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Abstract
Metabolic syndrome (MetS), as a chronic inflammatory 
disorder has a potential role in the development of 
inflammatory and cancerous complications of the 
colonic tissue. The interaction of DNA damage and 
inflammation is affected by the insulin-like growth 
factor 1 receptor (IGF1R) signaling pathway. The IGF1R 
pathway has been reported to regulate autophagy, as 
well, but sometimes through a bidirectional context. 
Targeting the IGF1R-autophagy crosstalk could 
represent a promising strategy for the development 
of new antiinflammatory and anticancer therapies, 
and may help for subjects suffering from MetS who 
are at increased risk of colorectal cancer. However, 
therapeutic responses to targeted therapies are often 
shortlived, since a signaling crosstalk of IGF1R with 
other receptor tyrosine kinases or autophagy exists, 
leading to acquired cellular resistance to therapy. From 
a pharmacological point of view, it is attractive to 
speculate that synergistic benefits could be achieved 
by inhibition of one of the key effectors of the 
IGF1R pathway, in parallel with the pharmacological 
st imulat ion of the autophagy machinery, but 
cautiousness is also required, because pharmacologic 
IGF1R modulation can initiate additional, sometimes 
unfavorable biologic effects.
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Core tip: Targeting the insulin-like growth factor 1 
receptor (IGF1R)-autophagy crosstalk could represent 
a promising strategy for the development of new 
antiinflammatory and anticancer therapies, and may 
help for subjects suffering from metabolic syndrome 
who are at increased risk of colorectal cancer. However, 
cautiousness is also required, because pharmacologic 
IGF1R modulation can initiate additional, sometimes 
unfavorable biologic effects.
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INTRODUCTION
Nowadays, metabolic syndrome (MetS) has being 
viewed as a chronic inflammatory disorder[1]. Al­
though numerous molecular mechanisms still have 
to be clearly defined, the role of pro-inflammatory 
cytokines, reactive oxygen species and free fatty acid 
intermediaries have been suggested as key factors in 
modulating specific intracellular signaling pathways 
that appear to regulate insulin sensitivity[2]. In order 
to expand our understanding of MetS, it is important 
to link their potential role in the development of 
complications.

In mild, longstanding colonic inflammation, the 
expression of epithelial insulin-like growth factor 
1 receptor (IGF1R) is elevated both on mRNA and 
protein levels[3]. This may allow epithelial cells 
bearing inflammation-associated genetic defects 
to pathologically survive and proliferate. In acute 
murine colitis, however, insulin-like growth factor 1 
(IGF1)-primed macrophages were found to suppress 
immune inflammation in the intestine by producing 
interleukin-10[4]. Regarding colonic inflammation, 
the biologic role of the IGF1/IGF1R axis seems to be 
controversial. 

Under inflammatory circumstances, immune and 
epithelial cells release reactive oxygen and nitrogen 
species, resulting in DNA damage[5]. The crosstalk 
between DNA damage and inflammation has a role in 
cancer development, therefore chronic inflammation 
represents a hallmark phenomenon of tumorigenesis[6]. 
The prevalence of MetS is increasing in parallel with 
growing incidence of cancerous diseases worldwide. 
Previous studies have reported that MetS is associated 
with the development of several types of tumors 
including colorectal cancer (CRC)[7-9]. The elevated 
risk of CRC in MetS patients[8] indicates that the 
consequence of MetS in cancer is an important issue 

needs to be resolved. 
The binding of insulin to cell surface receptors like 

insulin receptor and IGF1R on cancer cells results 
in cell proliferation and survival[10]. Elevated serum 
insulin levels modify the IGF-IGF1R axis involved 
in cancer development and progression[11]. Based 
on these results, antiinflammatory and anti-cancer 
strategies blocking the aberrant activation of IGF1R 
are therapeutically relevant. 

Autophagy is a fundamental eukaryotic cellular 
homeostatic process and integral component of 
the immune system influencing inflammation and 
immunity[12]. Regarding colorectal carcinogenesis it has 
a dual-faced role. The down-regulation of autophagy-
associated genes promotes colorectal cancer de­
velopment and invasion[13,14], while induction of 
autophagy redounds the proliferative arrest of human 
colon cancer cell lines[15,16]. Autophagy is considered 
to be a crucial approach of killing apoptosis-resistant 
tumor cells[17-19]. The insulin/IGF1/PI3K-Akt-mTOR 
(mammalian target of rapamycin) pathway has been 
reported to regulate autophagy through the insulin 
receptor[20,21]. Moreover, the autophagic lysosomal 
pathway can be suppressed by the activation of IGF1R-
signaling[22,23]. Thus, targeting the IGF1R-autophagy 
crosstalk could represent a promising strategy for the 
development of new antiinflammatory and anticancer 
therapies, and may help for subjects suffering from 
MetS who are at increased risk of colorectal cancer.

THE INSULIN/IGF/IGFR SYSTEM
The first identified member of the insulin/IGF family 
was insulin. Determination of the protein’s structure, 
functions, mode of action, role in glucose metabolism, 
and it’s implication in the etiology of diabetes mellitus 
resulted in the concession of three Nobel Prizes; in 
1923 for the discovery of it’s capacity to treat diabetes 
(by Frederick Banting and J. J. Macleod); in 1958 for 
studies regarding the protein structure and sequence 
(by Frederick Sanger); and, in 1963 for the first 
determination of the three-dimensional structure (by 
Dorothy Hodgkin). 

The existence of the IGFs was first proposed by 
Salmon and Daughaday (in 1957)[24], based on studies 
indicating that growth hormone-mediated stimulation 
of sulfate incorporation into the cartilage is mediated 
through a serum factor. This factor was originally 
termed “sulfation factor”, then “somatomedin”. The 
term “insulin-like” was later used, based on the partial 
structural homology with insulin and stimulation of 
glucose uptake into fat- and muscle cells[25].

IGF1 and IGF2 are growth factors with both 
mitogenic and metabolic functions, having a role in 
the growth, differentiation and survival of numerous 
cell types and tissues. IGFs are unique among 
growth factors, since they can act as systemically 
(like hormones), as locally (like autocrine/paracrine 
factors)[26]. 
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The metabolic functions of the insulin/IGF axis are 
well known, since insulin is a key regulator controlling 
cellular glucose-, amino-, and fatty-acid uptake, as 
well as glycogen-, lipid-, and protein synthesis, and 
other related metabolic processes[26].

IGFs also display multiple functions. They are 
expressed ubiquitously, although in different amounts 
and ratios in a variety of tissues and cells, exerting 
auto-, para- and endocrine biological effects. They act 
mainly as growth hormones, regulating the growth of 
human cells and tissues, as well as influencing their 
lifespan. They have a substantial effect on maintaining 
tissue homeostasis and a differentiated phenotype 
in normal tissue, are involved in angiogenesis, cell 
adhesion, migration and wound healing[27].

This network, along with a complex crosstalk with 
other signaling pathways has also a role in determining 
the balance between apoptosis and cell survival. The 
antiapoptotic and pro-survival effects are of major 
importance in the development and progression of 
some cancer types[28]. The variety of cellular responses 
to the insulin/IGF signal depend on the availability 
of growth factors, the ratios of the receptors and 
signalling molecules, the cell and tissue types as well 
as tissue microenvironment[28] (Figure 1). 

Insulin receptors (IR) exist in IR-A, IR-B and IRR 
isoforms, while IGF receptors include IGF1R and 
IGF2R[29]. IGF1R, IR and IRR are composed of an 

extracellular ligand-binding domain and an intracellular 
protein kinase domain. Their structural similarity 
permits the formation of heterodimer receptors, formed 
by subunits of different receptor proteins. Heterodimers 
are spontaneously formed and represent the most 
abundant receptor subtype in many tissues. These 
receptors bind insulin and IGF ligands with different 
affinities, depending on their subunit composition. 
Ranking from high to low and very low affinity, IGF1R 
binds IGF1, IGF2 and insulin; IGF2R binds IGF2 and 
other ligands, such as mannose-6-phosphate, IGF1; 
IR binds insulin, IGF2 and IGF1. IR-A possesses higher 
IGF2 affinity than IR-B. IRR is an orphan receptor with 
unknown ligand binding; it participates primarily in 
signal transduction[29,30].  

IGFs and IRs constitute a complex interacting 
receptor network. Depending on the availability of 
IGF/insulin ligands and the ratios of these receptors, 
IGFs can activate IR and, conversely, insulin activates 
IGF1R[28]. 

The endocrine actions of IGFs are regulated by the 
IGF-binding protein (IGFBP) system by modulating the 
amount of bioavailable IGFs in a positive or negative 
manner. The IGFBPs produced locally act as autocrine/
paracrine regulators of IGF actions. IGFBPs may also 
fix IGFs in the extracellular matrices for future actions.  
Some IGFBPs act also by a mechanism independent of 
IGFs[26].
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Figure 1  The IGF/IGF1R axis: schematic representation of the composition and function. Signaling of the IGF/IGF1R axis is mediated by IRS and Shc. PI3K-
AKT activation is the predominant downstream event, but the Ras/MEK/ERK and JNK/MAPK pathways can also be activated. IGF: Insulin-like growth factor; IGF1R: 
Insulin-like growth factor receptor 1; IRS: Insulin receptor substrate; PI3K: Phosphatidylinositol-3-kinase; AKT: Serine/threonine kinase, named protein kinase B (PKB); 
mTOR: Mammalian target of rapamycin; Bad: Bcl-2-associated death promoter; Bcl2: B-cell lymphoma 2; Shc: Adaptor protein; Ras: GTPase protein;  JNK: c-Jun 
N-terminal kinase; MEK: Mitogen-activated protein kinase kinase; ERK: Extracellular regulated kinase; MAPK: Mitogen-activated protein kinase; ELK: ETS domain-
containing protein.
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involved tissues, surrounding microenvironment, genetic 
background, or stages of tumor development[37,39].

The connection of the IGF1/IGF1R system to the 
autophagy machinery is rather complicated. Insulin 
receptor substrate 1 (IRS1), an adaptor of IGF1R 
has a crucial role in the signal transduction of IGF1R. 
Tyrosine phosphorylation of IGF1R induces the binding 
of IRS1 to IGF1R, and phosphorylation of tyrosine 
residues in IRS1. This allows IRS1 to activate the PI3K 
pathway[40]. The PI3K-Akt-mTOR pathway has been 
documented to regulate autophagy via the insulin 
receptor[20]. In addition, IGF1R-mediated cell survival 
under hypoxia depends on enhanced autophagy caused 
by the suppression of the PI3K-Akt-mTOR signaling 
pathway[21]. The autophagic lysosomal pathway can also 
be suppressed by the activation of IGF1R-signaling[22,23].

In a recent study[41], it has been shown that fra­
gments of IGF1R are localized separately from full-
length IGF1R, colocalizing with LC-3 II, and activate 
the ubiquitously expressed Shc A adapter protein in 
dense organelles. The IGF1R fragments and Shc A 
have been found to be phosphorylated, indicating that 
after activation both the IGF1R and a key adapter 
protein are sequestered in autophagic vacuoles for 
degradation. Shc adapter protein transmits IGF1/IGF1R 
signaling via the mitogen activated protein kinase 
(MAPK) pathway, resulting finally in cell proliferation. 
Upon cathepsin inhibition autophagy seems to be 
involved in downregulation of IGF1–mediated cell 
proliferation[41]. 

The nicotinamide adenine dinucleotide (NAD+)-
dependent protein deacetylase sirtuin 1 (SIRT1; 
silent mating type information regulation 2 homolog 
1) has emerged as a significant target for epigenetic 
therapeutics of colon cancer since its increased 
expression is closely related to cancer progression. 
Additionally, SIRT1 represses p53 function via 
deacetylation, and so, promotes tumor growth[42]. 
IGF1R signaling can be improved by adipokines through 
SIRT1[43]. Moreover, SIRT1 overexpression stimulates 
epithelial wound healing via the downregulation of 
the IGFBP3 protein, the activation of the IGF1R/Akt 
pathway, and the posttranslational modification of p53 
expression[44]. It has also been demonstrated that 
IGF1 and IGF1R expression levels can be negatively 
regulated by SIRT1 upon modulation of the AKT and 
ERK1/2 phosphorylation[45]. In turn, in human cancer 
cells aberrant cytoplasmic localization and protein 
stability of SIRT1 has been found to be regulated 
by the PI3K/IGF1R signaling[46]. SIRT1 can directly 
interact with and deacetylate several Atg proteins, 
including Atg5, Atg7, and Atg8, leading to the 
activation of these proteins[47,48]. By decreasing genetic 
stability and DNA mismatch repair, impaired SIRT1 
and autophagy signaling pathway could increase the 
risk of genetic mutations and carcinogenesis. Further, 
the dysregulation of mTOR and AMP activated kinase 
(PRKA) pathways could remodel cell metabolism 
during the growth and metastasis of cancer cells. 

Binding of IGFs by inhibitory IGFBPs results in 
altered IGF actions, thus preventing the interaction of 
IGFs with the specific IGF receptors (until released) 
and protecting them from proteases within the 
circulation. Due to the significantly greater affinity of 
IGFBPs for IGFs as compared to the affinity of IGFs to 
their receptors only few IGF binds to receptors in the 
presence of an equimolar concentration of receptor 
and binding protein. In this regard the excess presence 
of IGFBPs in various tissues is an additional factor. By 
limiting the complex functions of the IGFs, it may be 
hypothesised that IGFBPs may to certain extent act as 
tumor suppressors[26,31].

Nevertheless, IGFBPs may promote IGF signalling. 
IGFBPs stabilise and allow slow release of IGFs for 
receptor interactions, thereby preventing receptor 
downregulation by high IGF exposure, and thusly 
promoting a prolonged and constant receptor ac­
tivation[28].

IGFBP proteases presented in the circulation, as 
well may release IGFBP-bound ligands by degrading 
IGFBP into a form with a considerably lower affinity for 
IGFs compared with that of intact IGFBP. The amount 
of these proteases may be modified under certain 
physiological and pathological conditions, and their 
activity depends on the activators and inhibitors of 
proteases[26].

CONNECTION OF THE IGF/IGF1R 
SYSTEM WITH AUTOPHAGY
Autophagy, an evolutionarily highly conserved process 
of cellular self-digestion[32] is intensely implicated 
in the regulation of various functions, such as cell 
development, differentiation, survival, or senescence[33]. 
Additionally, it influences inflammation along with the 
innate and adaptive immunity[34]. Autophagy involves 
several sequential steps, including autophagosome 
nucleation, elongation, lipidation, and degradation, 
which are controlled by autophagy-related genes 
(Atgs)[32]. Intact basal autophagy serves constantly 
and constitutively as a critical adaptive and surveillance 
mechanism in maintaining cellular homeostasis[35]. 
However, to preserve cell viability autophagy is inducible 
in response to different cellular metabolic stress 
conditions, and, in case of protein aggregation and 
accumulation of misfolded proteins, when structural 
remodeling is warranted[36].

Defective autophagy has been ultimately related 
to several chronic inflammatory diseases including 
inflammatory bowel disease (IBD), or malignancies[35-38]. 
Regarding tumorigenesis, a Janus-faced role of au­
tophagy has been proposed. It may be critical for 
cancer cell survival and progression, in particular under 
stressful situations, however, it may also elicit tumor 
death signaling pathways. The pro-survival or pro-
death function of autophagy is context-dependent, and 
influenced by several intra- and extracellular factors, like 
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Moreover, these pathways may couple metabolic and 
epigenetic alterations that are essential to tumorigenic 
transformation[49]. Therefore, the modulation of the 
IGF1R/SIRT1/autophagy system is of great therapeutic 
interest in colon cancer.

The neural-specific deletion of sirtuin 6 (SIRT6) 
has been found to attenuate IGF1 level[50]. This finding 
may connect SIRT6 to IGF1 signaling, a conserved 
pathway with the ability to affect lifespan, metabolism, 
neurodegeneration, or cancer[51,52]. Recent evidences 
propose that autophagy may be associated with 
increased activation of SIRT6, because transcriptional 
factors like nuclear factor κ light chain enhancer of 
activated B cells (NF-κB), and activator protein 1 (AP-1), 
whose activity is negatively regulated by SIRT6, are 
shown to be positive regulators of autophagy[53,54]. 
These findings suggest that pharmacologic modulation 
of IGF1/SIRT6 might have a therapeutic value, as well.

The stress-induced protein TRB3 is a member 
of mammalian Tribbles homologs, which contain 
a Ser/thr protein kinase-like domain, but lack the 
ATP binding pocket and catalytic residues[55]. TRB3 
coordinates crucial cellular processes, such as lipid and 
glucose metabolism, apoptosis, cell differentiation, 
and stress response[55]. In several human tumors and 
cancer cells metabolic stress conditions, including 
insulin/IGF1 enhance the expression of TRB3. In 
cancer cells TRB3 depletion protects against the 
tumor-promoting actions of insulin/IGF1. TRB3 
interacts with p62, and interfers with the p62 cargo 
function, hence it results in p62 accumulation and p62-
mediated autophagy dysfunction[56]. The interaction 
between TRB3 and sequestosome-1 (SQSTM1) has 
been found to be essential to mediate the insulin/IGF-
1-related (metabolic stress-promoted) tumorigenesis 
by suppressing autophagic and proteasomal de­
gradation[57]. 

THERAPEUTIC ASPECTS OF THE IGF/
IGF1R AND AUTOPHAGY INTERACTIONS 
IN COLONIC INFLAMMATION
Metabolic disorders display a strong inflammatory 
basis, and vice versa, inflammation is deeply as­
sociated with metabolic alterations[58,59]. At molecular 
level, metabolically-driven and immune-mediated 
disorders induce cellular stress responses[60], and, 
further, in several chronic diseases increased levels of 
pro-inflammatory cytokines, dysregulated autophagy, 
as well as alterations in the intestinal microbiome can 
be detected[61-63]. 

Intestinal epithelial cells (IECs) maintain ho­
meostasis by creating an interface between the gut 
microbiota and the immune system. IECs directly 
sense enteric luminal bacteria, collaborate with in­
traepithelial lymphocytes and immune cells of the 
lamina propria[64]. Evidences suggest that the IGF/IGFR 
system plays a fundamental role in the gastrointestinal 
tract[65]. IBD patients often exhibit metabolic changes 
concomitantly with the altered adipokine levels and 
increased inflammatory parameters[66,67]. Relative 
insulin resistance (i.e. increased insulin levels with 
normal blood glucose levels) and changes of lipid 
metabolism are common phenomena in IBD[67]. 
Moreover, in IBD patients hyperinsulinemia was proved 
as an independent protective factor for a 6-month-
maintenance of remission[68]. In mild and moderately 
active ulcerative colitis epithelial IGF1R expression was 
found to be elevated as compared to severely inflamed 
or normal mucosa[3]. In Crohn’s disease, elevated 
IGF1R expression was observed in submucosal 
fibroblast-like cells, subserosal adipocytes, and hy­
pertrophic nervous plexi[69]. Intestinal fibrosis in form 
of fibrotic strictures is a well described complication of 

Table 1  Modulation of the IGF1R-autophagy crosstalk may induce controversial therapeutic effects

Inducing effects/therapeutic agents Corresponding cellular actions/processes Final outcome

Resveratrol mTOR inhibition ↑ Autophagy induction ↑ IGF1-induced fibrosis ↓
IGF1R inhibition ↑
SIRT1 activation ↓

Targeted inhibition of IGF1 IGF1/IGF1R signaling ↓ Altered autophagy machinery Amelioration of colitis
Modifying IGF1 stability IGF1/IGF1R signaling ↓ Altered autophagy machinery Amelioration of colitis
Chronic inflammation IGF/IGF1R signaling ↑ Altered autophagy machinery; Pro-tumor effect ↑

Survival and proliferation of cells bearing genetic errors ↑
Chronic inflammation +  small 
molecule RTK inhibitors

IGF/IGF1R signaling ↓ Survival and proliferation of cells bearing genetic errors ↓ Pro-tumor effect ↓

Targeted inhibition of IGF1R IGF1R signaling ↓ Cell-protective autophagy ↑ Efficacy of IGF1R targeting ↓
Targeted inhibition of IGF1R  + IGF1R signaling ↓ Cell-protective autophagy ↓ Efficacy of IGF1R targeting ↑
Autophagy disrupting agents
BCAA IGF1R activation ↓ Insulin-induced cell proliferation ↓ Anti-tumor effect ↑
IGF1R/EGFR inhibition  + IGF1R activation ↓ Cell-protective autophagy ↓ Anti-tumor effect ↑
Increasing miR216b level +  
autophagy blocking

mTOR: Mammalian target of rapamycin; IGF/1R: Insulin-like growth factor/receptor-1; SIRT: Sirtuin; RTK: Receptor tyrosine kinase; BCAA: Branched 
chain amino acid; EGFR: Epidermal growth factor receptor.
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longstanding Crohn’s disease. IGF1 stimulates collagen 
I synthesis in intestinal fibroblasts via the IGF1/IGF1R/
ERK1/2 pathway[70]. These may suggest a role for 
IGF1R in the maintenance of chronic inflammation and 
stricture formation in IBD. 

It has recently been found that IGF1-induced 
collagen I expression of intestinal fibroblasts can be 
repressed by resveratrol either via activating SIRT1 or 
inhibiting the activation of IGF1R[70]. In SW620 cells, 
mTOR has also been proposed as a novel direct target 
of resveratrol action. In addition, mTOR inhibition is 
necessary for autophagy induction. Inhibition of mTOR 
by resveratrol was found to be independent of AMPK, 
SIRT1, PDE, and PI3K[71], raising a putative role of 
the IGF/IGF1R system while mediating this inhibitory 
effect. 

Inflammation-associated catabolic states, including 
sepsis and cancer are characterized by accelerated 
proteolysis. Among the signaling pathways that could 
mediate proteolysis induced by acute inflammation, 
like in IBD, the transcription factor forkhead box O 
induced by glucocorticoids and inhibited by IGF1, 
is likely to play a key role. Lipopolysaccharide can 
stimulate the expression of several components of 
the autophagy. This induction is associated with a 
rapid increase of circulating levels of TNFα together 
with an activation of NF-κB followed by a decrease 
in circulating and tissue levels of IGF1[72]. In murine 
model of colitis, serum IGF1 level was found to be 
reduced in ileitis[73]. This reduction may be due to 
post-growth hormone receptor effects of IL-6 on IGF1 
stability[74]. Furthermore, granulocyte-monocyte colony 
stimulating factor neutralization via STAT5 suppression 
and the deficiency of the CARD15 gene, an autophagy-
activating sensor may also be involved in that 
phenomenon[73]. Therefore, targeted inhibition of IGF1 
either by restoring tissue and circulating IGF1 levels, 
or modifying IGF1 stability all could have possible 
therapeutic potentials in IBD, partly due to alteration 
of the autophagy process (Table 1). 

THERAPEUTIC ASPECTS OF THE IGF/
IGF1R AND AUTOPHAGY INTERACTIONS 
IN COLORECTAL CANCER
Although combinations of surgery, radiotherapy and 
chemotherapy are used generally, innovative strategies 
are needed to improve the therapeutic outcome of 
CRC patients, especially with advanced stages of the 
disease. In the last decade new hypotheses have 
been considered on the mechanisms implicated in 
the early steps of CRC. Mainly, it has been postulated 
that mucosal inflammation, and epithelial injury can 
be considered as important determinants. Indeed, 
tissue injury caused by infectious, mechanical, or 
chemical agents may elicit a chronic immune response 
leading to cell proliferation, regeneration, and altered 
autophagy. When the immune response fails to resolve 

injury, the inflammatory milieu rich in cytokines, 
growth factors (including IGFs/IGFRs), and reactive 
oxygen species participates in making an attempt to 
repair, resulting finally in accumulation of genetic errors 
and a sustained inappropriate proliferation. Numerous 
evidence supports the contribution of inflammatory 
responses in the subsequent development of CRC[75]. 
The development of targeted therapies that block 
selectively molecular pathways driving CRC is in the 
focus of current research. Small molecule inhibitors 
specific for receptor tyrosine kinases (including IGFRs) 
have so far demonstrated promising effects[76,77].

IGFRs, expressed physiologically in the mucosal 
and muscular layers of the colon[78], are definitely 
overexpressed by colon cancer cells[79]. Abnormal 
activation of the IGF/IGF1R axis is a key element in 
MetS-related cancer development, since it affects 
the expression and function of many proteins being 
involved in regulation of autophagy and apoptosis, and 
is also involved in cancer cell survival, resistance to 
apoptosis, and cell-cycle progression[80]. 

The biologic function of autophagy in CRC is rather 
controversial. Indeed, the down-regulated expression of 
Atgs are associated with colorectal tumorigenesis[13,14], 
however, the induction of autophagy contributes to 
proliferative arrest of human colon cancer cells[15,16]. 
It has also been suggested that cytotoxic agents, 
including chemotherapeutics, induce autophagy in 
cancer cells[22,81]. 

In general, treatment with anti-IGF1R monoclonal 
antibodies seems to be relatively well-tolerated; the 
main detected side effects include hyperglycemia, 
fatigue, and thrombocytopenia. Its beneficial clinical 
activities have been observed in a broad range of 
different tumor, including CRC[82]; nonetheless, in 
groups of unselected cancer patients clinical studies 
with pharmacological agents targeting the IGF 
pathway have so far demonstrated modest efficacy 
regarding the outcome. The complexity of the IGF/
IGFR pathway may in part account for this failure. 
Similar to IGF1R interaction with IGF1, binding of IGF2 
to IGF1R or IR-A can also stimulate IGF signaling. The 
situation is further complicated if cells contain hybrid 
heterodimeric receptors consisting of IGF1R and IR 
subunits, which can act as a major transducer of IGF 
signaling[83]. In case of triple negative breast cancer 
cells, IGF1R inhibition on the one part induces cell-
protective autophagy, which may to some degree 
rescue cells from other actions of the same receptorial 
inhibition, like proliferation suppression and apoptosis, 
and thereby weakens the efficacy of IGF1R-targeting 
agents. However, autophagy-disrupting agents can 
enhance the effect of IGF1R inhibitors[84], which may 
constitute a potential therapeutic strategy for cancers, 
including CRC (Figure 2).

By defining a cut-off for IGF2 overexpression based 
on differential expression between colorectal tumors 
and normal tissue samples, an attractive patient 
selection biomarker for IGF pathway inhibitors were 
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found[85]. Additionally, combined  targeting of IGF/
VEGF and autophagy systems may further improve 
clinical outcomes[86]. 

In vivo studies have reported that branched chain 
amino acid (BCAA) supplementation inhibits the 
activation of IGF1R[87-89]. BCAA has been found to 
enhance LC3-II and beclin 1 expressions, indicating 
its putative autophagy inductive effect. Moreover, 
BCAA also decreases the insulin-induced proliferation 
of HCT-116 colon cancer cells by inhibiting IGF1R and 
inducing autophagy[90]. These results suggest that an 
active intervention using BCAA might serve as a novel 
therapeutic approach for insulin-related CRC.

In case of cathepsin inhibition, higher levels of 
activated Shc and reduction of of activated MAPK 
can be found in epithelial-derived cells. The activated 
Shc trapped in autophagic vesicles is not able to 
activate downstream cytosolic proteins including MAPK. 
Further activation of MAPK by IGF-1 is also diminished.  
Cathepsin inhibition in cancer cells leads to accumulation 
of Shc proteins in autophagolysosomes and impairs 
MAPK signaling, identifying a novel mechanism by 
which protease inhibitors can block cell proliferation, 
and lead to tumor cell death[41].

Therapeutic responses to targeted therapies are 
often shortlived as tumor cells acquire resistance 
pathways. The IGF1R system plays a critical role in the 
regulation of cell growth and malignant transformation 
via the MAPK and PI3K/Akt pathways. Interactions of 
IGF1R with other receptor tyrosine kinases have been 
reported, and a signaling crosstalk of IGF1R/EGFR was 
also observed[77]. The use of monoclonal antibodies 

for EGFR blockade is a well-established strategy 
in CRC treatment. Nevertheless, the loss of EGFR 
signaling in CRC cells can be compensated simply via 
activation of alternative signaling pathways, controlled 
in part by IGF1R[91]. Moreover, studies indicate that 
the mechanism of resistance to anti-EGFR antibodies 
biochemically involves as the Ras/Raf/Mek/Erk, as 
the PI3K/Akt/mTOR pathways. In addition, recent 
data suggest that failure of anti-EGFR therapies is 
accompanied by inhibition of EGFR internalization, 
ubiquitination, degradation and prolonged down­
regulation[92,93].

Cetuximab, a monoclonal antibody blocking EGFR 
has been used for CRC treatment, but some CRCs 
failed to respond to anti-EGFR therapy. Anti-EGFR 
therapy, in vitro, has been found to activate dose-
dependently Beclin-1 when HT29 and SW480 CRC cell 
lines were used. Moreover, microRNA (miR)-216b level 
was significantly downregulated in anti-EGFR-treated 
CRC cells[94]. According to these data, anti-EGFR 
antibodies may decrease miR-216b level in CRC cells, 
whith the subsequent upregulation of Beclin-1 that 
increases cancer cell autophagy in order to antagonize 
anti-EGFR-induced cell death. 

One can speculate, that in CRC the outcome of 
combined anti-receptor tyrosine kinase therapies could 
be optimized by strategies that inhibit IGF1R/EGFR[95], 
increase miR-216b level, or block cell autophagy 
simultaneously.

CONTROVERSIAL EFFECTS OF IGF1R 
SIGNALING ON AUTOPHAGY
The possibility of targeting the IGF1R with several 
actions involved in carcinogenesis suggests that it 
may represent a potential therapeutic option. Even 
so, cautiousness is required, since pharmacologic 
modulation of the IGF1R can initiate additional biologic 
effects. According to recent data, IGF1R inhibition may 
lead to a decrease in mTORC2 function, which, in turn, 
reduces the activity of protein kinase C (PKC) alpha 
and beta, and thus, influences the autophagosome 
formation by modulating the cytoskeleton and the rate 
of endocytosis[96] Therefore, via IGF1R inhibition the 
process of autophagy could be affected  bi-directionally 
(Figure 3).

From a pharmacological point of view, however, 
it is attractive to speculate that synergistic benefits 
could be achieved by inhibition of one of the key 
effectors of the IGF1R pathway, in parallel with 
the pharmacological stimulation of the autophagy 
machinery. Additionally, data also suggest that there 
may be benefits in using dual mTORC1/2 catalytic 
inhibitors for longer periods, as these may result in 
autophagy inhibition, which may decrease viability of 
at least some types of cancers[97-99].

The crosstalk between cell cycle progression and 
autophagy is not fully understood. According to earlier 

IGF1R Inhibition

IGF1R

mTORC2PI3K

AKT

mTORC1

PKC α/β

ATG16L1 (Autophagosome 
formation)

Autophagy

Figure 2  Controversial therapeutic effects of IGF1R inhibition. In case 
of IGF1R inhibition the simultaneously induced cell-protective autophagy 
could promote cell proliferation and suppress apoptosis, thus via autophagy 
antagonize its own original actions on cells. If IGF1R inhibition is combined 
with autophagy disruptive agents autophagy can be blocked, hence cancer cell 
proliferation will be suppressed and apoptosis enhanced.  IGF1R: Insulin-like 
growth factor receptor 1.
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results, cells undergoing mitosis are more resistant to 
autophagy stimuli like mTOR inhibition[100]. The active 
ingredient of a gum resin from Boswellia serrata, 
3-acetyl-11-keto-β-boswellic acid (AKBA), has recently 
gained attention as a chemopreventive compound 
due to its ability to target key oncogenic proteins[101, 

102]. AKBA has been shown to inhibit the growth of 
CRC cells partly by its ability to regulate cell epigenetic 
machinery[103]. Using a potent natural AKBA analog 
(BA145) robust autophagy was detected in pancreatic 
cancer cells in a time and dose dependent manner[104]. 
The BA145-triggered autophagy resulted in G2/M 
arrest of cell cycle along with inhibited cell growth. 
Induction of autophagy was associated with the 
BA145-mediated inhibition of mTOR, which, in turn led 
to feedback activation of Akt via IGF1R/PI3K signaling. 
This feedback activation of Akt, however, lessened 
the BA145-triggered autophagy and its related effects 
on cell cylce arrest and cell death, thus indicating the 
decreased effectiveness of a single target-based cancer 
therapy.

CONCLUSION
In summary, recent data suggest that inhibition of 
IGF/IGF1R system along with manipulation of the 
autophagy process could play an important role 
in suppressing insulin-related inflammatory and 
cancerous disorders of the colon. On the other hand, 
wariness is required, as well, since single or combined 
pharmacologic modulation of the IGF1R - autophagy 
machinery can initiate further, sometimes undesirable 
pathobiologic outcomes. 
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