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ABSTRACT
Anti-PD-1 and anti-PD-L1 immunotherapy has provided a new therapeutic opportunity for treatment of
advanced-stage non-small cell lung cancer (NSCLC). However, overall objective response rates are
approximately 15%–25% in all NSCLC patients who receive anti-PD therapy. Therefore, strategies to
overcome primary resistance to anti-PD immunotherapy are urgently needed. We hypothesized that the
barrier to the success of anti-PD therapy in most NSCLC patients can be overcome by stimulating the
lymphocyte infiltration at cancer sites through locoregional virotherapy. To this end, in this study, we
determined combination effects of anti-PD immunotherapy and oncolytic adenoviral vector-mediated tumor
necrosis factor-a-related apoptosis-inducing ligand (TRAIL) gene therapy (Ad/E1-TRAIL) or adenoviral-
mediated TP53 (Ad/CMV-TP53) gene therapy in syngeneic mice bearing subcutaneous tumors derived from
M109 lung cancer cells. Both anti–PD-1 and anti–PD-L1 antibodies failed to elicit obvious therapeutic effects
in the M109 tumors. Intratumoral administration of Ad/E1-TRAIL or Ad/CMV-TP53 alone suppressed tumor
growth in animals preexposed to an adenovector and bearing subcutaneous tumors derived from M109
cells. However, combining either anti–PD-1 or anti–PD-L1 antibody with these two adenoviral vectors elicited
the strongest anticancer activity in mice with existing immunity to adenoviral vectors. Dramatically enhanced
intratumoral immune response was detected in this group of combination therapy based on infiltrations of
CD4C and CD8C lymphocytes and macrophages in tumors. Our results demonstrate that resistance to anti–
PD-1 immunotherapy in syngeneic mouse lung cancer can be overcome by locoregional virotherapy.
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Introduction

Lung cancer is the leading cause of cancer death in men and
women, causing approximately 155,870 annual deaths in the
United States and 1.6 million annual deaths worldwide.1,2 The
overall survival rate in patients with lung cancer has
improved only slightly over the past 4 decades despite the use
of many new therapeutic modalities.3–5 Recent success in
immunotherapy with immune checkpoint inhibitors has pro-
vided new opportunities for the treatment of this deadly dis-
ease. The high mutation rates observed in lung cancer6 make
this disease particularly vulnerable to anti-PD immunother-
apy,7 which dramatically reduced risk of death in some
patients with advanced non–small cell lung cancer
(NSCLC).8,9 Nevertheless, despite the promising results
observed in various clinical trials with anti–PD-19–12 and
anti–PD-L113–15 antibodies, the overall objective response
rates in NSCLC patients who received anti-PD immunother-
apy were approximately 15%–25%.8–13,15 Therefore, strategies
to overcome primary resistance to immune checkpoint inhibi-
tors are urgently needed so that most lung cancer patients
can benefit from anti-PD therapy.

It has been demonstrated that the success of anti-PD therapy
requires preexisting CD8C T cells at cancer sites and PD-L1C

tumor microenvironments that mediate evasion of immune
surveillance.13,16,17 Efficacy of anti-PD therapy also correlates
with a high mutation burden and high neoantigen burden in
tumors7 that can trigger lymphocyte infiltration at tumor sites.
PD-L1 expression is absent in normal tissues but can be
induced by some cancer drivers18,19 or by interferon-g
(IFNg),20,21 a cytokine produced mainly by inflammatory cells,
especially T cells.22,23 Tumor antigens trigger recruitment of
tumor-infiltrating lymphocytes (TILs). IFNg released from
TILs enhances TIL effector functions by stimulating TIL prolif-
eration, differentiation, and antigen processing but paradoxi-
cally induces TIL apoptosis by triggering PD-L1 expression in
the tumor microenvironment, which leads to a negative feed-
back mechanism that suppresses antitumor immunity.22–24

Although blocking PD-L1/PD-1 interaction abrogates the nega-
tive feedback and dramatically enhances TILs’ anticancer activ-
ity at cancer sites, absence of TILs at cancer sites, which has
been observed in a large fraction of cancer patients,24,25
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imposes a major barrier for anti-PD therapy.13,26 Thus, strate-
gies that promote recruitment of lymphocytes to tumor sites
are needed to overcome resistance to anti-PD therapy.

Inflammatory signals strongly promote activated T cell hom-
ing to sites of infection.27,28 In the presence of microbial infection
and foreign gene expression, even very weak T-cell receptor–
ligand interactions are sufficient to activate T cells, inducing
rapid proliferation and generation of effector and memory cells.29

Indeed, our previous study demonstrated that lymphocyte infil-
tration at tumor sites can be induced dramatically by expression
of foreign antigens through locoregional adenovirus- or vaccinia
virus–mediated gene transfer.30 A recent study in a melanoma
tumor model also demonstrated that intratumoral injection of
Newcastle disease virus induced inflammatory responses and
anticancer activity, and dramatically enhanced the activity of
anti–CTLA-4 antibody.31 These results led us to hypothesize that
resistance to anti-PD therapy caused by low or no immune cell
infiltration might be overcome by inflammation-mediated stimu-
lation of lymphocyte infiltration at cancer sites. To test our
hypothesis, we evaluated combination effects of anti-PD therapy
with adenovirus-mediated gene therapy in a syngeneic lung can-
cer model. Our results demonstrated that resistance to anti–PD-
1 immunotherapy in syngeneic mouse lung cancer can be over-
come by locoregional virotherapies.

Results

Infectivity of murine lung cancer cell lines with human
adenovirus

To determine the feasibility of combination therapy of locore-
gional virotherapy and immunotherapy with an immune
checkpoint inhibitor, we first evaluated infectivity of human
adenovirus in syngeneic mouse lung cancer cells. To this end,
mouse lung cancer cell lines CMT167, 344SQ and M109 were
infected with Ad/CMV-GFP at MOIs of 250 to 2000 viral par-
ticles (vp). Cells were harvested for quantification of GFP-posi-
tive cells by flow cytometric analysis at 48 h after the infection.
The results showed that CMT167 and 344SQ cells had similar
sensitivity to Ad/CMV-GFP expression (Fig. 1). About 90% of
cells were GFP positive even at the lowest MOI tested. In con-
trast, M109 cells were relatively resistant to adenovirus infec-
tion. At the dose range of 250–2000 MOIs, GFP-positive cells
increased from 14% to 82% in a dose-dependent manner. Both
CMT167 and 344SQ cell lines have Kras mutations,32,33

whereas the genotype of M109 cells is not available. Whether

Kras mutations contribute to increased sensitivity to adenovi-
rus infection is not clear.

Susceptibility of murine lung cancer cell lines
to TRAIL-armed oncolytic adenovirus

We have previously reported that TRAIL-armed oncolytic ade-
novirus (Ad/E1-TRAIL) has high oncolytic activity in human
lung cancer cell lines in vitro and in vivo.34 To test the cytotox-
icity of Ad/E1-TRAIL in murine lung cancer cells, we infected
CMT167, 344SQ and M109 cells with Ad/E1-TRAIL at MOIs
ranging from 250 to 1000 vp. Mock-infected cells were used as
the control. Cell viability was determined at 24 h and 48 h after
infection. The results showed that Ad/E1-TRAIL induced cell
viability changes in all three cell lines in dose-dependent and
time-dependent manners (Fig. 2). Among the three cell lines
tested, 344SQ was the most sensitive to Ad/E1-TRAIL–induced
cytotoxicity, whereas M109 was the least sensitive.

Effects of combining Ad/TRAIL-E1 and immune checkpoint
inhibitor anti–PD-L1 antibody

To determine combination effects of locoregional virotherapy
and immunotherapy with immune checkpoint inhibitors, we
performed a pilot experiment to determine in vivo tumor for-
mation of CMT167, 344SQ and M109 cells in mice. For this
purpose, we inoculated 1–3 £ 106 cells of these three cell lines
into their host strains of mouse (C57 BL/6, 129/Sv and BALB/c,
respectively). We found that all three cell lines formed tumors
within 1 week after tumor cell inoculation. Nevertheless,
CMT167 and 344SQ had a tendency to form ulceration when
tumors were still small (around the second week of tumor cell
inoculation). Therefore, we used M109 cells in the subsequent
in vivo studies.

Because the majority of human patients have been exposed
to adenovirus infection and have preexisting immunity against
adenovirus,35,36 we preexposed BALB/c mice to adenovirus
through two sequential subcutaneous administrations of Ad/
CMV-LacZ. A group of animals preexposed to PBS were used
as the na€ıve control. Subcutaneous tumors were established by
inoculating the mice with M109 cells (1 £ 106). Treatment
started when tumors reached 5 mm in diameter. Animals were
randomized and treated with Ad/E1-TRAIL (1 £ 1010 vp/intra-
tumoral injection), anti–PD-L1 antibody (100 mg/mouse/injec-
tion, intraperitoneally), or both. Vehicle or Ad/E1-TRAIL plus
a control antibody were used as controls. In na€ıve animals,
treatment with Ad/E1-TRAIL resulted in mild but insignificant
(P D 0.69) tumor growth inhibition when compared with PBS
treated animals, whereas the combination of Ad/E1-TRAIL
with anti–PD-L1 resulted in significant inhibition of tumor
growth (P <0.001, at day 16) (Fig. 3A). In the preexposed ani-
mals, treatment with anti–PD-L1 antibody also resulted in mild
and insignificant tumor growth inhibition (P D 0.63) compared
with vehicle controls (Fig. 3B). Treatment with Ad/E1-TRAIL
alone or in combination with a control antibody suppressed
tumor growth at levels similar to those observed in na€ıve mice
treated with Ad/E1-TRAIL plus anti–PD-L1 antibody
(P < 0.05 at day 16 when compared with PBS treated mice).
Nevertheless, the strongest anti-tumor activity was observed in

Figure 1. Sensitivity of mouse lung cancer cell lines to adenoviral vector. Mouse
lung cancer cells were treated with Ad/CMV-GFP at the indicated MOIs. Percen-
tages of GFP-positive cells were determined at 48 h after the treatment. The data
represent mean C SD of a triplicate assay.
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the preexposed animals treated with Ad/E1-TRAIL plus anti–
PD-L1 antibody (P < 0.05 when compared with all other
groups). These results suggested that although anti–PD-L1
alone is ineffective for M109 tumors, it can significantly
enhance Ad/E1-TRAIL-induced tumor suppression in M109
tumors and that animals with preexisting immunity against
adenovirus benefitted more from this combination therapy
than did adenovirus-na€ıve animals.

Lymphocyte and macrophage infiltrations in tumor tissues

To determine effect of locoregional virotherapy and anti-PD-L1
therapy on lymphocyte and macrophage infiltrations in tumor
tissue, we sacrificed all mice in the above-mentioned experi-
ment at day 16, when the first mouse had to be sacrificed
because of tumor burden. Tumor tissues from each group were
harvested for immunohistochemical analysis on the infiltra-
tions of T lymphocytes and macrophage and the expression of
PD-L1. The result showed that PD-L1 expression in tumor tis-
sues was barely detectable in all groups and was not affected
noticeably by the different treatments. Macrophage infiltration
in tumors was detected by anti-F4/80 antibody in all groups,
but was dramatically increased in the animals pre-exposed to
adenovirus and treated with Ad/E1-TRAIL C anti-PD-L1 anti-
body (Fig. 4). CD4C or CD8C lymphocytes were not detectable
in tumors treated with PBS or anti-PD-L1 antibody, regardless
whether animals were na€ıve or pre-exposed to adenovirus.

Treatment with Ad/E1-TRAIL triggered both CD4C and CD8C

lymphocyte infiltrations, which were more dramatic in animals
pre-exposed to adenovirus than in na€ıve animals. This result is
consist with our previous observation that immunized animals
responded better to foreign antigen-induced immune response
inside tumors.30 Nevertheless, strongest CD4C and CD8C lym-
phocyte infiltrations were observed in animals pre-exposed to
adenovirus and treated with Ad/E1-TRAIL plus anti–PD-L1
antibody (Fig. 4), consisting with the strongest anticancer activ-
ity observed in this group.

Effects of combining Ad/CMV-TP53 and immune
checkpoint inhibitor anti–PD-1 antibody

The promising results observed for the combination effects of
Ad/E1-TRAIL with anti–PD-L1 antibody led us to test
whether the combination therapy works for other adenoviral
vectors and immune checkpoint inhibitors. To this end, we
determined the combination effect of Ad/CMV-TP53 and
anti–PD-1 antibody. We first determined whether the murine
lung cancer cell lines were susceptible to Ad/CMV-TP53 that
expresses the wild-type human TP53 gene. The cells were
infected with Ad/CMV-TP53 or the control vector Ad/CMV-
LacZ at MOIs of 500 to 2000 vp. The cell viability was deter-
mined at 72 h after the treatment. Cells treated with PBS were
used as mock controls. The results showed that neither Ad/
CMV-TP53 nor Ad/CMV-LacZ induced any observable

Figure 2. Cytotoxic effect of Ad/E1-TRAIL in mouse lung cancer cell lines. Mouse lung cancer cells were treated with Ad/E1-TRAIL at the indicated MOIs. Cell viability was
determined at 24 h and 48 h after treatment. Mock-infected cells were used as the control (indicated by the 0 in the MOIs), and their value was set as 1. The values repre-
sent mean § SD of a quadruplet assay. The assay was repeated at least thrice with similar results.

Figure 3. Effect of combining Ad/E1-TRAIL and anti–PD-L1 antibody. BALB/c mice were preexposed to PBS (na€ıve) (A) or Ad/CMV-LacZ (B). Subcutaneous tumors were
then established from M109 lung cancer cells and were treated with Ad/E1-TRAIL (E1-TRAIL) and/or anti–PD-L1 antibody (aPDL1), or control antibody (aControl) as indi-
cated. The mice were monitored for tumor growth. Tumor size (volume) for each mouse at the beginning of treatment was set to 1. Tumor suppression was significant in
the Ad/E1-TRAIL C anti–PD-L1 treatment in preexposed mice (P < 0.05 at day 16 when compared with all other groups). Arrows and triangles indicate time of adenoviral
and antibody treatment, respectively. nD 5 for all groups.
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cytotoxicity in these cell lines (Fig. 5A,B). We then determined
human TP53 expression in these cells after treatment. Cells
were harvested at 48 h after treatment with adenoviral vectors,
and cell lysates were analyzed for human p53 expression by
Western blot analysis. The results showed that cells treated
with Ad/CMV-TP53 but not the control vector induced sub-
stantial expression of human p53 protein (Fig. 5C), suggesting

the lack of cytotoxicity by Ad/CMV-TP53 was not caused by
lack of target gene expression.

We then determined the combination effects of Ad/CMV-
TP53 and anti-mouse PD-1 antibody in the M109 tumor mod-
els. BALB/c mice were preexposed to adenovirus as described
above. Subcutaneous tumors were then established by inoculat-
ing the mice with M109 lung cancer cells (5 £ 105). When

Figure 4. Lymphocyte and macrophage infiltrations in tumors. Formalin fixed paraffin embedded tumor samples were staining for CD4, CD8, F4/80 and PD-L1. Represen-
tative pictures of those markers were shown for each group. Strongest CD4, CD8 and F4/80 signals were detected in tumors of animals with pre-existing immunity against
adenovirus and treated with Ad/E1-TRAIL plus anti-PD-L1 antibody.

Figure 5. Susceptibility of mouse lung cancer cells to Ad/CMV-TP53. Mouse lung cancer cells were treated with Ad/CMV-TP53 (A) or Ad/CMV-LacZ (B) at the indicated
MOIs. Cell viability was determined at 72 h after treatment. Mock-infected cells (indicated by the 0 for MOI) were used as controls, and their value was set as 1. The values
represent mean § SD of a triplicate assay. The assay was repeated at least thrice with similar results. (C) Expression of human p53 in mouse lung cancer cells 48 h after
treatment with a control vector or Ad/CMV-TP53 at an MOI of 1000 vp. b-Actin was used as a loading control.
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tumors reached 5 mm in diameter, animals were randomized
and treated with Ad/CMV-TP53 (1 £ 1010 vp/mouse, intratu-
moral injection), anti–PD-1 antibody (100 mg/mouse, intraper-
itoneally), or both, twice a week for 5 treatments. Control
animals were treated with vehicle. Tumor growth was moni-
tored every 2–3 days and was normalized to the tumor volume
at the beginning of treatment, which was set to 1. Tumors in
mice treated with anti–PD-1 antibody grew faster than those in
vehicle-treated mice, although the difference was not statisti-
cally significant (P D 0.32). Mice treated with Ad/CMV-TP53
had significantly less tumor growth than those treated with
vehicle or anti–PD-1 antibody (P < 0.05). The combination
group had the least tumor growth. The difference was signifi-
cantly when compared with the tumor growth in the other
three groups at day 24 and after (P <0.05). All mice treated
with vehicle, anti–PD-1, or Ad/CMV-TP53 died by day 33, and
the mean survival durations for those three groups were 32.2 §
1.1, 32.2 § 1.1 and 32.6 § 0.9 days, respectively. In contrast,
80% of the mice treated with anti–PD-1 C Ad/CMV-TP53
were alive at day 46, the latest time point of observation. As
assessed by log-rank test, the combination group had signifi-
cant improvement in cumulative survival duration when com-
pared with the other three groups (P �0.014) (Fig. 6). This
result demonstrated that, although M109 tumors were resistant
to anti–PD-1 antibody therapy, combination of this agent with
adenovirus-mediated gene therapy resulted in profound anti-
cancer activity in vivo.

Discussion

The anti–PD-1 antibodies nivolumab8,9 and pembrolizu-
mab12,37 and anti–PD-L1 antibody atezolizumab15 have
recently been approved for treatment of NSCLC by the United
States Food and Drug Administration, providing a new oppor-
tunity for lung cancer patients to improve their clinical out-
comes and/or quality of life. Nevertheless, the results from
clinical trials have shown that only a limited number of lung
cancer patients benefited from anti-PD therapy and most
patients had primary resistance.8–13,15 The mechanisms under-
lying this resistance have not been well characterized but likely
involve multiple factors. Lack of lymphocyte infiltration at

cancer sites, a phenotype that has been observed in many can-
cer patients,24,25 is one of the major factors of resistance to
anti-PD therapy.13,16 In this study, we investigated whether
anticancer immunotherapy can be enhanced by adenovirus-
mediated gene therapy. Our results showed that the mouse
lung adenocarcinoma M109 cell line is resistant to anti–PD-1
and anti–PD-L1 antibody treatment, and this resistance can be
overcome by adenovirus-mediated gene therapy.

Immunotherapy with checkpoint inhibitors such as anti–
PD-1 and anti–PD-L1 antibodies targets primarily the immune
defects at tumor sites by locoregional modulation of immuno-
suppressive signals induced by PD-1 and PD-L1 interactions;26

presence of immune cells in tumor sites is the premise for the
effective anticancer activity of this therapy. This may explain
why the efficacy of PD-1 blockage therapy in lung cancer corre-
lates with a high mutation burden and high neoantigen burden
in tumors,7 which can trigger lymphocyte infiltration at tumor
sites. However, for cancers with a low mutation burden, the
neoantigen burden might not be strong enough to induce suffi-
cient lymphocyte infiltration. We previously reported that lym-
phocyte infiltration at tumor sites can be dramatically induced
by locoregional administration of foreign antigen–expressing
viral vectors, such as adenovirus and vaccinia virus.30 Lympho-
cyte infiltration at tumor sites was enhanced in animals preex-
posed to the viral vectors. Moreover, this approach can also
induce tumor-specific immunity, because animals cured by this
approach rejected tumor growth after being challenged with
parental tumor cells.30 In the present study, we confirmed our
previous observation that oncolytic virotherapy induced lym-
phocyte infiltrations in tumors were enhanced by pre-existing
immunity against the viral vector. Although we purposely pre-
exposed mouse to adenovirus to induce pre-existing anti-
human adenovirus immunity in this study, this procedure is
not required in future clinical study because majority of human
patients have preexisting immunity against adenovirus.35,36 We
found that mice with preexisting immunity have better treat-
ment response to Ad/E1-TRAIL than na€ıve mice and that Ad/
CMV-TP53 has single-agent activity in M109-bearing mice
preexposed to an adenoviral vector, even though Ad/CMV-
TP53 did not have a detectable cytotoxic effect in M109 cells in
vitro. These results are consistent with our previous

Figure 6. Combination effect of Ad/CMV-TP53 and anti–PD-1 antibody. BALB/c mice were preexposed to Ad/CMV-LacZ. Subcutaneous tumors were then established from
M109 lung cancer cells and were treated with single agents or combinations of Ad/CMV-TP53 (Ad/p53) and anti–PD-1 antibody (aPD1). The mice were monitored for
tumor growth and survival. (A) Tumor growth. Tumor size (volume) for each mouse at the beginning of treatment was set to 1. Tumor growth was suppressed signifi-
cantly in the combination group when compared with the other groups (P < 0.05 at day 22 and after). (B) Cumulative survival. The combination group had significantly
improved survival when compared with the other three groups (P�0.014). Arrows and triangles indicate the times of adenoviral and antibody treatment, respectively.
n D 5 for all groups.
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observation that redirecting adaptive immunity against foreign
antigens to tumors can elicit anticancer activity.30 On the other
hand, lymphocyte infiltration at the tumor site is expected to
overcome the resistance to PD-1 blockage therapy caused by
lack of lymphocytes in tumor tissue. Indeed, our results showed
that combination therapy of PD-1 blockage therapy and locore-
gional virotherapy led to profound in vivo anticancer activity
and strongest lymphocyte and macrophage infiltrations in the
M109 tumor model. Nevertheless, at an acute phase of locore-
gional viral infection, majority of immune cells attracted to the
infection site are likely specific for viral antigens. However, our
previous study revealed that destruction of cancer cells tagged
with viral antigens by professional immune cells was able to
promote tumor-specific immune response,30 because animals
could effectively reject tumor growth of parental tumor cells
without viral infections.

Our results revealed that M109 tumors are intrinsically
resistant to the treatment of antibodies against PD-1 or PD-L1.
PD-L1 expression was barely detectable in M109 tumors, con-
sisting with observation in clinics that most PD-L1 negative
tumors were resistant to anti-PD-L1 or PD-1 therapy.13,16,17

Nevertheless, co-administration of either anti–PD-1 or anti–
PD-L1 antibody with adenovirus resulted in significantly stron-
ger activity in M109 tumors than administration of the single
agent with adenovirus. Similar results have recently been
reported by others for the combination therapy of anti–CTLA-
4 antibody and localized oncolytic virotherapy with Newcastle
disease virus in melanoma tumor models.31 This combination
effect is not unexpected, because locoregional lymphocyte infil-
tration caused by viral infection and/or expression of foreign
antigens will result in increased expression of IFNg, the major
inducer of PD-L1 in vivo.38 Increased expression of PD-L1 in
the tumor microenvironment will trigger a negative feedback
mechanism that limits inflammatory response and tissue dam-
age, but concurrently suppresses anticancer immunity. Treat-
ment with anti–PD-1 or anti–PD-L1 antibody is expected to
block this negative feedback and enhance immune response at
tumor sites. It is intriguing that intratumoral PD-L1 expression
was not detectable in all samples analyzed in this study, regard-
less dramatic differences in intratumoral infiltrations of lym-
phocytes and macrophages in different treatment groups. It is
possible that induction of PD-L1 expression is transient, and
the samples collected at the end of experiment may not reflect
dynamic changes of PD-L1 expressions. Alternatively, it is pos-
sible that the assay itself is not sensitive enough to detect low
levels of PD-L1 expressions. This study also had some limita-
tions as it only tested two adenoviruses in one mouse model
and the immunohistochemical assay is qualitative. The roles of
TP53 or TRAIL gene expression in enhancing anti-PD therapy
were not clear. It is likely that direct cell killing by the trans-
genes may not play a major role in the in vivo locoregional
virotherapy because Ad/CMV-TP53 itself did not induce cyto-
toxicity in M109 cells in vitro. We expect that any viral vectors
or strategies that induce locoregional inflammatory response at
tumor sites may have a similar effect in overcoming resistance
to immunotherapy with immune checkpoint inhibitors.
Because a few viral gene therapy vectors, such as Ad/CMV-
TP5339 and herpes simplex virus type 1-derived oncolytic vec-
tor talimogene laherparepvec,40 have been approved for cancer

treatment in China and the United States of America, respec-
tively, it will be interesting to test whether combination therapy
of those approved therapeutic agents with anti-PD immuno-
therapy will improve the response rates in human patients with
lung cancers.

Materials and methods

Cell lines and cell culture

The murine lung carcinoma M109 cell line41 was obtained from
Frederick National Laboratory for Cancer Research, National
Cancer Institute (Frederick, MD). The CMT167 cell line42 was
obtained from Sigma-Aldrich Corporation. The 344SQ cell line
was established from Kras/Tp53 double-mutant mouse lung
cancers as described previously.32 The cells were routinely cul-
tured in RMPI 1640 medium supplemented with 6% heat–inac-
tivated fetal calf serum and 1% Antibiotic-Antimycotic (100X)
(ThermoFisher). All cells were maintained in a humidified
atmosphere containing 5% CO2 at 37�C.

Recombinant adenovirus and immune checkpoint
antibodies

Adenovirus expressing the LacZ protein (Ad/CMV–LacZ),
green fluorescent protein (GFP) (Ad/CMV–GFP) and TP53
(Ad/CMV-TP53), and oncolytic adenovirus expressing tumor
necrosis factor-a-related apoptosis-inducing ligand (TRAIL)
(Ad/E1-TRAIL) were constructed in our laboratory as
described previously.34,43 The expansion, purification, titration
and quality analyses of both vectors were performed as we pre-
viously described.34,43 The titer used in this study was deter-
mined by the absorbency of the dissociated virus at A260 nm
(1 A260 unit D 1 £ 1012 viral particles [vp]/mL), and the infec-
tious units (IU) determined by the median tissue culture infec-
tive dose (TCID50) assay44 were used as additive information.
The vp:IU ratio was usually between 30:1 and 100:1. Monoclo-
nal antibodies of rat anti-mouse PD-L1 (clone 10 F.9 G2) and
master anti-mouse PD-1 (clone J43) and rat control IgG were
obtained from Bio X Cell (West Lebanon, NH).

Adenovirus transduction in murine lung cancer cells

Cells were seeded at 5 £ 105/well in 6-well plates and incubated
for 4 h at 37�C with 5% CO2. Ad/CMV-GFP was added into
the supernatant at a multiplicity of infection (MOI) ranging
from 250 to 2000 VP. Mock-infected and virus-treated cells
were harvested 48 h after the treatment by trypsinization,
washed with phosphate-buffered saline (PBS), centrifuged into
cell pellets and resuspended in PBS. Flow cytometric analysis
for quantification of GFP-positive cells was performed at the
Flow Cytometry and Cellular Imaging Facility of MD Anderson
Cancer Center.

Cell viability assay

The cytotoxicity of the virus was determined using the sulfo-
rhodamine B assay. Cells were seeded at 1 £ 103/well in 96-
well plates and incubated for 24 h at 37�C with 5% CO2.
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Recombinant adenoviruses were added into the medium with
different MOIs. PBS was used as the mock control. Cell viability
was determined 24 h to 72 h after viral infection. After fixation
of viable adherent cells with trichloroacetic acid in a 96–well
microplate, the cells were stained with sulforhodamine B and
quantified with optical density measured at 570 nm. The per-
centage of viable cells was determined according to the cell via-
bility of the mock control, which was set at 100%. Each
experiment was performed in triplicate and repeated at least
three times.

Western blot analysis

Western blot analysis was performed to analyze adenovirus-
mediated human TP53 protein expression after murine lung can-
cer cells were treated with Ad/CMV-TP53 or control vector Ad/
CMV-LacZ. Briefly, cells were washed in PBS, collected and then
lysed in RIPA buffer containing proteinase inhibitor cocktail and
phosphatase inhibitor cocktail (Roche, Indianapolis, IN). The
lysate was centrifuged at 10,000 g at 4�C for 10 min. The super-
natant (30 mg protein) was fractioned by 10% SDS-PAGE gels
and electrophoretically transferred to Immobilon-FL PVDF
membranes. The membrane was blocked with blocking buffer
(Li-Cor) at room temperature for 1 h, then incubated with the
goat anti-human P53 IgG (1:1000) for 2 h or with the primary
antibody at 4�C overnight. After washing with phosphate-buff-
ered saline with (0.05% Tween 2) (PBST), the membrane was
incubated with IRDye infrared secondary antibody (Li-Cor) for
1 h at room temperature. The membrane was washed with
PBST again, and protein expression was detected with the Odys-
sey Infrared Imaging System (Lincoln, NE).

Animal experiments

Animal experiments were carried out in accordance with the
Guidelines for the Care and Use of Laboratory Animals
(National Institutes of Health Publication number 85–23) and
the institutional guidelines of MD Anderson Cancer Center.
Six- to eight-week-old BALB/c, C57 BL/6 or 129/Sv mice were
purchased from Charles River Laboratory or Jackson Labora-
tory and housed at MD Anderson under conventional condi-
tions. To simulate the situation observed in the clinic, that the
majority of patients have previously been exposed to adenovi-
rus infection and have preexisting immunity against adenovi-
rus,35,36 we preexposed mice to adenovirus before tumor
implantation through two subcutaneous inoculations of adeno-
virus Ad/CMV-LacZ (1 £ 1010 vp/mouse/injection) at day 1
and day 14. A group of animals preexposed to PBS were used
as the na€ıve control. Subcutaneous tumors were then estab-
lished by inoculation of 5 £ 105 tumor cells. When tumors
reached about 5 mm in diameter, animals were randomized
and treated with adenovirus (1 £ 1010 vp/mouse, intratumoral
injection), anti–PD-1 antibody (100 mg/mouse, intraperitoneal
injection), or both, twice a week for 2 weeks. Animals treated
with vehicle were used as placebo control. Tumor growth was
monitored every 2 – 3 days and was normalized with tumor
volume at the beginning of treatment, which was set to 1. Sub-
cutaneous tumors were measured with calipers to determine
the largest and smallest diameters, while tumor volume was

calculated according to the formula V D ab2/2, where a is the
largest diameter and b is the smallest. Mice were killed once
one of the tumors reached 15 mm in diameter. Tumors har-
vested at the end of experiment were analyzed for immunohis-
tochemical assay.

Immunohistochemical analysis

Formalin-fixed paraffin-embedded tumor tissue samples were
submitted for immunohistochemical analysis at the Research
Histology, Pathology and Imaging Core in our institution. The
sectioning slides were stained with antibodies specific for
mouse CD4 (eBioscience, #14-9766), CD8 (eBioscience, #14-
0808), PDL1 (Cell Signaling, #64988) and F4/80 (Abcam,
#ab6640) using the standard operation protocols performed in
the Core facility. Mouse spleen and lymph node were used as
positive controls for CD4, CD8 and F4/80, while mouse thymus
was as a positive for PDL1 (see Supplement Fig. 1).

Statistical analysis

Differences among the treatment groups were assessed by anal-
ysis of variance using IBM SPSS Statistics V24 software. Sur-
vival analysis was done using the Kaplan-Meier test, and
differences between curves were assessed using the log-rank
test. P < 0.05 was considered statistically significant.
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