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Abstract

Subject-specific longitudinal DTI study is vital for investigation of pathological changes of lesions 

and disease evolution. Spatial Regression Analysis of Diffusion tensor imaging (SPREAD) is a 

non-parametric permutation-based statistical framework that combines spatial regression and 

resampling techniques to achieve effective detection of localized longitudinal diffusion changes 

within the whole brain at individual level without a priori hypotheses. However, boundary blurring 

and dislocation limit its sensitivity, especially towards detecting lesions of irregular shapes. In the 

present study, we propose an improved SPREAD (dubbed improved SPREAD, or iSPREAD) 

method by incorporating a three-dimensional (3D) nonlinear anisotropic diffusion filtering 

method, which provides edge-preserving image smoothing through a nonlinear scale space 

approach. The statistical inference based on iSPREAD was evaluated and compared with the 

original SPREAD method using both simulated and in vivo human brain data. Results 

demonstrated that the sensitivity and accuracy of the SPREAD method has been improved 

substantially by adapting nonlinear anisotropic filtering. iSPREAD identifies subject-specific 

longitudinal changes in the brain with improved sensitivity, accuracy, and enhanced statistical 

power, especially when the spatial correlation is heterogeneous among neighboring image pixels 

in DTI.
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1. Introduction

Diffusion tensor imaging (DTI) enables description of the degree and direction of water 

movement in biological tissues, which in turn provides information about white matter 

(WM) microstructure (Basser et al 1994). It has been widely used in neuroscience and 

medicine to investigate brain development, to identify subtle changes in white matter, and to 

monitor pathologic severity of lesions and disease evolution (Werring et al 1999). Group-

level analysis, which includes both ROI-based (Douaud et al 2006) and voxel-based 

(Ashburner and Friston 2000, Smith et al 2006) statistical tests, are often used for statistical 

comparisons in longitudinal study of DTI-derived parameters, such as mean diffusivity 

(MD) and fractional anisotropy (FA). However, group-level analysis is most suitable when 

pathological changes are located in similar anatomical regions among subjects. It often fails 

when the longitudinal changes/effects are diverse and highly specific for individual subjects, 

where the inter-subject variations (within-group) exceed the between-group variations. More 

recent works have focused on individual-level longitudinal analysis with DTI measurements 

(Chung et al 2008, Zhu et al 2013).

Both parametric (Friston et al 1994) and non-parametric statistical methods (Chung et al 
2006, Holmes et al 1996) have been used for subject-specific longitudinal studies. Since 

non-normally distributed residuals of DTI parameters make statistical inferences with a 

parametric approach problematic (Jones et al 2005), nonparametric resampling methods 

such as bootstrap and permutation have gained much favor in recent years. Compared to the 

parametric methods (Friston et al 1994), nonparametric methods, which include both 

descriptive and inferential statistics, have the advantage of being able to achieving sufficient 

statistical power with minimal assumptions about the data being investigated. Bootstrap 

(Heim et al 2004, Chung et al 2006, Zhu et al 2008) has been used to quantify uncertainties 

of DTI-derived parameters through both simulation and real human DTI data. However, 

these methods rely on bootstrapping the signs or labels of residuals from regression analysis, 

which do not necessarily share the same distribution even under the null hypothesis. 

Furthermore, while bootstrap tests are known to be asymptotically consistent, the p-values 

they generate are only approximations for finite sample (Efron 1979). The permutation test, 

first introduced to image analysis by Holmes et al (Holmes et al 1996), is able to devise a 

data-driven null distribution of data with only minimum assumptions and produce exact or 

almost exact p-values (Nichols and Holmes 2002). This method provides more freedom in 

terms of selecting suitable summary statistics and has been widely used in the field of 

functional MRI (fMRI). In recent years, several permutation-based methods such as 

PERVADE (Chung et al 2008) and SPREAD have been developed for voxel-wise whole 

brain longitudinal studies of local DTI changes or lesion evolution.

The SPREAD (Zhu et al 2013) relies on permuting time and scan labels and spatial kernel 

regression. It makes use of intrinsic correlation between neighboring image voxels and 

overcomes major limitations of existing non-parametric statistical methods in DTI analysis, 

most of which depend largely on the same DTI protocol at different time points and the 

achievable p-value is often limited by the availability of existing diffusion-weighting 

directions. SPREAD requires as little as only one scan per time point for a valid hypothesis 

test, which greatly reduces the granularity of permutation and has proved to be an effective 
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method for monitoring lesion progression. Results from Monte Carlo simulation show that 

SPREAD consistently outperforms voxel-based morphometry (VBM) approach when the 

number of repeated scans per subject is small (n < 5). However, the Gaussian kernel used for 

spatial regression blurs and dislocates important image features such as edges, common 

drawbacks of non-adaptive linear filtering. These intrinsic limitations could introduce partial 

volume or voxel-averaging artifacts and consequently affect the accuracy of interpretation of 

the orientation of neuron fiber structures (Van Hecke et al 2010).

In this work, we improved the sensitivity and accuracy of SPREAD by incorporating 

nonlinear anisotropic filtering. This new method is dubbed improved SPREAD or 

iSPREAD. The nonlinear adaptive filtering, based on the nonlinear partial differential 

equation proposed by Perona and Malik (Perona and Malik 1990), prefers intra-region 

smoothing over inter-region smoothing, which leads to nonlinear scale in image space. The 

method has been applied for image enhancement (Sun et al 2007), edge detection (Catte et al 
1992), and image segmentation (Holmes et al 1996, Ardizzone et al 2003) to preserve 

regional boundaries as well as for noise reductions (Gerig et al 1992, Saha and Udupa 2001). 

The goal of the current work is to demonstrate that the detection sensitivity of SPREAD can 

be improved substantially by adapting nonlinear anisotropic filtering when monitoring 

subject-specific longitudinal DTI changes. Our results suggest the method preserves the 

heterogeneous spatial correlation between neighboring voxels, which allows identifying 

local voxel-wise changes in the brain in single subject longitudinal studies.

2. Methods

2.1. Overview of iSPREAD

In SPREAD (Zhu et al 2013), the longitudinal tensor-derived parameter Dnsti, which is the 

nth subject's sth scan at time t measured for the ith voxel (n = 1, 2, …, N, s = 1, 2, …, S, i = 

1, 2, …, I, t = t1, t2, …, tT), is modeled as a continuous spatial function Φn(zi), where zi is 

the 3D spatial coordinate at the ith voxel, superimposed with measurement errors εnsti. The 

disease effect is modeled as the longitudinal DTI change with rate β(zi) at the ith voxel 

(equation (1)).

(1)

where ◊ is the Hadamard product, f(zi, t′) is a continuous tensor-valued function of zi and t′ 
with f(zi, 0) = 0. β(zi) is a continuous, tensor-valued spatial function. The statistical theory 

behind SPREAD is that both the scan (s in equation (1)) and the time (t in equation (1)) are 

interchangeable without affecting the distribution functions of Dnsti under the following null 

hypothesis:

(2)
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Given the exchangeability, the scan/time labels for the DTI-derived parameters such as FA 

or MD maps from each subject are randomly permuted at each voxel for N = 1000 times to 

generate a permutation distribution under the null hypothesis for each voxel. The original 

FA/MD images, together with the permutated images are smoothed in iSPREAD using the 

nonlinear anisotropic instead of Gaussian filtering for edge-preserving image enhancement 

as well as for maintaining spatial correlation between neighboring voxels, which will be 

discussed in detail in the next section. In the third step, a repeated measures comparison is 

performed for each subject between the baseline scan and scans at other time points after 

permutation and image smoothing to test whether there are subject-specific longitudinal 

changes of DTI-derived parameters between any two time points. The following voxel-wise 

test statistic was chosen to illustrate the temporal changes in FA at each voxel.

(3)

where  is the scan average and  is the scan and 

time average for each subject. The Westfall-Young multiple testing procedure (Nichols and 

Hayasaka 2003) is used to control the familywise error rate (FWER) in the last step. Voxels 

are identified as significantly changing voxels (e.g. lesion area) if the adjusted p-value is less 

than a predefined threshold (e.g. 0.05). A similar procedure can also be applied to the MD 

map. The flowchart of the method iSPREAD is shown in figure 1.

2.1.1. Justification of permutation invariance—Statistical inference of iSPREAD 

depends on permuting time/scan labels, so it is important to show that the likelihood 

function of the permuted scans are the same as the original ones under the null hypothesis. 

According to equations (1) and (2), Dnsti = Φn(zi) + εnsti under the null hypothesis, we 

denote the totality of Dnsti, for all s,t,i, as Dn. Although the nonlinear anisotropic filtering 

used in iSPREAD is a complex procedure, it can be abstracted as a nonlinear function of Dn. 

In other words, D̂
n = G(Dn), where D̂

n is the collection of filtered diffusion tensors of the n-

th subject and G is the nonlinear transformation defined by the filtering procedure. Let π be 

a permutation of t and π the induced transformation of Dn, we only need to show that the 

joint-density function of G(π(Dn)) is the same as that of G(Dn). Obviously, this reduces to 

showing the joint-density function of ε, the totality of random errors of subject n, is invariant 

under time-permutation because the true signal, Φn(zi), is a constant for all time points/scans 

under the null hypothesis. The exchangeability is guaranteed if we assume Dnsti follows a 

typical random effects model under the null hypothesis:

(4)

where μi represents the mean of Dnsti and εnsti is partitioned into three independent 

components of random effects: the subject-specific variation αn, the scan-specific variation 
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γnst and the per-measurement error ξnsti. More discussions can be found in section 2.2. in 

Zhu et al (2013).

2.2. Overview of anisotropic diffusion (AD) filter

Nonlinear anisotropic diffusion filtering is a general scale-space approach for edge-

preserving piecewise smoothing of the original image. Note that diffusion in this content 

refers to a diffusion process that creates a nonlinear scale space, which is different from 

physical process of molecular diffusion measurement in DTI. In the scale-space, an image is 

seen as one sample from a continuous range of scaled images with the level zero 

representing the original image. The linear scale-space filtering technique, first introduced 

by Witkin (1984), involves convolving the original image with Gaussian kernels with 

different bandwidths to generate gradually smoother versions of the original image. This 

technique demonstrates the natural way of quantitatively presenting image ambiguity at 

different scales. However, the isotropic filtering method with a Gaussian kernel has the 

disadvantage of blurring object boundaries and of the suppression of fine structures at a 

large scale (Perona and Malik 1990). The nonlinear scale space generated by nonlinear 

diffusion filtering, which is proposed from an analogy to thermal equations describing the 

diffusion process, provides an alternative way to maintain the primary properties of a scale 

space. The equation for the process was first presented by Perona and Malik (1990), and is 

referred to as the Perona–Malik (PM) equation as shown in equation (5).

(5)

where function I(z, t̃) is taken as the image intensity (e.g. FA or MD map in our study), t̃ is 

the processing ordering, referred to as iteration steps in discrete case. The conductance 

function g(z, t̃) controls the diffusion strength, which is usually taken as a parametric 

function of image local gradient (|∇I(z, t̃)|) given by equation (7). The original image I(z, 0) 

is regarded as the initial state of the diffusion process. The filtered versions are from its 

temporal evolution, evolving toward equilibrium. The entire diffusive process prefers intra-

region smoothing over inter-region smoothing with proper spatial diffusion strengths g(z, t̃) 
selected. Adiabatic boundary condition is often used to guarantee the consistency of the 

average grey value of the image during the filtering process (Weickert 1997). However, the 

fixed boundary condition (also called the first boundary condition) was also used and proved 

to have superior deblurring effects and inner edge enhancement compared with adiabatic 

boundary condition (Sun et al 2007), and therefore was used in our study.

For each iteration step, the image intensity change is defined as the flow contributions from 

26 neighboring pixel intensities within a 3 × 3 × 3 neighborhood, and the contribution of 

each neighboring voxel is inversely proportional to the distance between the centroid and the 

corresponding neighboring voxels. The stability of the iterated processing scheme is 

obtained by properly adjusting the integration constant Δt according to the 3 × 3 × 3 

neighborhood structure and is given in Gerig et al (1992) by Gerig et al as in equation (6):
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(6)

where N is the number of nearest neighbors (N = 26 in a 3D case), and Δdi is the distance 

between the centroid and its neighboring voxels. The proper selection of the integration 

constant guarantees a stable evolution of the PM equation.

Conductance function g has been well studied and can take many forms, but the following 

function was chosen in our study because it is considered to provide better balance between 

smoothing-efficiency and edge preserving and have more stable performance (Voci et al 
2004, Tsiotsios and Petrou 2013).

(7)

where |∇I| is taken as rough edge detector and κ is the diffusion contrast parameter. The ratio 

 controls the flow strength. The maximum flow, ∂tI(z, t), is obtained when gradient 

|∇I| = κ, which represents inhomogeneous regions, and reduces to 0 when |∇I| ≫ κ or |∇I| ≪ 
κ, which represents either potential edges or homogeneous regions. For each iteration, the 

gradient map was first calculated to identify the conductance function (equation (7)) and 

those calculated parameters were used for image smoothing. The gradient threshold κ was 

estimated according to the following p-norm method proposed by Voci et al (2004):

(8)

where the constant σ is proportional to the image average intensity and λ is a trade-off 

parameter and was set to be 0.5 in this study (Tian et al 2011). ‖I(mΔt)‖p represents the p-

norm of image I at time step mΔt, usually p = 2. The columns and rows of the image is 

Ncolumn and Nrow respectively. The p-norm method was chosen here because it is a close 

estimation with a simple calculation.

2.3. Monte Carlo simulations

Monte Carlo simulations were performed to conduct repeated measurements comparisons of 

the same subject with a predefined area of simulated pathology; the effectiveness and 

statistical power of iSPREAD and SPREAD were evaluated and compared. For Monte Carlo 

simulations, synthetic DW data were generated using a DTI dataset of the brain from a 

healthy volunteer. The original DTI dataset was used as the template for the first group 

(DTIpre), which represented the baseline scan when no disease effect was presented. The 
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template for the second group (DTIpost) was generated by defining a ‘diseased’ region in the 

first group with different effect sizes (es) of the largest eigenvalue (λ1) added in each voxel. 

Two shapes of disease areas were considered: a 5 × 5 × 3 cubic region and a 3 × 10 × 3 

cuboid region located at the center of the splenium of the corpus callosum were simulated to 

mimic real brain abnormality. In this study, es took values from 10 to 50%. Repeated 

measurements of the same subject were simulated by adding Gaussian-distributed noise to 

both DTIpre and DTIpost templates to obtain SNR ≈ 50 in non-diffusion weighted images. 

The effect of thermal noise was first generated using complex random numbers with their 

real and imaginary parts sampled independently from a Gaussian distribution function with a 

zero mean and a standard deviation determined by the desired SNR level (Gudbjartsson and 

Patz 1995, Andersen 1996); the real parts of the complex noise signals were then added to 

the noise-free baseline signal S0 and DW signals Si. The magnitude of the final complex 

data was then used to synthesize the noisy DTI datasets that were further used for 

calculations of the noisy tensors. The magnitude of DTIpre and DTIpost templetes were then 

calculated from the envelope of the complex signals. For each group, n (n = 2 – 5) repeated 

measurements of the same subject were simulated. A total of 100 simulations were 

generated for each combination of es and n.

Repeated measures comparisons were conducted using both SPREAD and iSPREAD. For 

each subject, the scan and time label were randomly permuted for N = 1000 times to derive a 

distribution of p-values for each voxel under the null hypothesis. True Positive Runs 

(TP_Runs) and false positive runs (FP_Runs), which are defined as the total number of 

simulations within which at least one voxel was correctly detected in the disease area or 

incorrectly detected in the non-disease area in those 100 simulation data, respectively, were 

calculated. Sensitivity and Specificity values are defined as follows:

(9)

ROC curves were drawn by selecting the per-voxel p-value from 0.01 to 0.3 with an 

increment of 0.01.

2.4. In vivo human brain data

2.4.1. Subjects and Image acquisition—Our method was first validated on the 

simulated data and then applied to repeated measures comparisons of in vivo human brain 

data. Five healthy volunteers and seven multiple sclerosis (MS) patients were included in 

this study. All participants were given written informed consent and datasets were acquired 

using protocols approved by the local institutional review board.

Five healthy volunteers were chosen to compare the ability for false positive control of both 

SPREAD and iSPREAD, when no biological changes over time were assumed. For five 

healthy volunteers (2 male and 3 female, mean age 22 ± 8 years, right-handed), data were 

scanned twice within one week using a 3T Siemens TIM Trio scanner (Erlangen, Germany). 

The standard protocol included a 3D axially acquired high-resolution T1-weighted MP-
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RAGE sequence (1 × 1 × 1 mm3), and a DTI scan. DTI data were acquired using a single-

shot echo-planar (SS-EPI) sequence with a voxel resolution of 2 × 2 × 2 mm3 voxel, TR/TE 

= 9100/89 ms, 60 non-coplanar diffusion-encoding directions at b = 1200 s mm−2 as well as 

10 non-diffusion weighted images with a minimum b value of 0 s mm−2.

Seven Relapsing-Remitting MS (RRMS) patients (5 male and 2 female, mean age 40 ± 8) 

from an ongoing longitudinal MS study were selected retrospectively to test the statistical 

power of both the SPREAD and iSPREAD methods to monitor the disease progression. 

RRMS is characterized by relapses when clearly defined symptoms of attacks occur, 

followed by the remission of symptoms. For each patient, there were at least two scans with 

an enhanced lesion visible on T1 enhanced scans. MS patients were scanned 2–4 times 

within a 2 year period on a GE HDX 3T scanner (Milwaukee, WI, USA). The typical MRI 

protocol consisted of a T2 FLAIR scan, a T1 contrast enhanced scan, a high resolution T1 

SPGR scan, and a DTI scan. The SS-EPI DTI images were acquired with TR/TE = 10500/82 

ms, FOV = 240 × 240 mm2, acquisition matrix = 128 × 128 zero-filled to matrix size = 256 

× 256; slice thickness 3mm with no gap; 24 DWIs with b = 1000 s mm−2 and 4 b0 s with 

minimum b value. Both the axial T2 FLAIR and the T1 contrast enhanced scans with 

resolution 2 × 2 × 3 mm3 were used as image guidance for manual drawing of lesion masks 

used as the gold standard for evaluating automatic lesion detection by SPREAD and 

iSPREAD.

2.4.2. Steps of analysis—Data analysis was performed using MATLAB (MATLAB 

2013b, The Mathworks, Natick, MA, USA) and FSL (FSL5.0.4, FMRIB Analysis Group, 

Oxford University, Oxford, UK). The analysis of in vivo human data consisted of the 

following five steps:

Step 1: Data preprocessing: The eddy_correct Tool of FSL package was first applied to 

DTI data to correct eddy current and motion-induced artifacts. Non-brain tissues were 

removed using the Brain Extraction Tool in FSL. FA and MD maps were then generated 

using the DTIFIT tool of FSL.

Step 2: Image registration between different time points: For healthy volunteers, the 

registration was performed between two time points. In the first step, linear registrations 

were performed between FA/MD images at different time points using the FLIRT tool of 

FSL (degree of freedom = 12). The resultant transformation matrix was saved and split into 

one forward and one backward half transformation. Next, one of the FA/MD maps (either 

pre or post) was transformed to the ‘halfway’ using the halfway transform matrix and used 

as the reference image for nonlinear registration. This guarantees the equivalent 

interpolation bias to both time points (Smith et al 2002). In the final step, the nonlinear 

registration tool of FSL (FNIRT) was used to perform the nonlinear registration.

For each MS patient, the baseline FA/MD maps were used as the reference image, and 

FA/MD maps at later time points were co-registered to this reference image using the FNIRT 

tool of FSL. The co-registered FA/MD maps were used for iSPREAD/SPREAD analyses.
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Step 3: Permutation testing: For each subject, the scan and time labels were randomly 

permuted at each and every voxel for N = 1000 times to generate the permutation 

distribution under the null hypothesis.

Step 4: Spatial regression: For iSPREAD, nonlinear anisotropic filtering was applied to the 

co-registered FA/MD maps combined with the first boundary condition, where the original 

FA/MD maps were used as the initial condition. The tradeoff parameter λ in equation (8) 

was chosen to be 0.5 and time step Δt was calculated based on spatial configuration of the 3 

× 3 × 3 neighborhood of each FA/MD map according to equation (6). In order to ensure 

stable evolution while save computational cost, the time step Δt was set to the largest value 

possible according to equation (6). Number of iterations was fixed to 4 in all simulations. A 

Gaussian kernel with fixed FWHM = 2 × 2 × 2 voxels was used for SPREAD.

Step 5: Statistical analysis for healthy volunteers and MS patients: The total number of 

false positive voxels were counted in healthy volunteers and compared between SPREAD 

and iSPREAD in terms of the false positive control when no biological changes were 

presumed. For MS patient data, to quantitatively compare both methods in their power for 

detecting lesion progression, lesion masks were drawn manually based on T1 enhanced 

images (transformed to baseline DTI space) by an experienced radiologist and served as the 

gold standard. We calculated True Positive Ratio in lesions (TPRL) and false positive ratios 

in non-lesion white matter (FPRNLWM) for each subject and compared them between 

SPREAD and iSPREAD. The Westfall-Young method (22) was used to control the FWER.

(10)

3. Results

3.1. Monte Carlo simulations

ROC analyses for the repeated measures comparisons showed that the iSPREAD method 

outperformed the original SPREAD method consistently; the differences became more 

obvious when effect size es and group size was small, while reduced with the increasing 

effect size or increasing sample size. The results were also affected by the different shapes of 

the disease area. The iSPREAD showed much better performance and the differences 

between the two methods became larger when the disease area was cuboid-shaped, which 

further proved that nonlinear anisotropic filtering has better performance in the presence of 

lesions of irregular shape. Similar results were also observed for the MD analysis.

3.2. Healthy volunteers

On average, each DTI scan collected from five healthy volunteers consists of 75 000 

WM/GM voxels. The average false positive voxels for FA and MD analysis in five healthy 

volunteers were 11 ± 4 and 10 ± 12 voxels for iSPREAD, compared to 44 ± 30 and 74 ± 74 

voxels for SPREAD. While both methods were shown to control the FP voxels at a 
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reasonable rate, iSPREAD is better at controlling FPR with fewer FP voxels for both FA and 

MD. Careful examinations of the location of those false positive voxels indicated that most 

of them appeared at brain boundaries, mainly due to brain extraction residuals or mis-

registration.

3.3. MS patients

Seven patients with RRMS were selected for the investigation of effectiveness of iSPREAD, 

as well as the comparison between iSPREAD and SPREAD. The patient characteristics, 

findings and clinical diagnoses are summarized in table 1.

The results of the iSPREAD versus SPREAD on seven MS patients are listed in table 1. 

Detailed results on the first three patients are shown in figures 4–6. The pairwise 

comparisons were conducted between the baseline scan and its first follow-up scan. The 

representative FA results are reported in table 2.

3.3.1. MS patient 1—This patient had an active lesion around the atrium of the left lateral 

ventricle, visible on T1 enhanced images 6 months after the baseline. Voxels with significant 

longitudinal FA/MD changes between the baseline and 6 month are shown in figure 4. Based 

on the gold standard lesion mask, TPRL values were 94.68% for FA and 90.48% for MD 

with iSPREAD, compared to the TPRL values of 85.99% (FA) and 69% (MD) for SPREAD. 

FPRNLWM values were 1.88% (FA) and 0.96% (MD) with iSPREAD in the non-lesion WM 

area, compared to the FPRNLWM values of 1.6% (FA) and 0.8% (MD) for SPREAD. While 

the location of the lesion was precisely detected by both iSPREAD and SPREAD, it is clear 

that iSPREAD outperformed SPREAD in terms of detection sensitivity. It is worth noting 

that the FPRNLWM for iSPREAD is slightly higher than that of the SPREAD method. 

Further investigation showed that false positive voxels occurred mainly at the brain 

boundaries due to FSL brain extraction tool (BET) residuals or tissue/lesion boundaries 

caused by partial volume effect or atrophic changes. Since iSPREAD is more sensitive to 

longitudinal changes in FA/MD images, it is also prone to more FP voxels caused by image 

co-registration errors. This is not obvious with the healthy volunteers because the two scans 

were taken within one week using exact same imaging protocols, the atrophic changes were 

negligible and the co-registration errors were minor in such case. With the zoomed images 

showing the detected significant voxels in the lesion area on the right column of figure 4, it 

is clear that the disease area was better defined with nonlinear anisotropic filtering, with 

clearer boundaries and fewer FP voxels around the lesion.

3.3.2. MS patient 2—This patient developed a new lesion in the periventricular white 

matter near the temporal parietal area 24 months after the baseline. Permutation testing was 

conducted from the FA/MD image at baseline versus 24 months. TPRL values were 81.50% 

(FA) and 71.68% (MD) for iSPREAD, compared to the 49.71% (FA) and 27.17% (MD) for 

SPREAD. The FPRNLWM values were 0.89% (FA) and 0.22% (MD) for iSPREAD, 

compared to 0.43% (FA) and 0.05% (MD) for SPREAD. iSPREAD outperformed SPREAD 

in terms of lesion detection sensitivity while controlling FPRNLWM at a relatively low rate.

Liu et al. Page 10

Phys Med Biol. Author manuscript; available in PMC 2017 December 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



3.3.3. MS patient 3—This patient had a lesion shown as a ring-enhancing lesion on T1-

weighted post contrast image at baseline, which resolved 12 months after the baseline. 

Based on the gold standard lesion mask, TPRL values were 73.38% (FA) and 53.24% (MD) 

for iSPREAD, compared to the 16.55% and 0 for SPREAD. The FPRNLWM values were 

0.31% (FA) 0.28 %(MD) for iSPREAD, compared to 0.2% (FA) and 0.1% (MD). It is clear 

that iSPREAD was more sensitive to longitudinal changes and could identify subtle changes 

not detectable by SPREAD. Although the FPRNLWM was slightly higher for iSPREAD 

compared to SPREAD, it was still reasonable compared to the large voxel numbers in a 

whole image volume.

4. Discussion

In this paper, we proposed a method dubbed iSPREAD, designed to address potential pitfalls 

caused by the Gaussian kernel used in the SPREAD method. It is a non-parametric 

permutation-based statistical framework that combines spatial regression and resampling 

methods, and provides effective detection of subject-specific, localized longitudinal changes 

of DTI parameters within the whole brain without a priori hypotheses. The improvements in 

lesion detection sensitivity introduced by anisotropic filtering were clearly demonstrated by 

both Monte Carlo simulations and applications of clinical brain DTI data. The results show 

that the nonlinear anisotropic filtering provides better spatial regression analysis when the 

spatial correlation is heterogeneous among neighboring pixels. The proposed method 

provides an effective tool for individual-level automatic lesion detections or for quantify 

progression of brain abnormalities through longitudinal DTI studies, which can assist 

physicians in their prognoses of various diseases.

The adaptive filtering method allows for the improvement of spatial resolution thus 

enhanced lesion detection power. From our study, two improvements are shown in 

iSPREAD compared to the original SPREAD: (1) the nonlinear anisotropic filtering process 

provides piecewise smoothing while preserving important structures such as edges. The 

tissue boundaries in the filtered image are better determined, leading to better results in 

differentiating tissue types as well as the lesion areas; (2) As an iterative process, the 

heterogeneous structure between neighboring voxels are preserved at each iteration, which 

yields much better image enhancement results than the traditional Gaussian filtering.

The results from both simulated data and human in vivo brain data showed the improvement 

in sensitivity introduced by the nonlinear anisotropic filtering. Differences between 

iSPREAD and SPREAD were most significant when the effect size and sample size were 

small. The improvement in statistical power for iSPREAD was further validated by the 

results form MS patients for monitoring lesion progression. The FA results for iSPREAD 

versus SPREAD are shown in table 2, iSPREAD was able to detect longitudinal changes in 

FA maps with an average TPRL of 73.98%, compared to 44.40% for SPREAD for the seven 

selected MS patients. Given the high sensitivity of iSPREAD in detecting brain 

abnormalities, it is possible for iSPREAD to detect brain abnormalities even at an early 

stage of the disease, which merits further investigation.
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There are also some limitations for the iSPREAD method. First and foremost, the errors 

caused by image preprocessing steps, namely the BET residuals and registration errors, 

remain a major challenge, which is also common to all voxel-based analyses of DTI 

data(Smith et al 2006). Registration errors occur mostly at boundaries between different 

tissue types or lesion/normal tissue boundaries. Although the nonlinear anisotropic filtering 

method and nonlinear registrations with high degrees of freedom (DOF) were applied during 

the image preprocessing stage to better preserve tissue boundaries and to minimize errors 

from registration, mis-registration was still inevitable because of effects such as atrophic 

changes and lesion evolution. This is more severe for longitudinal studies that last for a long 

period of time. Those effects can bring uncertainties to image alignments which are driven 

by different tissue contrasts. It is worth noting that the FPRNLWM of iSPREAD (0.96% for 

FA) was slightly higher than that of SPREAD (0.61% for FA) in MS patients. Further 

investigation showed that most of the FPs stemmed from misregistration and BET residuals. 

Since iSPREAD is more sensitive to longitudinal changes, it is more sensitive to those 

registration errors as well. These FP voxels will also cause problems when detecting very 

small lesions. In this case, small lesions (true positive voxels) are easily ‘submerged’ into the 

FP voxels that makes them difficult to be identified. More in-depth investigation of the 

lesion evolution over time and devising the test statistic accordingly will bring more insight 

into the statistical framework and will work towards removing registration errors. Second 

limitation related to this study is that the parameters chosen for the anisotropic filtering were 

based on tests from both the simulation and clinical data and, therefore, more empirical than 

theoretical. As an iterative process, the number of iterations is very crucial to the result of 

the filtering and should be chosen based on the needs of different applications. A large 

number of iterations mean a strong smoothing effect, and the level of smoothing in the case 

of image enhancement should be used with more constraints than in the case of image 

segmentation (Voci et al 2004). 3–4 times of iteration have been used for image smoothing 

and enhancement (Tian et al 2011), and a larger number of iterations have been used for 

image segmentation (Li et al 2004, Petrovic et al 2004). Given the fact that iSPREAD is a 

permutation-based method, a large number of iterations for AD filtering will certainly 

increase the computational burden. Our experiments show that satisfactory results can be 

obtained with around 4 iterations and iSPREAD took about 2 – 3 times of computation time 

of the original SPREAD method. Since the anisotropic filtering was implemented using 

MATLAB in the current study, a much faster performance can be expected when using C/C+

+.

The present work can be extended in at least two directions. First, only the scalar images 

(e.g. FA/MD map) were considered and the diffusivity was designed as a spatial varying 

scalar in the current study. However, when vector- or tensor-valued images are considered, it 

is more desirable to rotate the flux towards the orientation of interesting features, such as the 

tangential direction of structure boundaries (Weickert 1997). In such a case, a 3 × 3 adapted 

diffusion tensor can be used instead of the scalar diffusivity, in which the smoothing effect 

along the edges is more preferred than perpendicular to it. Such a filtering technique has 

been proposed and tested in Ding et al (2005), which proved to be more suitable for the 

smoothing of bundle-like structures. With the more advanced filtering design, similar 

analyses can be carried out on other quantities such as fiber tracts or displacement from q-
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space imaging to help identify differences in generalized FA (GFA) or peaks of diffusion 

orientation distribution function (ODF). Secondly, longitudinal comparisons between scans 

at two different time points were considered and discussed for the statistical inference test in 

this study. Although such repeated measures analyses would give potentially the exact 

disease progression information at each time point, it is very time consuming for 

longitudinal studies comprised of multiple time points. In such cases, a voxel-wise statistical 

inferential test for a serial DTI (with more than two time points) that provides general 

disease progression information would be preferred. Moreover, it would be a natural 

extension of this work to carry other summary statistics for investigating disease evolution 

and performing statistical inferential tests based on the prior information about disease 

progression models.

5. Conclusion

A 3D nonlinear anisotropic filter was integrated into the iSPREAD method to eliminate the 

potential shortcomings caused by the Gaussian kernel used in the SPREAD method. The 

improvements in sensitivity and accuracy in lesion detection introduced by anisotropic 

filtering were clearly demonstrated by both Monte Carlo simulation and in vivo human brain 

data. The nonlinear anisotropic filtering allows for noise reduction and reduces grey scale 

inhomogeneity as well as preserving important image detail, resulting in a better lesion 

detection when the spatial correlation is heterogeneous among neighboring pixels. As a 

result, iSPREAD is an effective voxel-wise nonparametric method for detecting local 

changes in whole brain, subject-specific longitudinal DTI studies.
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Figure 1. 
Flow diagram of iSPREAD.
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Figure 2. 
ROC analyses for the two-group comparisons using iSPREAD (red crosses) and SPREAD 

(blue dots) from Monte Carlo simulated data under different combinations of effect size (es 
= 0.2, 0.4) and sample size (n = 3, 5) of each group. The disease area was simulated as either 

a 5 × 5 × 3 cubic region (figure 2(a)) or a 3 × 10 × 3 cuboid region (figure 2(b)). Sensitivity 

and Specificity were calculated using equation (9). Results for FA analysis are shown here as 

an example. The nonlinear anisotropic diffusion filtering was used for data smoothing in the 

iSPREAD method and a Gaussian kernel of fixed FWHM = 2 × 2 × 2 voxels were applied 

for estimation of spatial regression for SPREAD.

Liu et al. Page 17

Phys Med Biol. Author manuscript; available in PMC 2017 December 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. 
Location of false positive voxels detected (with zoom in images on the right) using 

iSPREAD analysis in longitudinal DTI data of one healthy volunteer. False positive of FA 

(red dots) and MD (blue dots) for iSPREAD are mostly occurred due to image 

misregistration error or BET residuals, either at tissue boundaries or brain boundaries. 

Figures are displayed according to radiological convention.
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Figure 4. 
Comparison of significant voxels detected for FA (marked by magenta dots) and MD 

(marked by cyan dots) using SPREAD (Row E and G) and iSPREAD (Row D and F) 

analysis of longitudinal data in monitoring disease progression for patient 1. This patient had 

an active lesion around the atrium of the left lateral ventricle visible on the post contrast T1 

images at 6 month (Row A) after baseline, which shows as hyperintensity on FLAIR image 

(Row B). The images are magnified in the disease area showing the detected significant 

voxels on the right column.
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Figure 5. 
Comparison of significant voxels detected for FA (marked by magenta dots) and MD 

(marked by cyan dots) using iSPREAD (Row B & C. Second column) and SPREAD (Row 

B & C. Third volume) analysis of longitudinal data during disease progression for patient 2. 

This patient had a lesion in the periventricular white matter near the temporal parietal area, 

which shows enhancement on the post contrast T1 image (Row A) 24 months after the 

baseline.
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Figure 6. 
Comparison of significant voxels detected for FA (marked by magenta dots) and MD 

(marked by cyan dots) using iSPREAD (Row B & C. First column) and SPREAD (Row B & 

C. Second column) analysis of longitudinal data in monitoring disease progression for 

patient 3. This patient had a lesion shown as a ring-enhancing lesion on T1-weighted post 

contrast image at baseline (Row A).
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Table 1

Patient clinical characteristics and diagnoses.

Patient Age Gender Number of scans Location of T1 post contrast enhancement lesions

Patient 1 37 Female 4 Active lesion around the atrium of the left lateral ventricle at 6-month follow-up

Patient 2 39 Female 2 Periventricular white matter lesion near the right temporal parietal area, 24 months after the 
baseline

Patient 3 34 Female 2 Incomplete ring enhancing lesion in left frontal subcortical white matter area at baseline. 
The enhancing lesion resolved after 6 months

Patient 4 41 Female 4 Lesion in the posterior limb of the right internal capsule at baseline and resolved in the 
follow-up scan 3 months later

Patient 5 29 Male 3 Two enhancing lesions located in the right temporal subcortical white matter near the right 
occipital horn of the right lateral ventricle which resolved in the follow-up 3 month scan

Patient 6 44 Female 2 Lesion in right corona radiata at baseline, which resolved at one month follow-up scan

Patient 7 53 Male 2 Incomplete ring enhancing lesion in the right corona radiate, 7.5 months after the baseline
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Table 2

FA results for iSPREAD versus SPREAD.

FA results

iSPREAD SPREAD

TPRL (%) FPRNLWM (%) TPRL (%) FPRNLWM (%)

Patient 1 94.68 1.88 85.99 1.6

Patient 2 81.50 0.89 49.71 0.43

Patient 3 73.38 0.31 16.55 0.2

Patient 4 85 0.2 75 0.14

Patient 5 62.11 0.86 11.58 0.47

Patient 6 58.97 1.8 17.95 0.8

Patient 7 62.2 0.8 54.05 0.62

TPRL: true positive ratio in lesions.

FPRNLWM: false positive ratios in non-lesion white matter.
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