Skip to main content
. 2017 Nov 6;8(62):105492–105509. doi: 10.18632/oncotarget.22298

Figure 2. Over-expression of VDAC1 and other apoptosis- and energy-related proteins in lung cancer patients.

Figure 2

(A) Representative immunoblots of tissue lysates of tumor (T) and healthy (H) lung tissues derived from lung cancer patients probed with antibodies directed against VDAC1, SMAC, HK-I, MAVS, AIF and Bcl-2. (B) Quantitative analysis of VDAC1 (37 patients, FC=6.2, p-value=5×10−5); SMAC (37 patients, FC=5, p-value=3.4×10−5); HK-I, (33 patients, FC=5.3, p-value=5.3×10−3); MAVS (22 patients, FC=2.6, p-value=1.5×10−4); AIF (35 patients, FC=3.5, p-value=1.7×10−2), and Bcl-2 (22 patients, FC=1.5, p-value=1.4×10−1) are presented as the mean ± SD. (C) LC-HR MS/MS data for VDAC1, HK1 and SMAC. A difference between healthy and tumor tissues was considered statistically significant when P < 0.001 (***), P < 0.01 (**), P< 0.05 (*), as determined by the Mann-Whitney test for the immunoblots and a two-way t-test for the LC-HR MS/MS data. (D) Heat map showing gene expression based on RNAseq UCSC XENA data of VDAC1, HK-I, SMAC and AIF. The gene expression profiles obtained from healthy (n=110) and tumor lung samples (n=1,017) of lung cancer patients are publicly available (TCGA lung cancer dataset, detailed in Supplementary Data). (E) Quantitative analysis of the RNAseq data. (F) Over-expression of VDAC1, SMAC, AIF, MAVS and Bcl-2 in lung cancer patients. Representative IHC staining for VDAC1, SMAC AIF, MAVS and Bcl-2 of healthy (n=10) and lung cancer (n=70) tissue samples from tissue microarray slides (US Biomax). The number on each image represents the percentage of patient samples that stained at the relative intensity presented by a gradient line on the left.