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Cholangiocytes and the environment in 
primary sclerosing cholangitis: where is 
the link?
Steven P O’Hara,1 Tom H Karlsen,2,3 Nicholas F LaRusso1

In primary sclerosing cholangitis (PSC), 
annular fibrosis around intrahepatic and 
extrahepatic bile ducts leads to progres-
sive liver disease for which there is no 
effective therapy except liver transplanta-
tion.1 The concentric accumulation of 
connective tissue around bile ducts 
suggests that the cholangiocyte plays an 
integral role in PSC pathogenesis. 
However, what initiates changes in chol-
angiocyte phenotype and how cholangio-
cytes interact with cells in the peribiliary 
extracellular matrix like immune cells and 
stromal components is largely unknown. 
Over the last 10 years, genome-wide asso-
ciation studies in PSC have revealed >20 
risk genes.2–5 A significant observation 
that can be derived from these data, which 
also applies to other non-Mendelian 
phenotypes, is that the predominant risk 
contribution is likely to come from one or 
more environmental sources, rather than 
the genetic aberrations. Indeed, in PSC, 
we estimate that <10% of the overall 
liability is accounted for by the genetic 
findings; with extrapolations into hypo-
thetical, larger study  populations, it is 
unlikely to exceed 30%–40%.6 7 Research 
dissecting the remaining environmental 
contribution to PSC and other complex 
diseases is methodologically challenging. 
The exposures of an organism throughout 
life as a whole have recently been referred 
to as the exposome8 and include a myriad 
of components of both the external (eg, 
xenobiotics) and internal (eg, gut 
microbes) milieu.

There is a long tradition and effective 
means for detecting infectious exposures 

in medicine. Robert Koch in the late 19th 
century proposed criteria to identify a 
disease as infectious.9 These included 
(i) the organism is regularly associated 
with the disease, (ii) the organism can 
be isolated from the diseased host and 
grown in culture and (iii) the disease 
can be reproduced when the organism 
is introduced into a healthy susceptible 
host. With the development of nucleic 
acid sequence-based identification of 
microbes, as well as the recognition that 
the behaviour of a particular microbe 
can be influenced by the community in 
which it resides, Koch’s original postu-
lates have evolved.10 11 More specifically, 
the concept has developed to incorporate 
culture-independent techniques that can 
identify putative pathogen nucleic acid 
sequences or even microbe-derived prod-
ucts (eg, short-chain fatty acids) in associ-
ation with a diseased tissue that decrease 
with resolution of disease and increase 
with clinical relapse.11 These ideas suggest 
that ‘the scientific community should 
consider infectious disease causation in 
a broader systems biology context  …’ 
and ‘… as technology advances and new 
scientific discoveries are made, there 
must be dynamic adaptation of Koch’s 
postulates  …’.10 Recent examples of an 
expanded paradigm thus incorporate the 
transfer of body weight-associated, IgA-as-
sociated or liver injury-associated gut 
microbiota in causation of obesity, IBD or 
alcoholic hepatitis, respectively.12–14

There is less of a tradition and only 
preliminary tools to detect non-infectious 
environmental exposures in medicine. In 
light of the strong environmental compo-
nent in PSC liability determined by the 
genetic studies, a reconsideration as to 
how PSC may fulfil the revised Koch’s 
criteria is however timely. A rationale for 
this proposition can be made on several 
sets of considerations, each of which 
will be addressed in this commentary. 
These include (i) the evolution of Koch’s 
postulates to account for complex expo-
sure-driven disease,10 11  for example, 
obesity and IBD12 15; (ii) similarities in 
cholangiocyte phenotype and downstream 
signalling pathways between secondary 
sclerosing cholangitis (SSC) due to a direct 

microbial infection (eg, Cryptosporidium 
parvum)16 and PSC; (iii) accumulating 
evidence supporting a critical role for the 
intestinal microbiome in the pathogenesis 
of PSC17; (iv) a similar genetic architecture 
in PSC as in a prototypical exposure-driven 
autoimmune disease, coeliac disease18; and 
(v) a similar genetic architecture in PSC as 
in cholestatic drug-induced injury.19 20

We began studying the  cholangiopathy 
in HIV-infected patients (a form of SSC 
due to biliary tract infection by opportu-
nistic pathogens, including C parvum)21 
both because it was a significant clinical 
problem and as a result of our own clinical 
experience with C parvum-induced SSC.22 
To summarise key points from multiple 
in vitro and in vivo studies,16 23 we found 
that C parvum, presumably via retrograde 
invasion of the biliary tree from the small 
intestine, resulted in a pro-inflammatory, 
activated cholangiocyte phenotype and 
that the process involved a number of key 
molecules (eg, toll-like receptors, nuclear 
factor KB, C/EBP Beta and NRAS).24 25 
Moreover, the infection was associated 
with altered cholangiocyte cytokine and 
miRNA expression26 27 as well as inflam-
mation and fibrosis.16 More recently, and 
relevant to this commentary, we noted 
that virtually all of the changes described 
as a result of cholangiocyte invasion by 
C parvum also occurred when microbi-
al-derived  products (eg, lipopolysaccha-
ride, flagellin) were used as an alternative 
to the microbe itself.25 28 Additionally, 
cholangiocytes in vitro develop a senes-
cent phenotype (ie, proliferative arrest), 
likely involving these same pathways and 
processes, when chronically exposed to 
microbial-derived-products29 (figure  1). 
Importantly, we discovered that these 
pathways and processes are likely opera-
tive in human PSC.

A series of divergent published and 
unpublished data are evolving that inde-
pendently suggest, from a different 
perspective, microbial contributions to 
PSC. These data in patients with PSC 
include (i) expression of microbial recep-
tors on cholangiocytes,30 and  the occur-
rence of bacterobilia,31 32 (iii) bacteraemia 
of the portal venous system,33 (iv) prom-
ising results of antibiotics in uncontrolled 
studies34–37 and (v) genomic associations 
with loci implicated in host/microbiome 
interactions.38 The clinical relationship 
between the gut (including potentially 
those microbes that reside therein) and the 
liver in PSC was established 50 years ago 
with the observation that PSC frequently 
occurred in the setting of IBD.39 40 A series 
of studies recently published in Gut have 
demonstrated that the gut microbiome 
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Figure 1  Model of cholangiocyte activation. (A) Bile ducts are lined by cholangiocytes, specialised epithelia that under normal physiological 
conditions modify bile through the transport of water, ions and solutes. Portal myofibroblasts are adjacent to bile duct epithelia within the portal tract 
and are distinct from hepatic stellate cells which line the hepatic sinusoids; both can differentiate to matrix depositing myofibroblasts under injurious 
conditions. (B) Cholangiocytes exist in a harsh environment and are exposed to a variety of insults such as microbes, pathogen-associated molecular 
patterns, danger-associated molecular patterns, xenobiotics and bile acid-induced damage during cholestasis (from a variety of potential mechanisms, 
eg, oxidative stress). Recognition of these insults, for example, via pathogen recognition receptors or damage-associated molecular pattern receptors, 
promotes an activated cholangiocyte phenotype characterised by increased proliferation and secretion of profibrotic (eg, connective tissue growth 
factor) and proinflammatory (eg, interleukin 6 and 8) mediators. In this model, the activated cholangiocyte promotes hepatobiliary repair processes 
and recruits a variety of innate (eg, macrophages) and professional (eg, T cell) immune cells. On persistent insult, some injured cholangiocytes enter 
the cellular state of senescence, characterised by withdrawal from the cell cycle, and transition to a hypersecretory proinflammatory state, that is, 
senescence-associated secretory phenotype. On persistence, such an inflammatory/fibrotic environment will lead to sclerosing cholangitis. Reproduced 
with permission of Kari C. Toverud.
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in PSC is distinct from those microbial 
communities observed in IBD patients 
without PSC and healthy controls.41–44 
The relationship between the gut micro-
bial communities and the liver is bidirec-
tional, meaning that  there is an impact 
from host factors onto the gut microbiota 
by bile and intestinal secretions and the 
immune system, as much as from micro-
bial metabolites and constituents provided 
via the gut mucosa and the portal circu-
lation (figure  2).17 Support for a role of 
intestinal microbiota in PSC also comes 
from studies performed in germ-free mice. 
In the biliary bile acid toxicity model 

(Abcb4-/-), an aggravation of bile duct 
disease was observed in the germ-free 
animals compared with conventionally 
raised mice.45 In contrast, in the immune-
driven NOD.c3c4 model, an amelioration 
of bile duct disease was observed in the 
germ-free animals.46 These differences 
highlight the complexity of the relation-
ship between gut-derived exposures and 
the liver and the bile ducts, and suggest 
that various components of PSC patho-
genesis may be affected differently. 
Further studies are now urgently needed 
to link the microbial community alter-
ations of PSC and their metabolic and 

immunological consequences for hepato-
biliary physiology and disease.

Given the above considerations 
supporting the importance of the envi-
ronment in the pathogenesis of PSC, 
many key questions remain largely unan-
swered. For example, what is the nature 
of a potential environmental expo-
sure in PSC? Is it a small molecule or a 
peptide-derived substance? Is it dietary 
or microbial in origin (or both, meaning 
xenobiotic transformed by microbial 
metabolism)? Is it singular and specific in 
nature (like gluten in coeliac disease) or is 
it a compound microbial impact (like most 
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Figure 2  The gut–liver relationship in primary sclerosing cholangitis (PSC). There is bidirectional relationship between the gut and the liver in 
terms of delivery of a number of endogenous metabolites and bioactive compounds to the gut (eg, bile acids). Reversely, there is an ongoing delivery 
of compounds from the intestinal environment via portal blood to the liver. In this bilateral concept, the gut microbiota and the liver comprise an 
integrated physiological machinery under the influence of endogenous as well as external factors, in which the role of cholangiocytes warrants further 
attention.  Reproduced with permission from Ref. 17.

Figure 3  Genome-wide association study outcomes shown as Manhattan plots. In primary sclerosing cholangitis (PSC) and prototypical 
autoimmune diseases, there is a strong human leucocyte antigen association (chromosome 6). A similar genetic architecture is also seen in diseases 
elicited by specific environmental exposures (exemplified by drug-induced liver injury and coeliac disease), this contrasts the situation in diseases 
where a compound environmental insult is involved, exemplified by Crohn’s disease. The figure shows Manhattan plots with results of genome-wide 
association studies in (A) PSC, (B) flucloxacillin-induced liver injury, (C) coeliac disease and (D) Crohn’s disease. The X axis shows the chromosomal 
location, the Y axis the -log10 p values of the association statistics. Panel (B) is reproduced with permission from Ref. 19. Panels (A), (C) and (D) plotted 
from data in Ref. 20.
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likely the case in Crohn’s disease)? Are 
there different factors responsible for trig-
gering and driving disease, respectively? 
At this time, answers to these questions 
can only be provided based on circumstan-
tial evidence. From the genetic perspec-
tive, the strong human leucocyte antigen 
(HLA) class II associations (DRB1) are 
suggestive of at least one singular causative 
compound of key importance, similar to 

the situation in coeliac disease or drug-in-
duced injury (figure 3).47 In comparison, 
the genetic architecture of non-autoim-
mune, inflammatory diseases like Crohn’s 
disease is largely different (figure  3), 
possibly due to a broader spectrum of 
environmental factors being involved. 
Further to this thinking, in coeliac disease 
and drug-induced liver injury, the site 
of metabolism is crucial for disease 

localisation (in coeliac disease by trans-
glutaminase 2 in the proximal intestine, in 
drug-induced liver injury in the liver). In 
PSC, disease distribution stretches across 
the distal ileum throughout most of the 
colon (with a right-sided predominance) 
into the entire surface of the intrahepatic 
and extrahepatic bile ducts. Our knowl-
edge of the metabolic machinery of the 
epithelium in the biliary fraction of this 
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Figure 4  A coeliac disease model of primary sclerosing cholangitis (PSC) susceptibility. In 
coeliac disease, the disease-associated human leucocyte antigen (HLA) variants direct the adaptive 
immune response to gluten. Exposure to gluten, as well as the resulting gluten-specific adaptive 
immunity, respectively, is required to maintain autoantibody production and immunopathology 
in coeliac disease. Such observations challenge the concept that autoimmunity requires immune 
activation towards self-antigens. It may thus be hypothesized that the strong genetic HLA 
associations in PSC (and other autoimmune diseases) point to specific causal environmental 
exposures determined by the HLA/antigen (Ag)/T-cell receptor (TCR) interactions. Within this 
concept, genetic and environmental factors are co-dependent in disease causation with the 
implication that genetic risk factors may hold clues as to the identity of pathogenic environmental 
factors. For further reading, see Ref. 47. Reproduced with permission of Kari C. Toverud.
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surface (cholangiocytes) is still relatively 
rudimentary compared with hepatocytes 
and enterocytes. This also makes assess-
ments as to what could be the compo-
nents involved with causative factors very 
difficult. Possibly, as shown in figure  4, 
working from the currently known genetic 
co-variables of PSC development, HLA 
class II in particular, is a more direct way 
of determining the identity of causative 
factors than unbiased –omics technologies 
providing broad, correlative data.

In summary, the evolution of Koch’s 
postulates based on the availability of new 
technologies, the similarities in the intra-
cellular signalling pathways, processes 
and pathophysiological outcomes of SSC 
versus PSC, as well as recent data strongly 
implicating an important role for the intes-
tinal microbiome in PSC, all justify serious 
consideration and further experiments to 
test the possibility that PSC is caused by 
an environmental exposure. Genetic and 
environmental factors are inseparable and 
co-dependent in the causation of PSC as in 
any disease, and specific genetic findings 
made over the last decade, HLA related 
in particular, may for this reason guide 
the way forward in a methodologically 

challenging research space. The molecular 
machinery of the cholangiocyte is likely to 
play a key role at this gene–environment 
intersection, and basic research to enhance 
our understanding of normal and acti-
vated cholangiocyte function is urgently 
needed to test for their involvement with 
putative pathogenic factors.
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