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DNA methylation signatures of illicit drug injection
and hepatitis C are associated with HIV frailty
Xinyu Zhang 1,2, Ying Hu3, Amy C Justice 2,4, Boyang Li5, Zuoheng Wang5, Hongyu Zhao5,

John H Krystal1,2 & Ke Xu1,2

Intravenous illicit drug use (IDU) and hepatitis C infection (HCV) commonly co-occur among

HIV-infected individuals. These co-occurring conditions may produce interacting epigenetic

effects in white blood cells that influence immune function and health outcomes. Here, we

report an epigenome-wide association analysis comparing IDU+/ HCV+ and IDU−/HCV− in

386 HIV-infected individuals as a discovery sample and in 412 individuals as a replication

sample. We observe 6 significant CpGs in the promoters of 4 genes, NLRC5, TRIM69, CX3CR1,

and BCL9, in the discovery sample and in meta-analysis. We identify 19 differentially

methylated regions on chromosome 6 harboring MHC gene clusters. Importantly, a panel of

IDU+/HCV+-associated CpGs discriminated HIV frailty based upon a validated index with an

area under the curve of 79.3% for high frailty and 82.3% for low frailty. These findings

suggest that IDU and HCV involve epigenetic programming and that their associated

methylation signatures discriminate HIV pathophysiologic frailty.
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Injection illicit drug use (IDU) is a significant risk factor for
HIV infection. Among HIV-infected individuals with a history
of injection opioid oxymorphone, 92.3% are co-infected with

hepatitis C (HCV)1, making it difficult to distinguish IDU from
HCV2, and both conditions increase mortality in this popula-
tion3. However, little is known about how the concurrence of
IDU and HCV impacts the HIV-infected host genome and
changes the course of HIV disease.

IDU and HCV may worsen HIV outcomes by introducing
or amplifying proinflammatory processes, such as cytokine
release4–6. Markers of immune activation such as CD38 expres-
sion on CD8+ T cells and soluble CD14 were significantly
increased in IDU as compared to in non-IDU subjects7, 8. HCV
infection further enhances the activation of immune function in
IDU5. The increased immune activation in IDU and HCV may
contribute to undermining immune function and poorer HIV
outcomes, i.e., high HIV pathophysiologic frailty. Frailty repre-
sents a loss of homeostasis9 and is associated with important
disease outcomes in HIV such as disability, hospitalization, and
mortality10, 11. Therefore, IDU and HCV may act in concert with
HIV to impair immune, inflammatory and other gene functions
and worsen the course of HIV infection.

Genes involved in immunity and inflammation are logical
candidates for the convergent epigenetic effects of IDU. DNA
methylation (DNA-me), one of the major epigenetic mechanisms,
generally suppresses, while demethylation generally increases,
gene transcription, and both play important roles in inflamma-
tory processes associated with cardiovascular disease, cancer, and
infectious disease12–18. We recently reported that the methylation
of genes in immune and inflammation domains in white blood
cells (WBC) differed significantly between HIV-infected and
uninfected individuals19. These findings and others suggest that
disease outcomes might be worsened by epigenetic effects of
comorbid addictions and, by implication, improved by treatments
that target epigenetic processes20, 21.

To evaluate the epigenetic effects of IDU and HCV, we conduct
a two-step analysis to examine the association of DNA-me in
WBC comorbid for IDU and HCV (IDU+/HCV+) and link the
DNA-me signatures to HIV outcomes, measured by an index
reflecting pathophysiological frailty. All samples are selected from
a well-established longitudinal HIV cohort, the Veteran Aging
Cohort Study (VACS). We first profile epigenome-wide DNA-me
in 386 HIV-infected IDU+/HCV+ individuals and in IDU−/HCV

− HIV-infected individuals using the Illumina HumanMethyla-
tion450 BeadChip. We conduct an epigenome-wide association
study (EWAS) to identify differential DNA-me positions (DMPs)
and regions (DMRs) between IDU+/HCV+ and IDU−/HCV−.
We perform a replication analysis in a different sample set (N =
412) and a meta-analysis to maximize its power. Top signals from
EWAS are selected for gene pathway and network analyses. Next,
we evaluate the relationship between IDU+/HCV+-associated
DNA-me cumulative scores obtained from EWAS and HIV
outcomes, which are assessed using a well-established index
(Veteran Aging Cohort Study, VACS index) that measures HIV
infection disease burden. Applying hierarchical clustering analy-
sis, we use a panel of top DNA-me signatures to distinguish IDU
+/HCV+ and IDU−/HCV−. Finally, we apply machine learning
to discriminate the degree of HIV frailty in a set of HIV-infected
individuals (N = 238). These 238 samples are independent from
the samples used in discovery and replication analyses to avoid
overfitting. In summary, in this EWAS, we evaluate the impact of
IDU on DNA-me and link epigenetic markers for HIV frailty.

Results
Study subject characteristics. In the discovery stage, we selected
386 samples (IDU+/HCV+ = 216, IDU−/HCV− = 170) from the
VACS. To reduce confounding factors, all subjects were African
American men and all were confirmed to be HIV-positive
(Table 1). IDU+/HCV+ subjects were self-reported to inject illicit
drugs and were tested HCV-positive at the time of blood col-
lection. Compared to IDU−/HCV− subjects, IDU+/HCV+ sub-
jects were older and had higher rates of tobacco smoking and
alcohol drinking (p< 0.001), which were adjusted in the EWAS
model. To further limit confounding factors, we matched two
groups in CD4+ counts, HIV-1 load, and antiretroviral medica-
tion adherence. We estimated cell type compositions for each
sample using previously developed methods22, 23 and adjusted
differences in all the models we used. The effort to reduce con-
founders were sought to identify EWAS signals specific for IDU
and HCV.

To replicate the findings from the discovery stage, we selected a
different sample set (IDU+/HCV+ = 104, IDU−/HCV− = 308)
from the same cohort using the same criteria as used in the
discovery sample. Compared to the discovery sample, the
replication sample had fewer IDU+/HCV+ subjects and more

Table 1 Demographic and clinical characterizations

Discovery sample Replication sample

IDU+/HCV+ (N= 216) IDU−/HCV− (N= 170) IDU+/HCV+ (N= 104) IDU−/HCV− (N= 308)

Age (year) 51.38± 4.80 47.04± 9.04a 49.91± 5.00 47.22± 8.47a

Sex (male, %) 100 100 100 100
Race (AA, %) 100 100 100 100
HIV-infection (%) 100 100 100 100
Smoker (%) 70.4 47.6a 67.3 49.7a

Alcohol (AUDIT-C) 4.72± 3.73 3.01± 2.99 3.75± 3.30 3.09± 2.75
ART adherence (%) 74.5 75.9 74 77
Log 10 HIV-1 load 2.61± 1.11 2.81± 1.34 2.63± 1.10 2.68± 1.26
CD4+ T (cell count) 404± 262 448± 286 441± 272 459± 290
CD8+ T (%) 0.18± 0.08 0.18± 0.08 0.16± 0.07 0.16± 0.08
NK (%)b 0.07± 0.06 0.09± 0.06 0.08± 0.06 0.08± 0.05
B cell (%)b 0.09± 0.05 0.08± 0.04 0.12± 0.05 0.11± 0.05
Monocyte (%)b 0.12± 0.04 0.12± 0.04 0.11± 0.04 0.10± 0.04
Granulocyte (%)b 0.51± 0.13 0.53± 0.14 0.50± 0.11 0.51± 0.11

AA African American, ART antiretroviral therapy, AUDIT-C, Alcohol Use Disorders Identification Test
aIDU+/HCV+ versus IDU−/HCV− p<0.001
bMethylation estimated cell type compositions
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IDU−/HCV− subjects. Similar to the discovery sample, IDU
+/HCV+ subjects were older and had a higher rate of smokers.
Although alcohol drinking was not significantly different between
IDU+/HCV+ and IDU−/HCV− groups, it was adjusted in the
model to address potential alcohol effects and to be consistent
with the analysis in the discovery sample. Other clinical variables
such as antiretroviral medication adherence, HIV-1 load, CD4+

count and cell compositions in blood did not differ significantly
between two groups (Table 1).

Significant DMPs and DMRs in the discovery sample. To
identify DMPs between IDU+/HCV+ and IDU−/HCV−, we
adapted a stringent analytical pipeline, CPACOR (incorporating
Control Probe Adjustment and reduction of global CORrelation),
for EWAS to reduce known and unknown confounding effects24.
We observed a small λ value of 1.08, indicating minimal inflation
resulting from the analysis (Supplementary Figure 1). Six CpG
sites reached epigenome-wide significance (linear regression p =
5E−07, False discovery rate FDR = 0.017 ~1.30E−04) (Fig. 1a).
These CpG sites remained significant following 100 permutation
tests to rule out an outlier effect. All 6 significant CpG sites were
located at the promoter regions of 4 genes: NLRC5 (NLR family

CARD domain containing 5), TRIM69 (superfamily of tripartite
motif-containing), CX3CR1 (C-X3-C motif chemokine receptor
1), and BCL-9 (B-cell lymphoma 9 protein). Differences between
IDU+/HCV+ and IDU−/HCV- in the average methylation at the
6 CpG sites were small to moderate with a range of 1–6%
(Fig. 1b), which is consistent with EWAS findings for other
complex diseases25, 26. cg07839457 in NLRC5 showed lower
methylation in HIV-infected IDU+/HCV+ than in IDU−/HCV−
(t = −6.40, p = 5.76E−10). Similarly, cg22107533, cg10439456, and
cg05439368 in TRIM69 showed lower methylation in HIV-
infected IDU+/HCV+ than in IDU−/HCV− (cg22107533:
t = −6.39, p = 6.04E−10; cg10439456: t = −5.80, p = 1.57E−08,
cg05439368: t = −5.47, p = 9.09E−08). In contrast, cg22917487 in
CX3CR1 and cg0534042 in BCL9 were hypermethylated in the
IDU+/HCV+ group compared to in the IDU−/HCV− group (t =
5.53, p = 6.64E−08; t = 5.28, p = 2.43E−07, respectively) (Table 2).

To test whether current injection drug users showed stronger
DNA methylation effects than past injection users, we compared
methylation β values at 6 CpG sites among current IDU+/HCV
+(N = 58), past IDU+/HCV+(N = 158), and IDU−/HCV− (N =
170) groups. Here, current drug injection was defined as injection
of illicit drugs within the past 12 months and infection with HCV
at the time of the interview. We found that methylation of
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Fig. 1 Epigenome-wide association analysis identifies six significant CpG sites for injection of illicit drug use comorbid with hepatitis C in HIV-infected
individuals. a Manhattan plot of chromosomal locations of −log10(p values) for association in 437,722 CpG sites among 386 HIV-infected African
American men with and without injection of illicit drugs comorbid with hepatitis C infection in the discovery sample set. The red line presents the threshold
for nominal p= 5E10-07. b Violin plot showing differential DNA methylation of six significant CpG sites between subjects comorbid for injection drug use
and hepatitis C (IDU+/HCV+) compared to non-injection drug use and non-hepatitis C (IDU−/HCV−) subjects in the discovery sample. Methylation (β) is
on a scale 0–1. The line in the middle shows average methylation in each group. Four CpG sites (cg07839457, cg10439456, cg0539368, cg22107533,)
were hypomethylated and two CpG sites (cg22917487 and cg05349042) were hypermethylated in IDU+/HCV+ compared to IDU−/HCV−
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all 6 CpGs among the three groups were significantly different
(p ≈ 0.005–4.45 E−08), but the differences between past IDU
+/HCV+ and current IDU+/HCV+ subjects were not significant
(Supplementary Fig. 2), suggesting that alterations in DNA-me in
IDU had not recovered by one year after discontinuation of IDU.
Of note, we interpreted this finding with caution due to a small
sample size of the current IDU+/HCV± +group.

Considering that DNA-me alterations in adjacent sites may
occur together, we examined DMRs across the epigenome
between HIV-infected IDU+/HCV+ and IDU−/HCV− using the
BumpHunter program27. A total of 148 DMRs were significantly
different between groups (FDR< 0.05). We identified 19 DMRs
on chromosome 6, including the region of the MHC gene
clusters, i.e., HLA-H, HCG4B, HLA-A, RNF39, TRIM31, HLA-
DRB6, HLA-DPB6, and HLA-DPB2 (Supplementary Table 1).
Figure 2a presents DMRs between IDU+/HCV+ and in IDU
−/HCV− subjects across the MHC gene cluster region. Consistent
with the signals from DMP, we found a DMR in the promoter of
TRIM69 containing 5 CpG sites associated with IDU+/HCV+. In
this region, methylation in the TRIM69 promoter was 6.7% lower
in IDU+/HCV+ than in IDU−/HCV− (Fig. 2b).

Replication and meta-analysis. A replication analysis was con-
ducted in a sample set independent of the discovery sample. The
DNA methylation in the replication sample was profiled by using
Infinium MethylationEPIC. To reduce batch and other con-
founding factors, all samples were processed by the same scientist
at the Yale Center of Genomic Analysis (YCGA), and data ana-
lysis was performed using the same bioinformatic pipelines.
Among 6 DMPs identified in the discovery sample, 3 DMPs,
cg07839457 in NLRC5, cg05439368 in TRIM69, and cg05349042
in BCL9, were nominally significant (Table 2). Three DMPs were
no longer significant but trended in the same direction of dif-
ferential methylation between IDU+/HCV+ and IDU−/HCV− in
the discovery sample. Using the same analytic approach, we
identified 7 DMRs across the MHC region on chromosome 6 in
the replication sample (Supplementary Figure 3). Five out of 7
DMRs identified in the replication sample were also significant in
the discovery sample (Supplementary Table 1). Consistent with
the DMR finding in the discovery group, a DMR in the promoter
of TRIM69 was significant (Supplementary Figure 4).

A meta-analysis combining the discovery and replication
samples revealed 10 epigenome-wide significant DMPs, including
6 DMPs identified in the discovery sample (Table 2) (FDR =
1.62E−04 ~5.03E−08), which validated the findings from the
initial analysis. Four additional DMPs were significant in the
combined meta-analysis, i.e., cg05201185 located in the gene
body of HLA-E. Three CpG sites were located in intragenic

regions. All 10 DMPs revealed in meta-analysis trended in the
same direction as in the discovery sample.

Considering the methylation level of the overlap probes
between 450K and EPIC arrays has varied correlation as recently
reported by Logue et al.28, the following results from pathway,
clustering, and machine learning analyses were based on the data
from 450K array only.

Gene pathway and network analysis. To gain insight into
the biological function of differentially methylated genes for
IDU+/HCV+, we conducted pathway and network analyses in the
discovery sample using Ingenuity Pathway Analysis (IPA, http://
www.ingenuity.com). We selected the top 748 probes from the
EWAS (cutoff p = 1E−03) (Supplementary Table 2). The set of
748 probes were selected based on subsequent analysis to dis-
criminate IDU+/HCV+ and IDU−/HCV− groups. These probes
were annotated for 577 unique genes.

We found that two pathways were significantly associated with
IDU+/HCV+(FDR< 0.05). The antigen presentation pathway was
over-represented in HIV-infected IDU+/HCV+ (p = 1.70E−06).
In our sample, 6 of 37 genes in this pathway (NLRC5, HLA-A,
HLA-B, PSMB8, TAP1, HLA-E) were less methylated in
IDU+/HCV+ than in IDU−/HCV−. The interferon signaling
pathway was also significantly associated with IDU (p = 4.07E
−04). Four genes in this pathway, MX1, PSMB8, TAP1, and
IFITM1, were less methylated in IDU+/HCV+ compared to
IDU−/HCV− subjects. These results show that methylation
alterations of immune and inflammatory genes play significant
roles in IDU and HCV individuals.

Top gene networks included functions involving infectious
disease, neurological dysfunction, inflammatory diseases and
responses, as well as dermatological diseases and conditions.
More interestingly, upstream regulator analysis revealed a
relationship between NLRC5 and six immune regulation genes
(activation z-score = −2.40, p = 8.18E−06). NLRC5 is a critical
transcription regulator inhibiting HLA-A, HLA-E, HLA-B,
PSMB9, and TAP1. Methylation of these 6 genes was lower in
HIV-infected IDU+/HCV+ than in IDU−/HCV−. The results of
pathway and network analyses further support the importance of
methylation in immune and inflammation functions in the
process of HIV infection in IDU+/HCV+ subjects.

Probes differentiated between IDU+/HCV+ and IDU−/HCV−.
We further evaluated whether these 748 methylation signals
could be used to bioinformatically classify the IDU+/HCV+ and
IDU−/HCV− groups. We performed unsupervised hierarchical
clustering analysis using residual methylation of 748 probes
adjusted for confounders. The hierarchical tree indicated two

Table 2 Epigenome-wide DNA methylation sites associated with IDU comorbid HCV in HIV-infected individuals

Discovery Replication Meta-analysis

Probe CHR Position Gene Group t p t p p Coefficient SE

cg07839457 16 57023022 NLRC5 TSS1500 −6.4 5.76E−10 −2.88 0.004 7.36E−11 −0.06 0.01
cg22107533 15 45028083 TRIM69 TSS1500 −6.39 6.04E−10 −1.37 0.170 1.01E−07 −0.02 0.00
cg10439456 15 45028270 TRIM69 TSS1500 −5.8 1.57E−08 −1.85 0.060 1.01E−08 −0.04 0.01
cg22917487 3 39322103 CX3CR1 TSS200 5.53 6.64E−08 1.10 0.270 5.13E−08 0.02 0.00
cg05439368 15 45028098 TRIM69 TSS1500 −5.47 9.09E−08 −2.31 0.020 1.24E−07 −0.03 0.01
cg05349042 1 147013020 BCL9 TSS200 5.28 2.43E−07 2.21 0.020 1.43E−07 0.01 0.00
cg05201185 6 30459139 HLA-E Body −4.75 3.14E−06 −2.60 0.009 1.37E−07 −0.03 0.01
cg19896824 11 128555529 N/A N/A −4.63 5.32E−06 −2.69 0.008 1.56E−07 −0.01 0.00
cg04338890 16 57019755 N/A N/A −5.05 7.64E−07 −1.80 0.070 2.37E−07 −0.01 0.00
cg26312951 21 42797847 MX1 TSS200 −4.31 2.17E−05 −3.03 0.003 3.24E−07 −0.04 0.01
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distant clusters, IDU+/HCV+ and IDU−/HCV− (p = 4.65E−27)
(Fig. 3a). These two clusters were not associated with other
clinical and HIV-related phenotypes, e.g., medication adherence,
age, HIV viral load, CD4 counts, and CD8 counts (p> 0.1). To
confirm this result, we performed a t-distributed stochastic
neighbor embedding (t-SNE) clustering analysis, a machine-
learning approach for high-dimensional data reduction29. Con-
sistent with the results of hierarchical clustering analysis, the
result of t-SNE for 748 residual methylation probes showed dis-
tant clusters for IDU+/HCV+ and IDU−/HCV− groups (Fig. 3b).

This result suggests that the methylation panel obtained from
EWAS can differentiate two phenotypic groups without other
significant confounding effects.

Correlation of cumulative DNAm score with HIV frailty. To
test the relationship between IDU+/HCV+-associated methyla-
tion signatures and HIV pathophysiological frailty in HIV-
infected individuals, we constructed a methylation cumulative
score based on a weight sum of adding residual methylation
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Fig. 2 Differential DNA methylation regions between injection drug use with hepatitis C and non-injection drug use without hepatitis C in HIV-infected
individuals. a Differential methylation region on chromosome 6q21 that hosts MHC class I and II: Top panel: from top to bottom, the panel shows gene
location, transcription factor binding sites (TFBS), probes located within 1500 or 200 bp from transcription start site (TSS), probes in CpG islands (Island),
differential methylation region (DMR), genomic location of each probe. Middle panel: methylation (β) in injection drug use with HCV (IDU+/HCV+) and
non-injection drug use without HCV infection (IDU−/HCV−). Bottom panel: average methylation differences between IDU+/HCV+ and IDU−/HCV−. The
results are from the discovery samples. b Differential methylation region (DMR) on the promoter of TRIM69 in the discovery sample. Top panel: genomic
location of each probe, transcription binding site, DMR; middle panel: methylation at each probe in injection drug use with HCV (IDU+/HCV+) and non-
injection drug use without HCV (IDU−/HCV−); bottom panel: average methylation difference between IDU+/HCV+ and IDU−/HCV−
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value, where the weights were determined by the effects of the 748
probes. We tested a linear correlation between the cumulative
methylation score and the VACS index in all subjects. Here, HIV
outcome was measured using the VACS index as a continuous
variable combined with biological and clinical variables. VACS
index scores ranged from 0 to 120 and excluded 5 points for HCV
status from the original score. A greater VACS index score
indicated a greater HIV frailty. We found that the cumulative
score significantly correlated with the VACS index (p = 2.0E−16)
(Fig. 4), suggesting that methylation signatures from IDU+/HCV+
are associated with HIV outcomes.

Relationship of IDU+/HCV+-associated DNA-me on HIV
frailty. Next, we tested whether the same set of 748 CpGs could
be used to predict high and low HIV frailty in a different set of

samples selected from the VACS (N = 238). This set of 238 sam-
ples was selected independent from discovery and replication
samples for two reasons. (1) to test a generality of IDU+/HCV+
associated methylation signatures on HIV health frailty regardless
of IDU and HCV status. Only 46 (19.3%) subjects were IDU
+/HCV+ in this testing set, and (2) to avoid overfitting in a
machine learning prediction model. Demographic and clinical
variables of the testing sample set are presented in Supplementary
Table 3.

Here a good outcome (low frailty) was defined as a VACS
index <16, while a poor outcome (high frailty) was defined as a
VACS index >50 based on the distribution of VACS index among
all subjects (Supplementary Figure 5). We used a machine
learning method, SVM (Support Vector Machine), to predict high
and low HIV frailty. The 386 samples used for the discovery
EWAS was treated as a training set. A different set of 238
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differentiated between injection drug use with HCV (IDU+/HCV+) and non-injection drug use without HCV (IDU−/HCV−), but clusters were not
associated with other factors including adherence of antiretroviral treatment, age, HIV-1 viral load, and cell-type compositions (p's> 0.1). b t-distributed
stochastic neighbor embedding (t-SNE) clustering analysis shows that 748 CpG methylations differentiated injection drug use with HCV infection
(IDU+/HCV+) from non-injection drug use without HCV (IDU−/HCV−) in the discovery samples
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HIV-infected samples from the VACS was retained as a test set.
We tested prediction performance on subjects with good (VACS
index >50 vs. ≤50) and poor HIV outcomes (VACS index <16 vs.
≥16), respectively.

Receiver-operating characteristic analysis showed that the
AUC was 79.3% (95% CI: 72.5%…86.0%) for poor outcomes
(Fig. 5a, left) and 82.3% (95% CI: 76.2%…88.0%) for good
outcomes (Fig. 5a, right). We performed 1000 permutations by
randomly assigning samples to training sets and testing sets. The
observed AUC was significantly greater than that of random
sampling for the predictions for both poor (Fig. 5b, left) and good
(Fig. 5b, right) outcomes (p< 2 × 10−16). These results suggest
that the panel of 748 CpGs can accurately predict HIV outcomes
in IDU+/HCV+ and IDU−/HCV− samples and may serve as a
biomarker of HIV disease frailty.

Discussion
In this study, we detected significant methylation differences in
HIV-infected epigenomes between IDU+/HCV+ and IDU−/HCV
− and further linked methylation signatures with HIV outcomes.
Consistent with our hypothesis, the results of DMP, DMR, gene
pathway, and network analyses suggest that IDU+/HCV+
involves epigenetic programming of immune- and inflammation-
related genes. Importantly, IDU+/HCV+-associated methylation
signatures discriminated between high and low HIV disease
frailty, indicating that alterations in DNA-me signatures can be
used as a biomarker for predicting HIV disease outcomes.
Although the causal–consequential relationship between methy-
lation and IDU comorbid with HCV was not tested, our results
provide biological insight into injection drug use with HCV
among HIV-infected individuals and the potential clinical utility
of IDU- and HCV-associated DNA-me signatures.

The interpretation of population-based EWAS is challenging
because of concerns regarding false-positive findings, unknown
confounding factors, ascertainment bias, and cell type-specific
epigenetic effects30. We addressed these concerns by carefully
matching case and control groups and applying a conservative
analytical approach. All subjects were the same race and sex and
most clinical variables between the case and control groups were
matched. Considering that tobacco smoking and alcohol con-
sumption are common in veteran populations and smoking and
alcohol alter DNA methylation31, 32, both smoking and alcohol
use were adjusted in our model to minimize their confounding

effects. We estimated the cell-type proportion for each sample
based on an established algorithm and corrected for variations in
cell types in the analytic models. We applied a stringent pipeline
using control probes to minimize background signals including
batch effects and applying residuals at each probe adjusted for
critical variables. Our results showed unusually low inflation
compared to those of other EWAS studies26, 33, suggesting that
the identified CpG sites were likely not false-positive signals.
Finally, we validated findings in a replication sample and in the
combination of discovery and replication samples using meta-
analysis, making the interpretation of our results reliable.

Methylation signals from whole blood samples were measured
as average methylation in heterogeneous cells and could not
detect specific epigenetic mechanisms at a specific cellular level
for different phenotypes. However, methylation signals in the
blood may serve as surrogate methylation markers for immune
cells and provide molecular insight into immune-related dis-
eases34. More importantly, DNA methylation in the blood can be
reliably detected for some complex traits such as aging35, tobacco
smoking36, alcohol consumption31, and body mass index37, 38.
Such methylation signatures may predict clinical outcomes in
some cases. For example, smoking-associated DNA methylation
in the blood is predictive of cancers39, 40. DNA methylation
signals can classify subtypes of HIV-infected lymphoma41. A
recent study demonstrated the strong predictive potential of DNA
methylation in the blood for all causes of mortality42. Accord-
ingly, our findings showed that DNA methylation in the blood is
useful for understanding the biological impacts of risky behavior
on infectious disease and can serve as a biomarker for predicting
disease outcomes.

The identified methylated CpG sites and regions for
IDU+/HCV+ were located on genes containing immunity and
inflammatory functional domains. For example, NRLC5 was
highly significantly associated with a IDU+/HCV+ phenotype.
Although no expression data were available in our sample, a
recent study reported that NRLC5 expression was upregulated in
HIV-infected subjects with cognitive impairments43. As a critical
MHC class I transcript activator44, NRLC5 modulates other HLA
gene functions. Here, we found multiple DMRs in these HLA
gene regions on chromosome 6, indicating dysfunction in
HLA genes associated with IDU+/HCV+. Another significantly
associated gene was TRIM69, which encodes a protein involved
diverse cellular functions including immunity. Individual CpG
and regional methylation of the TRIM69 promoter showed lower
methylation levels in the IDU+/HCV+ group. Upregulation of
TRIM69 expression is directly induced by interferons in blood
lymphocytes and constitutes a proinflammatory response in
chronic HIV infection45. Therefore, dysfunction of TRIM69
suggests that this gene affects the inflammatory process and
changes in the course of HIV infection.

Our results of pathway analysis support the results of previous
studies showing that the antigen processing pathway is involved
in HIV infection and HIV-related diseases. Because of selection
pressure on the immune system, HIV-1 evolves to produce pro-
teins to interrupt genes of MHC class I and II molecules, the
products of which are presented on T cells. Compromising the
function of immune-related genes by abusing drugs may dysre-
gulate the antigen pathway and increase the risk of HIV infection.
For example, a study showed that methamphetamine adminis-
tration increased the rate of HIV infection by inhibiting the
presentation function and compromised the immune response to
HIV-related opportunity infection.46 In line with this, our results
showed that impaired antigen processing pathway function in
IDU+/HCV+ may involve epigenetic programming by altering
DNA methylation. Hypomethylation of 6 genes in the antigen
presentation pathway in IDU+/HCV+ suggests that increased
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Fig. 4 Methylation risk score is highly correlated with HIV frailty.
Correlation of methylation risk score constructed by 748 probes with the
VACS index (Veteran Aging Cohort Study) in combining samples of
injection drug use with HCV infection (IDU+/HCV+) and non-injection
drug use without HCV infection (IDU−/HCV−) in the discovery samples
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function of the antigen pathway is associated with the activation
of immune markers in this group.

Our most intriguing finding is the link between IDU+/HCV+-
associated methylation profiles and HIV frailty. Among IDU+/
HCV+, a cumulative score constructed from the top methylation
signatures was inversely correlated with an index score repre-
senting HIV frailty. The link between methylation markers and
HIV outcomes may be related to immune activation in IDU and
HCV individuals that is strongly associated with HIV progres-
sion, comorbidity, and frailty. Methylation aberrant for IDU and
HCV may worsen HIV outcomes by regulating gene expression
of immune and inflammation markers.

Because the VACS index is a cumulative measure including
age, hemoglobin, CD4, viral load, liver and renal function, and
HCV infection, one concern is whether an association of
methylation signatures with HIV frailty is due to methylation
changes from each component factor. For example, previous
studies have shown that DNA methylation is associated with
aging47, 48, hemoglobin49, and renal function (eGFR)50. However,
among significant CpG sites we identified for IDU+/HCV+, none
overlapped with CpG sites associated with those phenotypes,
suggesting that neither aging, hemoglobin, nor eGFR confounds
the discrimination of DNA-me on HIV outcomes.

There were several limitations to this study. First, we are not
able to separate IDU+ from HCV+ because these two conditions

are tightly linked among those with HIV infection. Second,
although we made efforts to replicate the findings in a sample set
different from the VACS cohort, no independent cohort with
genome-wide methylation was available to replicate our findings.
The study investigated the epigenomic effects in an HIV-infected
IDU population. Our findings may motivate future studies in
independent cohorts to replicate the results. Third, the lack of
gene expression data limits the interpretation of methylation
signals associated with IDU. Additionally, DNA methylation for
the discovery and the replication samples were profiled using two
different Illumina platforms, which may partially explain the
insignificant findings in a replication sample as the correlation of
methylation level between two arrays may vary in the overlap
probes28. However, the study included relatively homogenous
samples with HIV-infected African American men, comprehen-
sively adjusted for potential confounders, and two different
sample sets increasing our confidence in the interpretation. The
prediction of HIV outcomes using IDU methylation signatures
deserves closer attention, including further investigation into the
biologic basis for the adverse clinical implications.

Methods
Sample collection. The Veteran Aging Cohort Study (VACS) is a longitudinal
nation-wide study for HIV infection and HIV comorbidity. A subset of 386 DNA
samples in the discovery stage and 412 samples from the replication stage were
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selected for this study. The sample size of total 798 subjects had 80% power to
detect CpG with mean differential methylation greater than 5% at significant
threshold 1E−07 based on the recent published power calculation for case control
EWAS51. All subjects were self-reported to be African American men. Each subject
was tested for HIV and HCV using a standard PCR method. The IDU group was
defined as subjects that have ever injected drugs during their lifetime, and showed a
positive HCV RNA test. The non-IDU group had no history of drug injection and
showed negative HCV RNA test results.

Relevant behavioral measures in this study included information regarding
substance abuse (smoking and alcohol use), routes of drug use, and medication
adherence. Clinical information was acquired at the time of blood collection. IDU
status was defined by asking, “Have you ever used a needle to inject any drug?”
Current IDU status was defined by asking, “In the past 12 months, have you ever
used a needle to inject any drug?” No information of the duration of IDU or the
duration of abstinence was available. Information regarding medication treatment
and adherence was also obtained during the interview.

An additional 238 subjects from the VACS were selected as a test data set for
machine learning analysis to link DNA methylation signatures to the VACS index.
Laboratory data of WBC, CD4, CD8, HIV-1 RNA, hemoglobin, aspartate and
alanine transaminase, platelets, and creatinine at the time of blood withdraw was
used to calculate a VACS index score for each individual.

Informed consent was obtained from all participants. The study was
approved by the committee of the Human Research Subject Protection at
Yale University and the IRB committee of the Connecticut Veteran Healthcare
System.

DNA methylation and data quality control. Genomic DNA methylation profiling
was conducted at the Yale Center for Genomic Analysis using the Illumina Infi-
nium HumanMethylation450 BeadChip (HM450K) for the discovery sample and
Infinium MethylationEPIC (Illumina, San Diego, CA, USA) for the replication
sample. The EPIC array contains 850K probes including >90% of probes in
HM450K. Two sample sets were processed at different times, but were processed by
the same scientist at the Yale Center for Genomic Analysis who was blinded to the
phenotypic information conducted in the microarray experiment. All samples were
randomly placed on each array. Probe normalization and batch-correction was
performed as previously described by Lehne et al.24, which is located at the Pro-
tocol Exchange52.

In the discovery sample, we removed 11,648 probes on sex chromosomes and
36,142 probes within 10 base pairs of single-nucleotide polymorphisms. A total of
437,722 probes remained for analysis. Samples with a sample call rate <98% were
excluded. We also compared the predicted sex with the self-reported sex. All
samples matched as male. In the replication sample, we applied the same criteria
for quality control. We removed 11 samples due to mismatched sex or low call rate.
Only 408,583 probes that were identical with HM450 array were extracted for
replication analysis.

The minfi R package (version 1.18.1) was used to retrieve Illumina Infinium
450K raw data. As described by Lehne et al.24, 416 probes on Y chromosomes were
applied to evaluate the detection p value. A p< 1e−12 was set as a detection p value
threshold to improve the quantification of methylation intensities. Quantile
normalization of intensity values was performed following the recommendations of
Lehne et al.24 Six cell types (CD4+ T cells, CD8+ T cells, NK T cells, B cells,
monocytes, and granulocytes) in the blood were estimated in each sample using the
method of Houseman et al.22, 23.

Data analysis. The step-by-step protocols used in this manuscript can be located
at the Protocol Exchange52 (https://www.nature.com/protocolexchange/protocols/
6335/)

EWAS in discovery and replication samples. Analyses of discovery and repli-
cation stages were performed using the same pipeline24. To adjust for significant
global confounding factors, we conducted two regression analyses to determine the
associations between methylome-wide CpGs and IDU. The following steps were
performed to correct for global covariations that may confound specific methyla-
tion in IDU+/HCV+.

1. The first PCA was performed to evaluate the intensity values of
positive control probes designed in HM450. The first GLM was performed
as follows:

β � Ageþ smoking statusþ alcoholþmedication adherenceþ lg VLþWBC

þCD8Tþ CD4Tþ Granþ NKþ Bcell þMonoþ PC1� 30ControlProbe

The residuals for each probe and the top 30 PCs of the first PCA were used
to adjust for technical biases, particularly the batch effect.

2. The second PCA was performed on subsequent regression residuals. Top five
PCs of the second PCA were used to control for global biological confounders
that cannot be directly captured in the model.

3. Final GLM model

Methylation β � IDUþ =HCVþþAgeþ smokingþ alcohol

þMedication adherenceþ lgVLþWBCþ CD8Tþ CD4Tþ Gran

þNKþ BcellþMonoþ PC1� 30ControlProbeþ PC1� 5residual

Because the sample size was underpowered for detecting a DMP with Bonferroni
correction, the significance threshold was set at p< 5E−07, which was equivalent to
a false discovery rate of 0.05 in this sample. The significance threshold in the
replication stage was set at p nominal 0.05, considering that the sample comprising
only 25% of cases was underpowered for detecting epigenome-wide signal.

We compared methylation β values of significant probes among past IDU,
current IDU, and non-IDU groups using ANOVA.

Meta-analysis. We conducted an EWAS meta-analysis by combining the data
from the discovery and replication samples. Effect size and p values for each probe
were obtained from analyses in the discovery and replication samples respectively.
We performed inverse-variance meta-analysis, with scheme parameters of sample
size and standard error as implementing the METAL program53, combining
summary statistics in two sample sets. We investigated heterogeneity in two sample
sets using the I2-statistic.

Pathway and network analyses. A total of 748 probes with p < 1E−03 that were
annotated on 577 unique genes were selected. The probe with the smallest p value
in a gene and its corresponding t value was selected to represent the methylation of
the gene. Pathway and network enrichment analyses were performed using Inge-
nuity IPA (ver: 31813283) software. The significance level was set at FDR< 0.05.

Unsupervised hierarchical clustering analysis of samples. We conducted
unsupervised hierarchical clustering analysis using the top 748 probes from EWAS.
The distance metric between any two samples was measured with the Euclidean
distance method, and complete-linkage clustering was performed. All samples were
clustered into two groups based on the sample hierarchical cluster tree. The fre-
quency or mean value of a phenotypic variable including age, WBC, CD4, CD8,
lgVL, and medication adherence was compared between the two clusters using
Chi-square test for categorical data and ANOVA for continuous variables.

A machine learning algorithm for dimensionality reduction, known as t-
distributed stochastic neighbor embedding (t-SNE), was also applied to confirm
and to visualize the results of hierarchical clustering analysis.

Cumulative methylation score and correlation with VACS index. A cumulative
methylation score was calculated by multiplying methylation β values and weighted
by coefficients at each CpG site, and then we summed 748 CpG sites together and
divided by 748 as a cumulative methylation score. Then, we examined associations
between this cumulative methylation score and VACS index in 386 samples, using
Pearson’s correlations.

Machine learning of methylation signatures to HIV frailty. We used the same
panel of 748 probes in the training group to generate prediction models by using a
support vector machine (SVM). We trained the model on the 386 subjects in the
discovery set and tested the performance on a different set of 238 samples from the
VACS as a testing set in which all the subjects were HIV-infected and had HIV
index measures. In the training samples, we divided 386 samples into five equal
number of subgroups with indexes of <16, 17–24, 25–34, 35–50, and >50. In the
testing samples, high and low HIV frailty was defined as VACS index scores above
50 (the upper 20% quantile in 386 training samples) and below 16 (lower 20%
quantile). We then tested prediction performance on subjects with high (VACS
index >50 vs. ≤50) and low HIV frailty (VACS index <16 vs. ≥16), respectively.

Support Vector Machine (ver 4.6–12) was applied to generate an inferred
predictive function in the training data set with 10-fold cross-validation. The
predictive function was then used to predict the VACS index score of each subject
in the testing sample set. By using the confusionMatrix function in the R package
caret, prediction performance was evaluated and the receiver operating
characteristic figure was plotted and an area under the curve (AUC) value with a
95% confidence interval was calculated.

To validate whether prediction using the 748 probes was significantly different
from the random probe combinations, we performed a 1000 time permutation test.
A total of 748 probes were randomly selected from all probes in a 450k microarray
without probe replacement. One AUC in each permutation was generated. A
histogram of AUC values for 1000 permutations was plotted and compared with
the true AUC value produced by the original 748 probes.

Data availability. Demographic, clinical variables, and methylation for the dis-
covery sample are available at GEO under the accession number GSE100264. Data
for the replication sample are available at Synapse under the Synapse ID
syn11455619 and syn11455620. All codes for analysis are available upon a request
to the corresponding author.
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