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Abstract

Malaria is caused by infection with Plasmodium parasites that have a complex life cycle. The 

parasite protein P47 is critical for disease transmission. P47 mediates mosquito immune evasion in 

both Plasmodium berghei (Pbs47) and Plasmodium falciparum (Pfs47), and has been shown to be 

important for optimal female gamete fertility in P. berghei. Pfs47 presents strong geographic 

structure in natural P. falciparum populations, consistent with natural selection of Pfs47 haplotypes 

by the mosquito immune system as the parasite adapted to new vector species worldwide. These 

key functions make Plasmodium P47 an attractive target to disrupt malaria transmission.
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Introduction

Malaria is the most important human parasitic disease, with 212 million cases and 429,000 

deaths in 2015 [1]. It is caused by Plasmodium parasites with a complex life cycle that 

alternates between a vertebrate host and a mosquito vector. Plasmodium falciparum and 

Plasmodium vivax are the most prevalent agents of human malaria and are transmitted by 

anopheline mosquitoes. While Plasmodium parasites have a rather restricted vertebrate host 

range, they have adapted to at least 70 different mosquito species [2], many of them 

evolutionarily distant from vectors in Africa, where human malarias originated [3,4].

Plasmodium undergoes obligatory sexual reproduction and multiple developmental stages in 

the mosquito [5–7]. Mosquitoes become infected when a female ingests a blood meal 

containing Plasmodium gametocytes (Fig 1). These develop into gametes in the mosquito 

midgut lumen and fuse to form a zygote, which subsequently matures into a motile ookinete 

and invades the mosquito midgut epithelium. If the ookinete succeeds in traversing the 
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midgut epithelial cell, it transforms into an oocyst and replicates, generating thousands of 

sporozoites that are released into the mosquito hemolymph. Some sporozoites are able to 

invade the salivary gland and are transmitted to another person when the mosquito acquires a 

subsequent blood meal. To be transmitted, Plasmodium parasites must overcome many 

obstacles [8], such as physical barriers and antiplasmodial responses that target ookinetes [9] 

or oocysts [10,11]. In some incompatible parasite-vector combinations, the mosquito 

complement-like immune response eliminates most ookinetes [9,12,13].

Ookinete midgut invasion activates a strong epithelial nitration response [14,15] that triggers 

local release of hemocyte-derived microvesicles [16] that, in turn, promote mosquito 

complement-like activation. The Anopheles gambiae thioester containing protein (TEP1), a 

homolog of complement factor C3 in vertebrates [17], is stabilized in the hemolymph by 

interacting with the leucine-rich repeat proteins LRIM1 and APL1C [18,19] (Fig. 1). When 

activated, TEP1 binds to the ookinete surface and triggers the formation of a complex that 

kills the parasites. Here we review the known biological functions of P47 critical for malaria 

transmission: Plasmodium fertilization and parasite evasion of the mosquito immune system. 

The importance of immune evasion for the adaptation of Plasmodium falciparum to different 

mosquito species during the globalization of malaria will be discussed.

P47 organization

P47 is one of 14 members of the six-cysteine (6-Cys) protein family [20]. The characteristic 

6-Cys domain (also called s48/45 domain) was initially identified in Pfs230 [21]. Although 

the protein sequence homology is low (14–36% amino acid identity), this family is 

characterized by containing anywhere from 1 to 14 copies of the 6-Cys motif domain, and 

have clear orthologs in all Plasmodium species that have been analyzed. Members of the 6-

Cys family are secreted, or membrane-anchored proteins, and are expressed at different 

stages of the parasite’s life cycle. Some of them are important for sporozoite liver invasion, 

while others are involved in fertilization [20] or mosquito immune evasion [22].

The P47 gene was initially identified in P. falciparum (Pfs47) based on sequence homology 

to other 6-Cys members, such as Pfs230 and Pfs48/45, two of the leading transmission-

blocking vaccine targets [23–25]. The Pfs47 (PF3D7_1346800) gene is localized in 

chromosome 13, adjacent to Pfs48/45 (PF3D7_1346700). Both genes lack introns and have 

a similar domain organization, consisting of three 6-Cys domains, yet share low sequence 

homology (26% amino acid identity). Pfs48/45 is expressed on the surface of both male and 

female gametocytes and gametes, and is required for male fertility [26].

Pfs47 has a signal peptide and a putative GPI anchor sequence (Fig. 2), domains 1 and 3 are 

characteristic 6-Cys domains, while domain 2 is a degenerate s48/45 domain with only two 

cysteines (Fig 2) [27]. Although there are clear Pfs47 orthologs in other Plasmodium 
species, the sequence homology is low (Fig. S1). For example, P. falciparum and P. vivax 
have 42% amino acid identity. Analysis of P47 sequences from several rodent malaria 

parasites indicates that P47 is evolving under positive selection [28,29] with exceptionally 

high ratio of nonsynonymous to synonymous substitutions (dN/dS) in the second domain 

[28].
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Biological function of P47

Fertilization

P47 is localized on the surface of female gametocytes (Fig. 1) and gametes, as well as of 

zygotes and ookinetes [22,30,31]. It does not seem to be essential for fertilization in P. 
falciparum because gametocyte cultures in which the Pfs47 gene was disrupted (Pfs47-KO) 

efficiently infected A. stephensi Nijmegen mosquitoes [31]. Furthermore, three anti-Pfs47 

monoclonal antibodies did not inhibit A. stephensi infection with wild-type P. falciparum 
parasites [31]. Later studies in P. berghei found that P47 was required for female fertility 

under in vitro culture conditions, and disruption of the gene also significantly impaired 

fertilization in vivo [28]. Although Pfs47 is not essential for fertilization when mosquitoes 

are fed large number of cultured P. falciparum gametocytes, it may play an important role in 

optimizing fertilization under in vivo conditions, as observed in the P. berghei system, in 

which much smaller numbers of gametocytes are ingested by female mosquitoes.

Immune evasion

An A. gambiae strain (L3–5), genetically selected to be highly refractory to P. cynomolgi 
infection, also eliminated most P. falciparum strains from Asia or the Americas but, 

interestingly, some parasite strains from West Africa survived infection of the mosquito [32]. 

Later studies showed that the African strains that survive, evade the mosquito complement-

like system [13]. A genetic cross between the Brazilian 7G8 P. falciparum strain that is 

eliminated and the African GB4 strains that survives in A. gambiae L3–5, was used to 

identify the gene that made the African parasites “invisible” to the mosquito immune 

system. A combination of genetic mapping, linkage group selection and functional genetics 

identified Pfs47 as a gene required for P. falciparum to evade immune detection [22]. There 

are only four amino acid differences between the Pfs47 proteins in the 7G8 and GB4 strains 

(Fig. 2), all present between the two cysteines in domain 2, that are key determinants of 

parasite survival in A. gambiae L3–5 [22,33]. In contrast, both parasite lines (GB4 and 7G8) 

readily infect the A. gambiae G3 strain, indicating that mosquito genetic factors also 

determine how effective different Pfs47 haplotypes are in promoting evasion of mosquito 

immunity [22]. It is clear, however, that Pfs47 greatly enhances P. falciparum parasite 

survival in both A. gambiae G3 and L3–5 strains, because the great majority of P. falciparum 
(NF54) parasites in which the Pfs47 gene has been disrupted are readily eliminated in both 

mosquito strains [22]. Pfs47 appears to prevent elimination of the parasite by disrupting c-

Jun N-terminal kinase (JNK) signaling [34], a pathway that is essential to trigger epithelial 

nitration [34,35]. Lack of nitration precludes the release of hemocyte-derived microvesicles 

[16] and prevents local TEP1 activation and binding on the ookinete surface [22,34]. 

Interestingly, a Pfs47-KO line readily infects the A. stephensi (Nijmegen strain) mosquitoes 

[31] [22]. It is possible that because the A. stephensi Nijmegen strain was genetically 

selected for high infectivity with P. falciparum [36], this colony was fixed for some 

polymorphism that disrupts antiplasmodial immunity. Alternatively, some vector species 

may be naturally very permissive to many different P47 haplotypes.

Similar to Pfs47, recent studies show that Pbs47 is also required for P. berghei to evade the 

complement-like system in A. gambiae [37]. Interestingly, P. berghei is particularly 
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susceptible to melanization by A. gambiae mosquitoes carrying the TEP1-R1 allele [9], but 

this is not the case for P. falciparum. For example, when the G3 (TEP1 S3/S3) and L3–5 

(TEP1 R1/R1) mosquitoes were mixed in a hybrid colony and allowed to mate for many 

generations, there was a strong association between P. berghei elimination and the TEP R1 

allele, with melanization frequencies of 98% in TEP1 R1/R1 homozygous, 73% in R1/S3 

hybrids and 10% in S3/S3 females. In contrast, P. falciparum 7G8 parasites, that are very 

effectively melanized by the L3–5 strain, were not melanized at all by mosquitoes of this 

hybrid colony [13]; indicating that, besides TEP1 R1, there are other gene(s) in L3–5 

mosquitoes that are required to trigger P. falciparum melanization. However, it is possible 

that TEP1 R1 could enhance lysis of P. falciparum 7G8 parasites. For example, a genetic 

cross between a A. gambiae M colony fixed for TEP1rB (Mali-NIH) and one for fixed for 

TEP1s (Yaoundé) showed a similar dominant effect of TEP1 rB on P. berghei melanization 

and lack of melanization of the ND37 clone obtained from P. falciparum NF54. The number 

of ND37 oocysts was significantly lower (a reduction of about 40% in the mean number of 

oocysts) in TEP1s/rB compared to TEP1 s/s females, suggesting that TEP1 rB, or some gene 

in close proximity, promotes P. falciparum lysis. The effect of TEP1 rB in P. falciparum is 

less dramatic than when the same mosquitoes are infected with P. berghei [38].

P47 population structure and selection by mosquito vectors

Population structure studies of Pfs47, based on a limited number of laboratory and field 

isolates, revealed a strong geographic structure [39], similar to what had previously been 

described for Pfs48/45 [40]. Genotyping of 35 P. falciparum oocysts from field-infected A. 
gambiae from Tanzania showed high inbreeding coefficients for Pfs47 and Pfs48/45 
suggestive of assortative mating; while Pfs47 single nucleotide polymorphism (SNP) 

analysis revealed a modest, but significant, difference in the Pfs47 haplotypes present in 

field-infected A. gambiae vs. A. funestus mosquitoes. This suggests that Pfs47 is under 

natural selection by these two vectors [39]. Furthermore, Pfs47 is one of the P. falciparum 
genes with the highest SNP differentiation between Africa, Asia and Oceania (based on 

whole genome population genetic analysis of 227 isolates) [41]. P. vivax P47 (Pvs47) is also 

polymorphic [42], and is one of the genes with the highest population differentiation 

between continents (based on whole genome sequences of 195 isolates) [43]. Analysis of 

516 Cambodian isolates detected 22 different Pfs47 protein haplotypes closely-related to all 

other Asian isolates [44], in agreement with clustering of certain haplotypes in different 

continents.

Consistent with these previous reports, analysis of 364 Pfs47 sequences from P. falciparum 
isolates collected around the world identified 47 DNA haplotypes that exhibit a high dN/dS, 

suggestive of natural selection [45]. The 42 Pfs47 protein sequence haplotypes identified, 

share 97.7–99.8% amino acid identity, with Domain 2 being the most polymorphic region of 

the protein. Phylogenetic analysis showed that the haplotypes cluster into two main clades. 

The largest clade includes 32 haplotypes that are more frequent in Africa, one exclusive to 

Papua New Guinea and three that are the only ones detected in the Americas, consistent with 

the African origin of P. falciparum [46]. The smaller clade, includes six haplotypes that are 

frequent in Asia but were not detected in the Americas. In summary, both Pfs47 and Pvs47 
haplotypes present a marked geographical population structure at a continental level not 
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observed in most other genes, suggesting that this population structure is the product of a 

natural selection process that favors certain P47 haplotypes in a given continent [45].

Immune evasion and globalization of P. falciparum malaria

Direct comparison of the compatibility between three major malaria vectors from Africa (A. 
gambiae), Southeast Asia (A. dirus) and the Americas (A. albimanus), with P. falciparum 
isolates collected from these continents, supports the hypothesis that Pfs47 has been 

important for the adaptation of P. falciparum to evolutionarily distant Anopheline vectors. 

Anopheline mosquitoes had higher compatibility (i.e. higher infection intensity and 

prevalence) when infected with P. falciparum from the same geographic region, suggesting 

that P. falciparum underwent natural selection while adapting to different vectors [45]. The 

mosquito immune system was shown to be a major determinant of parasite-vector 

compatibility, because disruption of the mosquito complement system greatly enhanced 

infection in combinations with low compatibility. Furthermore, genetic replacement of the 

Pfs47 haplotype in an African P. falciparum line with Pfs47 haplotypes from other 

geographic regions was sufficient to change the compatibility with these anopheline vectors 

by allowing the parasite to evade the mosquito complement-like system [45]. Taken together, 

these studies indicate that the mosquito immune system has been an important barrier for 

adaptation of P. falciparum to distant anopheline species through selection of Pfs47, which 

may have influenced the parasite’s population structure and the epidemiology of malaria. 

Based on these findings, the “lock-and-key theory” of P. falciparum globalization was 

proposed, in which Pfs47 is the “key” that interacts with a mosquito receptor (“lock”), 

disrupting the antiplasmodial response [45]. The receptors are predicted to be different in 

evolutionary distant vectors and to select parasites that carry a compatible Pfs47 haplotype 

(the correct key), by allowing them to evade immune detection.

This model has important implications for the spread of the kelch propeller domain protein 

(K13) mutations that mediate delayed parasite clearance in response to artemisinin, because 

the K13 and Pfs47 genes are likely to be genetically linked, due to their close proximity (151 

kb) [47]. P. falciparum lines with these K13 mutations are associated with the two most 

frequent Pfs47 haplotypes in Asia [44]. African mosquito vectors can be infected with these 

lines [44,45], but the level of infection in A. gambiae is significantly lower than in A. dirus 
(Asian) mosquitoes [45]. This would suggest that the K13 mutations could readily spread 

from Asia to Africa if the parasite is under drug pressure, which was the case for the spread 

of chloroquine resistance from Asia to Africa [48]. These Asian lines have very low 

compatibility with A. albimanus (New World vector), suggesting that the K13 mutations are 

less likely to spread from Asia to the New World [45].

Infections of A. gambiae (Ngousso and L3–5 strains) with three different African P. 
falciparum isolates, showed that most parasites from two of the isolates survived in both 

mosquito strains. However, most parasites from the third isolate (NF165) were eliminated by 

the mosquito complement-like system in both the Ngousso and L3–5 strains [49]. This was 

unexpected, because the predicted protein sequence of Pfs47 Domain 2 from NF165 is 

identical to that of Pfs47 from GB4, a strain that evades mosquito immunity. Two potential 

explanations for this discrepancy could be that NF165 may have other amino acid 
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differences outside Domain 2 (only 59% of the Pfs47 gene was sequenced) that may be 

major determinants of compatibility in some parasite strains, or that, besides Pfs47, other 

genes may be also be required for effective immune evasion. Although the great majority of 

Pfs47-KO parasites are eliminated by the mosquito complement-like system in both G3 and 

L3–5 mosquitoes, the fact that some Pfs47-KO parasites can infect A. gambiae mosquitoes 

indicates that Pfs47 is not absolutely essential for parasite survival [22, 45].

Although it is apparent that the immune system of some anophelines selects certain Pfs47 

haplotypes, there is no evidence of fertilization incompatibility between P. falciparum strains 

from different continents, as genetic crosses readily produce hybrid progeny [50,51]. The 

human immune system is another possible selective force on Pfs47, as gametocytes not 

ingested by mosquitoes can elicit immunity [52,53], and antibodies following immunization 

with recombinant P. vivax Pvs47 have transmission-blocking activity [54]. This has led us to 

re-evaluate Pfs47 as a potential transmission-blocking vaccine target.

Conclusions

Plasmodium P47 is critical for successful malaria transmission. In P. berghei, P47 is required 

for optimal fertilization, but in P. falciparum this requirement is not well established. In both 

P. falciparum and P. berghei, P47 is also important for mosquito immune evasion. P47 has 

one of the strongest signatures of natural selection and population structure in the P. 
falciparum and P. vivax genomes. The immune system of mosquitoes from different 

continents appears to be one of the forces that have selected Pfs47 haplotypes as malaria 

became global. It is unclear whether all anopheline species exert selection on the parasite. 

The nature of the mosquito Pfs47 receptor, and the mechanism by which it disrupts JNK 

signaling also remain to be determined. The importance of P47 for malaria transmission 

warrants further studies to assess its feasibility as a target to block malaria transmission.
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Highlights

• The Plasmodium P47 protein is critical for successful malaria transmission.

• In P. berghei, P47 is required for optimal fertilization.

• P47 is also important for mosquito immune evasion in P. falciparum and P. 
berghei.

• P47 has a strong geographic structure in P. falciparum and P. vivax 
populations.

• The mosquito immune system selects Pfs47 haplotypes in different 

continents.
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Figure 1. Role of Plasmodium P47 in parasite development in the mosquito
Plasmodium infection of the mosquito is initiated when the mosquito takes a blood meal 

containing gametocytes. These gametocytes mature into gametes in the gut lumen and, 

within minutes, fuse to form a zygote. P47 is expressed of the surface of female gametocytes 

and gametes, and in P. berghei it is required for optimal fertilization. The zygote develops 

into a motile ookinete that, one day after blood feeding, traverses mosquito midgut epithelial 

cells. P47 is also expressed on the surface of ookinetes, and in P. falciparum and P. berghei, 
it allows parasite evasion of the mosquito immune system. Vector-compatible Pfs47 

haplotypes (dark blue) inhibit JNK signaling and the induction of two key enzymes, 

NADPH-oxidase 5 (NOX5) and heme-peroxidase 2 (HPX2), that potentiate epithelial 

nitration in the invaded midgut cell. Successful ookinetes reach the basal membrane (BM) 

and form an oocyst. About two weeks later, oocysts release thousands of sporozoites into the 

hemolymph. Some sporozoites invade the salivary gland and are injected into a new 

vertebrate host when the mosquito takes another blood meal. Parasite lines that carry a 

vector-incompatible Pfs47 haplotype (red) trigger the midgut protein nitration response 
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leading to detection and binding of the thioester-containing protein TEP1 to the parasite 

surface. TEP1 forms a complex that eliminates the parasite through lysis or melanization. 

TEP1 is stabilized in the hemolymph by leucine-rich repeat proteins LRIM1 and APL1C. 

PM, Peritrophic matrix.
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Figure 2. 
Structural organization of Plasmodium falciparum Pfs47 protein (drawn to scale). Pfs47 has 

three domains (D1–D3). The D1 and D3 domains have 6 cysteines (in yellow), while the D2 

domain only has 2 cysteines. Red stars denote the four amino acid differences between the 

West African P. falciparum line (GB4) that evades the immune system of A. gambiae L3–5 

mosquitoes and the Brazilian strain (7G8) that is eliminated. SP, predicted signal peptide; 

GPI, glycosylphosphatidylinositol-anchoring signal; numbers indicate amino acid position.
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