome Biol. 2011; 12:R55. [PubMed: 21689413] 

149. Goya R, Sun MG, Morin RD, Leung G, Ha G, Wiegand KC, et al. SNVMix: predicting single 
nucleotide variants from next-generation sequencing of tumors. Bioinformatics. 2010; 26:730–
736. [PubMed: 20130035] 

150. Li R, Li Y, Fang X, Yang H, Wang J, Kristiansen K, Wang J. SNP detection for massively parallel 
whole-genome resequencing. Genome Res. 2009; 19:1124–1132. [PubMed: 19420381] 

151. Chen K, Wallis JW, McLellan MD, Larson DE, Kalicki JM, Pohl CS, et al. BreakDancer: an 
algorithm for high-resolution mapping of genomic structural variation. Nat Methods. 2009; 
6:677–681. [PubMed: 19668202] 

152. Sindi SS, Onal S, Peng LC, Wu HT, Raphael BJ. An integrative probabilistic model for 
identification of structural variation in sequencing data. Genome Biol. 2012; 13:R22. [PubMed: 
22452995] 

153. Lee S, Hormozdiari F, Alkan C, Brudno M. MoDIL: detecting small indels from clone-end 
sequencing with mixtures of distributions. Nat Methods. 2009; 6:473–474. [PubMed: 19483690] 

154. Korbel JO, Abyzov A, Mu XJ, Carriero N, Cayting P, Zhang Z, et al. PEMer: a computational 
framework with simulation-based error models for inferring genomic structural variants from 
massive paired-end sequencing data. Genome Biol. 2009; 10:R23. [PubMed: 19236709] 

155. Ye K, Schulz MH, Long Q, Apweiler R, Ning Z. Pindel: a pattern growth approach to detect 
break points of large deletions and medium sized insertions from paired-end short reads. 
Bioinformatics. 2009; 25:2865–2871. [PubMed: 19561018] 

156. Hormozdiari F, Hajirasouliha I, Dao P, Hach F, Yorukoglu D, Alkan C, et al. Next-generation 
VariationHunter: combinatorial algorithms for transposon insertion discovery. Bioinformatics. 
2010; 26:i350–357. [PubMed: 20529927] 

157. McPherson A, Hormozdiari F, Zayed A, Giuliany R, Ha G, Sun MG, et al. DeFuse: an algorithm 
for gene fusion discovery in tumor RNA-Seq data. PLoS Comput Biol. 2011; 7:e1001138. 
[PubMed: 21625565] 

158. Sboner A, Habegger L, Pflueger D, Terry S, Chen DZ, Rozowsky JS, et al. FusionSeq: a modular 
framework for finding gene fusions by analyzing paired-end RNA-sequencing data. Genome 
Biol. 2010; 11:R104. [PubMed: 20964841] 

159. Kinsella M, Harismendy O, Nakano M, Frazer KA, Bafna V. Sensitive gene fusion detection 
using ambiguously mapping RNA-Seq read pairs. Bioinformatics. 2011; 27:1068–1075. 
[PubMed: 21330288] 

160. Kim D, Salzberg SL. TopHat-Fusion: an algorithm for discovery of novel fusion transcripts. 
Genome Biol. 2011; 12:R72. [PubMed: 21835007] 

161. Zhang Q, Ding L, Larson DE, Koboldt DC, McLellan MD, Chen K, et al. CMDS: a population-
based method for identifying recurrent DNA copy number aberrations in cancer from high-
resolution data. Bioinformatics. 2010; 26:464–469. [PubMed: 20031968] 

162. Abyzov A, Urban AE, Snyder M, Gerstein M. CNVnator: an approach to discover, genotype, and 
characterize typical and atypical CNVs from family and population genome sequencing. Genome 
Res. 2011; 21:974–984. [PubMed: 21324876] 

163. Larson DE, Harris CC, Chen K, Koboldt DC, Abbott TE, Dooling DJ, et al. SomaticSniper: 
identification of somatic point mutations in whole genome sequencing data. Bioinformatics. 
2012; 28:311–317. [PubMed: 22155872] 

164. Koboldt DC, Chen K, Wylie T, Larson DE, McLellan MD, Mardis ER, et al. VarScan: variant 
detection in massively parallel sequencing of individual and pooled samples. Bioinformatics. 
2009; 25:2283–2285. [PubMed: 19542151] 

Xuan et al. Page 22

Cancer Lett. Author manuscript; available in PMC 2017 December 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



165. Browning BL, Yu Z. Simultaneous genotype calling and haplotype phasing improves genotype 
accuracy and reduces false-positive associations for genome-wide association studies. Am J Hum 
Genet. 2009; 85:847–861. [PubMed: 19931040] 

166. Howie BN, Donnelly P, Marchini J. A flexible and accurate genotype imputation method for the 
next generation of genome-wide association studies. PLoS Genet. 2009; 5:e1000529. [PubMed: 
19543373] 

167. Huse SM, Huber JA, Morrison HG, Sogin ML, Welch DM. Accuracy and quality of massively 
parallel DNA pyrosequencing. Genome Biol. 2007; 8:R143. [PubMed: 17659080] 

168. Kinde I, Wu J, Papadopoulos N, Kinzler KW, Vogelstein B. Detection and quantification of rare 
mutations with massively parallel sequencing. Proc Natl Acad Sci USA. 2011; 108:9530–9535. 
[PubMed: 21586637] 

169. Minoche AE, Dohm JC, Himmelbauer H. Evaluation of genomic high-throughput sequencing 
data generated on Illumina HiSeq and genome analyzer systems. Genome Biol. 2011; 12:R112. 
[PubMed: 22067484] 

170. Sasson A, Michael TP. Filtering error from SOLiD output. Bioinformatics. 2010; 26:849–850. 
[PubMed: 20207696] 

171. Wu H, Irizarry RA, Bravo HC. Intensity normalization improves color calling in SOLiD 
sequencing. Nat Methods. 2010; 7:336–337. [PubMed: 20431543] 

172. Quinlan AR, Stewart DA, Strömberg MP, Marth GT. Pyrobayes: an improved base caller for SNP 
discovery in pyrosequences. Nat Methods. 2008; 5:179–181. [PubMed: 18193056] 

173. Kao WC, Stevens K, Song YS. BayesCall: a model-based base-calling algorithm for high-
throughput short-read sequencing. Genome Res. 2009; 19:1884–1895. [PubMed: 19661376] 

174. Kircher M, Stenzel U, Kelso J. Improved base calling for the Illumina genome analyzer using 
machine learning strategies. Genome Biol. 2009; 10:R83. [PubMed: 19682367] 

175. Bravo HC, Irizarry RA. Model-based quality assessment and base-calling for second-generation 
sequencing data. Biometrics. 2010; 66:665–674. [PubMed: 19912177] 

176. Massingham T, Goldman N. All your base: a fast and accurate probabilistic approach to base 
calling. Genome Biol. 2012; 13:R13. [PubMed: 22377270] 

177. Ewing B, Green P. Base-calling of automated sequencer traces using phred. II. Error probabilities. 
Genome Res. 1998; 8:186–194. [PubMed: 9521922] 

178. Flicek P, Birney E. Sense from sequence reads: methods for alignment and assembly. Nat 
Methods. 2009; 6:S6–S12. [PubMed: 19844229] 

179. Human Microbiome Project Consortium. Structure, function and diversity of the healthy human 
microbiome. Nature. 2012; 486:207–214. [PubMed: 22699609] 

180. Human Microbiome Project Consortium. A framework for human microbiome research. Nature. 
2012; 486:215–221. [PubMed: 22699610] 

181. Faulkner GJ, Forrest AR, Chalk AM, Schroder K, Hayashizaki Y, Carninci P, Hume DA, 
Grimmond SM. A rescue strategy for multimapping short sequence tags refines surveys of 
transcriptional activity by CAGE. Genomics. 2008; 91:281–288. [PubMed: 18178374] 

182. Paşaniuc B, Zaitlen N, Halperin E. Accurate estimation of expression levels of homologous genes 
in RNA-seq experiments. J Comput Biol. 2011; 18:459–468. [PubMed: 21385047] 

183. Li B, Dewey CN. RSEM: accurate transcript quantification from RNA-Seq data with or without a 
reference genome. BMC Bioinformatics. 2011; 12:323. [PubMed: 21816040] 

184. Williams C, Pontén F, Moberg C, Söderkvist P, Uhlén M, Pontén J, et al. A high frequency of 
sequence alterations is due to formalin fixation of archival specimens. Am J Pathol. 1999; 
155:1467–1471. [PubMed: 10550302] 

185. Srinivasan M, Sedmak D, Jewell S. Effect of fixatives and tissue processing on the content and 
integrity of nucleic acids. Am J Pathol. 2002; 161:1961–1971. [PubMed: 12466110] 

186. Yost SE, Smith EN, Schwab RB, Bao L, Jung H, Wang X, et al. Identification of high-confidence 
somatic mutations in whole genome sequence of formalin-fixed breast cancer specimens. Nucleic 
Acids Res. 2012; 40:e107. [PubMed: 22492626] 

187. Kerick M, Isau M, Timmermann B, Sültmann H, Herwig R, Krobitsch S, et al. Targeted high 
throughput sequencing in clinical cancer settings: formaldehyde fixed-paraffin embedded (FFPE) 

Xuan et al. Page 23

Cancer Lett. Author manuscript; available in PMC 2017 December 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



tumor tissues, input amount and tumor heterogeneity. BMC Med Genomics. 2011; 4:68. 
[PubMed: 21958464] 

188. Wagle N, Berger MF, Davis MJ, Blumenstiel B, Defelice M, Pochanard P, et al. High-throughput 
detection of actionable genomic alterations in clinical tumor samples by targeted, massively 
parallel sequencing. Cancer Discov. 2012; 2:82–93. [PubMed: 22585170] 

189. Stephens PJ, McBride DJ, Lin ML, Varela I, Pleasance ED, Simpson JT, et al. Complex 
landscapes of somatic rearrangement in human breast cancer genomes. Nature. 2009; 462:1005–
1010. [PubMed: 20033038] 

190. Gerlinger M, Rowan AJ, Horswell S, Larkin J, Endesfelder D, Gronroos E, et al. Intratumor 
heterogeneity and branched evolution revealed by multiregion sequencing. N Engl J Med. 2012; 
366:883–892. [PubMed: 22397650] 

191. Navin N, Kendall J, Troge J, Andrews P, Rodgers L, McIndoo J, et al. Tumour evolution inferred 
by single-cell sequencing. Nature. 2011; 472:90–94. [PubMed: 21399628] 

192. Hou Y, Song L, Zhu P, Zhang B, Tao Y, Xu X, et al. Single-cell exome sequencing and 
monoclonal evolution of a JAK2-negative myeloproliferative neoplasm. Cell. 2012; 148:873–
885. [PubMed: 22385957] 

193. Xu X, Hou Y, Yin X, Bao L, Tang A, Song L, et al. Single-cell exome sequencing reveals single-
nucleotide mutation characteristics of a kidney tumor. Cell. 2012; 148:886–895. [PubMed: 
22385958] 

194. Shi L, Reid LH, Jones WD, Shippy R, Warrington JA, Baker SC, et al. The MicroArray Quality 
Control (MAQC) project shows inter- and intraplatform reproducibility of gene expression 
measurements. Nat Biotechnol. 2006; 24:1151–1161. [PubMed: 16964229] 

195. Shi L, Campbell G, Jones WD, Campagne F, Wen Z, Walker SJ, et al. The MicroArray quality 
control (MAQC)-II study of common practices for the development and validation of microarray-
based predictive models. Nat Biotechnol. 2010; 28:827–838. [PubMed: 20676074] 

Xuan et al. Page 24

Cancer Lett. Author manuscript; available in PMC 2017 December 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Xuan et al. Page 25

Ta
b

le
 1

O
ve

rv
ie

w
 o

f 
m

aj
or

 n
ex

t-
ge

ne
ra

tio
n 

se
qu

en
ci

ng
 p

la
tf

or
m

s.

C
om

pa
ny

P
la

tf
or

m
A

m
pl

if
ic

at
io

n
Se

qu
en

ci
ng

R
ea

d 
le

ng
th

T
hr

ou
gh

pu
t/

 t
im

e 
pe

r 
ru

n
D

om
in

an
t 

er
ro

r 
ty

pe
O

ve
ra

ll 
er

ro
r 

ra
te

R
oc

he
/4

54
 L

if
e 

Sc
ie

nc
es

G
S 

FL
X

 T
ita

ni
um

 X
L

+
E

m
ul

si
on

 P
C

R
Py

ro
se

qu
en

ci
ng

U
p 

to
 1

 k
b

70
0 

M
b/

23
 h

In
de

l
0.

5%

G
S 

FL
X

 T
ita

ni
um

 
X

L
R

70
U

p 
to

 6
00

 b
p

45
0 

M
b/

10
 h

G
S 

Ju
ni

or
~4

00
 b

p
35

 M
b/

10
 h

H
iS

eq
 2

00
0

36
–1

00
 b

p
10

5–
60

0 
G

b/
2–

 1
1 

da
ys

Il
lu

m
in

a
G

en
om

e 
A

na
ly

ze
r 

II
x

B
ri

dg
e 

PC
R

Se
qu

en
ci

ng
-b

y-
 s

yn
th

es
is

 w
ith

 
re

ve
rs

ib
le

 te
rm

in
at

or
35

–1
50

 b
p

10
–9

5 
G

b/
2–

 1
4 

da
ys

Su
bs

tit
ut

io
n

0.
2%

M
iS

eq
36

–2
50

 b
p

54
0 

M
b–

8.
5 

G
b/

4–
 

39
 h

L
if

e 
Te

ch
no

lo
gi

es
/ A

pp
lie

d 
B

io
sy

st
em

s
55

00
xl

 S
O

L
iD

™
 s

ys
te

m
E

m
ul

si
on

 P
C

R
Se

qu
en

ci
ng

 b
y 

lig
at

io
n

35
–7

5 
bp

10
–1

5 
G

b/
da

y
Su

bs
tit

ut
io

n
0.

1%

SO
L

iD
™

 4
 s

ys
te

m
25

–5
0 

bp
25

–1
00

 G
b/

3.
5–

 1
6 

da
ys

L
if

e 
Te

ch
no

lo
gi

es
/I

on
 T

or
re

nt
Io

n 
Pr

ot
on

™
 s

eq
ue

nc
er

 
(P

ro
to

n 
I 

ch
ip

)
E

m
ul

si
on

 P
C

R
Io

n 
se

m
ic

on
du

ct
or

 s
eq

ue
nc

in
g

U
p 

to
 2

00
 b

p
U

p 
to

 1
0 

G
b/

2–
4 

h
In

de
l

1%

Io
n 

PG
M

™
 s

eq
ue

nc
er

 
(3

18
 c

hi
p)

35
–2

00
 b

p
30

0 
M

b–
1 

G
b/

0.
9–

 
4.

5 
h

H
el

ic
os

 B
io

Sc
ie

nc
es

H
el

iS
co

pe
™

 s
in

gl
e 

m
ol

ec
ul

e 
se

qu
en

ce
r

N
O

N
E

Si
ng

le
 m

ol
ec

ul
e 

se
qu

en
ci

ng
25

–5
5 

bp
21

–3
5 

G
b/

8 
da

ys
D

el
et

io
n

5%

Pa
ci

fi
c 

B
io

sc
ie

nc
es

Pa
cB

io
 R

S
N

O
N

E
Si

ng
le

 m
ol

ec
ul

e 
se

qu
en

ci
ng

25
0 

bp
– 

10
 k

b
N

A
In

de
l

15
%

Cancer Lett. Author manuscript; available in PMC 2017 December 21.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Xuan et al. Page 26

Ta
b

le
 2

C
an

ce
r 

dr
iv

er
 m

ut
at

io
ns

 d
is

co
ve

re
d 

by
 la

rg
e-

sc
al

e 
ne

xt
 g

en
er

at
io

n 
se

qu
en

ci
ng

.

G
en

e
A

be
rr

at
io

n
ty

pe
Tu

m
or

 t
yp

e
B

io
lo

gi
ca

l
fu

nc
ti

on
Tu

m
or

ef
fe

ct
Se

qu
en

ci
ng

m
et

ho
d

N
um

be
r 

of
sa

m
pl

es
Sa

m
pl

e 
ty

pe
R

ef
er

en
ce

E
B

F1
-P

D
G

FR
B

, B
C

R
-J

A
K

2,
 N

U
P2

14
-A

B
L

1
Fu

si
on

A
L

L
K

in
as

e 
si

gn
al

in
g

A
ct

iv
at

in
g

W
ho

le
- 

ge
no

m
e

15
A

cu
te

 ly
m

ph
ob

la
st

ic
 le

uk
em

ia
22

IL
7R

, S
H

2B
3

M
ut

at
io

n
A

L
L

C
yt

ok
in

e 
si

gn
al

in
g

A
ct

iv
at

in
g

W
ho

le
- 

ge
no

m
e

15
A

cu
te

 ly
m

ph
ob

la
st

ic
 le

uk
em

ia
22

T
P5

3
M

ut
at

io
n

C
el

l C
ar

ci
no

m
a

C
el

l c
yc

le
 r

eg
ul

at
io

n
In

ac
tiv

at
in

g
W

ho
le

- 
ge

no
m

e
45

7
Pe

ri
ph

er
al

 b
lo

od
23

V
T

I1
A

-T
C

F7
L

2
Fu

si
on

C
ol

on
T

ra
ns

cr
ip

tio
n 

fa
ct

or
A

ct
iv

at
in

g
W

ho
le

- 
ge

no
m

e
9

C
ol

or
ec

ta
l a

de
no

ca
rc

in
om

as
24

A
R

ID
1A

, A
R

ID
1B

, A
R

ID
2,

 M
L

L
, M

L
L

3
M

ut
at

io
n

L
iv

er
C

hr
om

at
in

 r
eg

ul
at

io
n

In
ac

tiv
at

in
g

W
ho

le
- 

ge
no

m
e

27
H

ep
at

oc
el

lu
la

r 
ca

rc
in

om
a

25

PR
E

X
2

M
ut

at
io

n
M

el
an

om
a

R
ac

 e
xc

ha
ng

e 
fa

ct
or

In
ac

tiv
at

in
g

W
ho

le
- 

ge
no

m
e

25
M

el
an

om
as

26

A
T

R
X

M
ut

at
io

n
N

eu
ro

bl
as

to
m

a
Te

lo
m

er
e 

m
ai

nt
en

an
ce

In
ac

tiv
at

in
g

W
ho

le
- 

ge
no

m
e

40
N

eu
ro

bl
as

to
m

as
27

B
R

IP
1

M
ut

at
io

n
O

va
ry

D
N

A
 r

ep
ai

r
In

ac
tiv

at
in

g
W

ho
le

- 
ge

no
m

e
45

7
Pe

ri
ph

er
al

 b
lo

od
28

D
N

M
T

3A
M

ut
at

io
n

A
M

L
D

N
A

 m
et

hy
la

tio
n

In
ac

tiv
at

in
g

E
xo

m
e

11
2

A
cu

te
 m

on
oc

yt
ic

 le
uk

em
ia

s
54

C
B

FB
M

ut
at

io
n

B
re

as
t

T
ra

ns
cr

ip
tio

n 
fa

ct
or

In
ac

tiv
at

in
g

E
xo

m
e

10
3

B
re

as
t c

an
ce

rs
55

M
A

G
I3

-A
K

T
3

Fu
si

on
B

re
as

t
C

el
l s

ig
na

lin
g

A
ct

iv
at

in
g

E
xo

m
e

10
3

B
re

as
t c

an
ce

rs
55

N
0T

C
H

1
M

ut
at

io
n

C
el

l c
ar

ci
no

m
a

C
el

l s
ig

na
lin

g
In

ac
tiv

at
in

g
E

xo
m

e
32

H
ea

d 
an

d 
ne

ck
 s

qu
am

ou
s 

ce
ll 

ca
rc

in
om

as
56

SF
3B

1
M

ut
at

io
n

C
M

L
m

R
N

A
 s

pl
ic

in
g

In
ac

tiv
at

in
g

E
xo

m
e

10
5

C
hr

on
ic

 ly
m

ph
oc

yt
ic

 le
uk

em
ia

s
57

M
X

R
A

5
M

ut
at

io
n

L
un

g
M

at
ri

x 
re

m
od

el
in

g
A

ct
iv

at
in

g
E

xo
m

e
14

N
on

-s
m

al
l c

el
l l

un
g 

ca
rc

in
om

as
58

C
SM

D
3

M
ut

at
io

n
L

un
g

U
nk

no
w

n
In

ac
tiv

at
in

g
E

xo
m

e
31

N
on

-s
m

al
l c

el
l l

un
g 

ca
rc

in
om

as
59

R
A

C
1

M
ut

at
io

n
M

el
an

om
a

C
el

l s
ig

na
lin

g
A

ct
iv

at
in

g
E

xo
m

e
14

7
M

el
an

om
as

60

G
R

IN
2A

M
ut

at
io

n
M

el
an

om
a

G
lu

ta
m

at
e 

re
ce

pt
or

U
nk

no
w

n
E

xo
m

e
14

M
el

an
om

as
61

SP
O

P,
 F

O
X

A
1,

 M
E

D
 1

2
M

ut
at

io
n

Pr
os

ta
te

T
ra

ns
cr

ip
tio

n 
re

gu
la

tio
n

U
nk

no
w

n
E

xo
m

e
11

2
Pr

os
ta

te
 tu

m
or

s
62

FA
T

4
M

ut
at

io
n

St
om

ac
h

C
el

l a
dh

es
io

n
In

ac
tiv

at
in

g
E

xo
m

e
15

G
as

tr
ic

 a
de

no
ca

rc
in

om
as

63

A
R

ID
1A

M
ut

at
io

n
St

om
ac

h
C

hr
om

at
in

 r
em

od
el

in
g

In
ac

tiv
at

in
g

E
xo

m
e

15
G

as
tr

ic
 a

de
no

ca
rc

in
om

as
63

Cancer Lett. Author manuscript; available in PMC 2017 December 21.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Xuan et al. Page 27

Table 3

Bioinformatics tools for next-generation sequencing analysis.

Primary category Program Author(s) URL

Unspliced alignment BFAST Homer et al. [120] http://sourceforge.net/apps/mediawiki/bfast/

Bowtie Langmead et al. [121] http://bowtie-bio.sourceforge.net/

BWA Li et al. [122] http://bio-bwa.sourceforge.net/

Cross_match Phil Green and co-workers http://www.phrap.org/phredphrapconsed.html

ELAND Anthony J. Cox http://www.illumina.com

MAQ Li et al. [123] http://maq.sourceforge.net/

Mosaik Michael Strömberg http://bioinformatics.bc.edu/marthlab/Mosaik

mrFAST Alkan et al. [124] http://mrfast.sourceforge.net/

RMAP Smith et al. [125] http://rulai.cshl.edu/rmap/

SHRiMP Rumble et al. [126] http://compbio.cs.toronto.edu/shrimp/

SOAP2 Li et al. [127] http://soap.genomics.org.cn/soapaligner.html

SSAHA2 Ning et al. [128] http://www.sanger.ac.uk/resources/software/ssaha2/

Spliced alignment ERANGE Mortazavi et al. [129] http://woldlab.caltech.edu/rnaseq

GSNAP Wu et al. [130] http://research-pub.gene.com/gmap/

MapSplice Wang et al. [131] http://www.netlab.uky.edu/p/bioinfo/MapSplice

RUM Grant et al. [132] http://cbil.upenn.edu/RUM/

SpliceMap Au et al. [133] http://www.stanford.edu/group/wonglab/SpliceMap/

TopHat Trapnell et al. [134] http://tophat.cbcb.umd.edu/

De novo genome assembly ABySS Simpson et al. [135] http://www.bcgsc.ca/platform/bioinfo/software/abyss/

ALLPATHS-LG Butler et al. [136] http://www.broadinstitute.org/software/allpaths-lg/blog/

CABOG Miller et al. [137] http://sourceforge.net/apps/mediawiki/wgs-assembler/

Newbler Margulies et al. [2] http://454.com/

QSRA Bryant et al. [138] http://qsra.cgrb.oregonstate.edu/

SOAPdenovo Li et al. [139] http://soap.genomics.org.cn/soapdenovo.html

Velvet Zerbino et al. [140] http://www.ebi.ac.uk/zerbino/velvet/

Transcriptome assembly Cufflinks Trapnell et al. [141] http://cufflinks.cbcb.umd.edu/

Oases Schulz et al. [142] http://www.ebi.ac.uk/zerbino/oases/

Scripture Guttman et al. [143] http://www.broadinstitute.org/software/scripture/

Trans-ABySS Robertson et al. [144] http://www.bcgsc.ca/platform/bioinfo/software/trans-abyss

Trinity Grabherr et al. [145] http://trinityrnaseq.sourceforge.net/

SNP detection GATK McKenna et al. [146] http://www.broadinstitute.org/gatk/

SAMtools Li et al. [147] http://samtools.sourceforge.net/

Sniper Simola et al. [148] http://kim.bio.upenn.edu/software/sniper.shtml

SNVMix Goya et al. [149] http://www.bcgsc.ca/platform/bioinfo/software/SNVMix

SOAPsnp Li et al. [150] http://soap.genomics.org.cn/soapsnp.html

Structural variation detection BreakDancer Chen et al. [151] http://gmt.genome.wustl.edu/breakdancer/current/

GASVPro Sindi et al. [152] http://compbio.cs.brown.edu/software.html

MoDIL Lee et al. [153] http://compbio.cs.toronto.edu/modi1/

PEMer Korbel et al. [154] http://sv.gersteinlab.org/pemer/
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Primary category Program Author(s) URL

Pindel Ye et al. [155] https://trac.nbic.nl/pindel/

VariationHunter Hormozdiari et al. [156] http://compbio.cs.sfu.ca/strvar.htm

Fusion detection deFuse McPherson et al. [157] http://defuse.sourceforge.net/

FusionSeq Sboner et al. [158] http://archive.gersteinlab.org/proj/rnaseq/fusionseq/

ShortFuse Kinsella et al. [159] http://exon.ucsd.edu/ShortFuse

TopHat-Fusion Kim et al. [160] http://tophat.cbcb.umd.edu/fusion_index.html

CNV detection CMDS Zhang et al. [161] https://dsgweb.wustl.edu/qunyuan/software/cmds/

CNVnator Abyzov et al. [162] http://sv.gersteinlab.org/cnvnator/

Somatic variant detection SomaticSniper Larson et al. [163] http://gmt.genome.wustl.edu/somatic-sniper/current/

Somatic and germline variant 
detection

VarScan Koboldt et al. [164] http://genome.wustl.edu/software/varscan

Genotype Calling BEAGLE Browning et al. [165] http://faculty.washington.edu/browning/beagle/beagle.html

IMPUTE2 Howie et al. [166] http://mathgen.stats.ox.ac.uk/impute/impute_v2.html
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