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Bacterial Nanocellulose Loaded 
with Bromelain: Assessment of 
Antimicrobial, Antioxidant and 
Physical-Chemical Properties
Janaína Artem Ataide1, Nathália Mendes de Carvalho2, Márcia de Araújo Rebelo3, Marco 
Vinícius Chaud3, Denise Grotto2, Marli Gerenutti2, Mahendra Rai4, Priscila Gava Mazzola5 & 
Angela Faustino Jozala2

Bacterial nanocellulose (BNC) has desirable properties for wound healing such as high purity, good 
shape retention, and high water binding capacity. Bromelain is a protease found in pineapple tissues 
and has been applied in several fields, it has anti-inflammatory and anticancer properties, promotes 
cell apoptosis, amongst others. In this work, a BNC based device for the controlled release of bromelain 
was developed. BNC were submersed in sterilized bromelain solution and incubated at 25 °C under 
100 rpm for 24 h. Physical-chemical properties, protein concentration, antioxidant and antimicrobial 
activities were measured. Results demonstrate that BNC could improve bromelain antimicrobial activity 
9 times. Those findings allow concluding that bromelain is a promising molecule to be incorporated 
into BNC’s. The BNC’s characteristics seem to represent a new promising delivery system of the loaded 
biomolecule, and protected from external actions.

Current advances in biopolymer research demonstrates their potential for a wide range of applications in phar-
maceutical and medical fields, including the development of drug delivery systems, wound healing, scaffolds for 
tissue engineering, novel vascular grafts, and dressing for skin burns and wound healing1–4. The most abundant 
biopolymer is cellulose, which is produced by a variety of organisms and constitutes the basic structure of cells 
walls of almost all plants, many fungi and some algae5–7.

Bacterial nanocellulose (BNC) is an extracellular polysaccharide secreted mainly by Gluconacetobacter xyli-
nus, among other bacteria of genera Gluconacetobacter, Agrobacterium Rhizobium, Pseudomonas, Sarcina, and 
Acetobacter8–10. Unlike vegetable cellulose, BNC is produced in pure form, free of other polymers. In addition, it 
can be molded into three-dimensional structures, able to retain high water amounts, mechanically resistant and 
biocompatible11. BNC has a nanofibrilar structure, making it an ideal matrix for use as medical devices, either as 
an aid in healing skin lesions3 or in tissue engineering, assisting cell regeneration12,13.

The scope of applications of BNC can be further expanded through its association with bioactive molecules. 
For instance, it has been shown that the incorporation of antimicrobial agents into BNC membranes yielded an 
active packaging system14. Nisin-containing BNC films were effective in controlling L. monocytogenes15, while 
BNC containing sorbic acid was used as a food packaging material with an ability to controlled release the anti-
microbial agent16.

Proteolytic enzymes could be used as therapeutics adjuvants, due to their debridement and antimicrobial 
activities, facilitating tissue renewal process and accelerating ulcerated skin healing. Bromelain is a set of prote-
olytic enzymes found in pineapple (Ananas comosus) tissues such as stem, fruit and leaves, and has widespread 
applications, such as in the cosmetic and food industries, as well as in medicine17–19. In healthcare, bromelain has 
been used for the treatment of rheumatoid arthritis, thrombophlebitis, hematomas, oral inflammation, diabetic 
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ulcers, rectal and perirectal inflammation, wounds, inhibition of platelet aggregation, angina pectoris, bron-
chitis, sinusitis, surgical traumas, and pyelonephritis, and for enhancing the absorption of drugs, particularly 
antibiotics18,20–22.

Dutta and Bhattacharyya23 reported that bromelain from pineapple crown leaves present nonspecific proteo-
lytic, gelatinolytic, collagenase, fibrinolytic, acid and alkaline phosphatase, nuclease, peroxidase, with considera-
ble anti-bacterial and anti-fungal activities. In a further study using specific cysteine proteases inhibitors, authors 
found that papain and bromelain antibacterial activity is not related to its proteolytic activity, and may be related 
to amidase and esterase activities24.

Collectively, these bromelain properties support its application in the treatment of microbial infections and 
also as a wound healing agent25. Thus, the incorporation of bromelain in BCN membranes could be of potential 
interest in different fields, mainly in pharmaceutical and medical applications, such as the development of a deliv-
ery system for healing application.

This article describes bromelain loading into BNC membranes and its release. Also presents physical-chemical 
properties, protein concentration, antioxidant and antimicrobial activities of developed system (Supplementary 
Fig. S1).

Results and Discussion
Bromelain loading and release from bacterial cellulose membrane.  The many advantages of BNC 
including its biocompatibility, conformability, elasticity, transparency, ability to maintain a moist environment in 
the wound, and ability to absorb exudates during the inflammatory phase, provide great potential for applications 
in wound healing systems26,27. The novelty in this study is the incorporation of bromelain in BCN membranes, to 
improve the antimicrobial characteristics and create a potential interest in different fields, mainly in pharmaceu-
tical and medical applications.

Bromelain was incorporated in BNC membranes by immerging membranes in a bromelain solution. Along 
with incubation time with the BNC membrane, bromelain enzymatic activity in the supernatant decayed (Fig. 1), 
indicating enzyme migration into the membrane. Bromelain solution was subjected to the same loading condi-
tions, but without contact with the bacterial cellulose, and there was an enzymatic activity and protein decrease, 
which was considered to calculated bromelain loading into BNC membranes. These results show that bromelain 
migrated to the interior of BNC.

Bernkop-Schnürch, et al.28 used bromelain as a model in the study of incorporation and release of micropar-
ticles of poly(acrylic acid) over a period of 60 minutes at 37 °C. Additionally, the bromelain release rate could be 
controlled through the selection of the hydrophobicity of the polymers.

After the first 30 minutes, released bromelain amount was higher than the incorporated amount, for protein 
concentration and enzymatic activity (Fig. 2, Supplementary Fig. S2). The same results were observed by19, when 
incorporating bromelain into alginate and Arabic gum hydrogel. According with suppliers, commercial steam 
bromelain purity is 35%, and it contains other components with high molecular weight29, which may be not 
incorporated by BNC. Thus, it is possible to infer that BNC, as well as the alginate and Arabic gum based hydro-
gel19, selectively absorbed low molecular weight bromelain components, which present higher enzymatic activity.

BNC structural analysis by Scanning Electron Microscopy.  SEM analyses, done at 10 kx magnifica-
tions, indicated that the BC membranes presented an entangled structure, with void spaces randomly distributed 
throughout the membrane matrix (Fig. 3). The highly entangled thin fiber network accounts for a large surface 
area and the porous structure of the BNC membranes facilitates the entrapment and immobilization of proteins30. 
However, no relevant changes in BNC network was observed when bromelain was loaded, which was similar to 
previous results reported by Müller, et al.31 and Moritz, et al.32.

FTIR spectroscopy.  Chemical cleavages characteristic of pure bromelain and bacterial cellulose membranes 
without and with bromelain were determined by Fourier Transform Infrared (FTIR) spectroscopy shown in 
Fig. 4. The bromelain-containing bacterial cellulose membrane showed a vibration displacement at 1649 cm−1, 
relative to the C grouping=O. The bromelain bacterial cellulose membrane showed a vibration displacement at 

Figure 1.  Protein concentration (a) and enzymatic activity (b) of initial and residual bromelain solutions, and 
bacterial nanocellulose membrane, where error bars correspond to standard deviation.
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1649 cm−1 related to the C=O band. The C=O stretching group corresponds to the amide group from asparagine, 
glutamine amino acids or residual proteins of BCN membrane. The stretching in 1612 cm−1 can be attribute at 
N-H from amide I group of bacterial cellulose protein33. The aliphatic amine (1236 cm−1) is observed at 1219 cm−1 
on the bromelain-containing bacterial cellulose membrane33. The stretching in the range of 3200–3800 nm−1 for 
bromelain (a), BCN membrane (b) and BCN with bromelain (c) is corresponding to -OH group. The decrease in 
OH stretching is related to the formation of hydrogen bonding between immobilisation of bromelain that occurs 

Figure 2.  Protein concentration (a) and enzymatic activity (b) of released bromelain from bacterial cellulose 
membranes after different incorporation times at 25 °C, where error bars correspond to standard deviation.

Figure 3.  Scanning electron microscopy of bacterial nanocellulose membranes (a) and bromelain-loaded 
membranes (b).

Figure 4.  FTIR spectra of pure bromelain (a), bacterial cellulose membrane (b) and bacterial cellulose 
membrane with bromelain (c).
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through the establishment of hydrogen bonding between -OH groups on the surface of -NH2 of BNC mem-
brane19. Bromelain interaction with BCN membranes may also be attributed to hydrophobic interactions or Van 
der Waals forces, once bromelain contains hydrophobic amino acids exposed on its surface34,35.

Evaluation of bromelain antimicrobial activity.  For minimal inhibitory concentration (MIC), the fol-
lowing solutions were testes: (i) initial bromelain solution; (ii) residual bromelain solution; and (iii) bromelain 
solution after being released from BCNs. Table 1 present protein concentration, enzymatic activity and specific 
activity of those solutions.

It is possible to note that residual bromelain solution presented a decrease in all parameters when compared 
with initial solution, indicating that BCN membrane was capable to absorb 7.94 mg/mL of proteins, representing 
31% of total protein concentration in the initial bromelain solution. It is also possible to observe, an increase in 
bromelain specific activity in the release solution (3-times higher than initial solution), which may be related with 
BCN membrane selectively absorbing bromelain low molecular weight components with higher enzymatic activity.

Those three solutions, were used for the minimal inhibitory concentration assay (MIC), Fig. 5 presents protein 
concentration (Fig. 5a) and enzymatic activity (Fig. 5b) of tested solutions when MIC was achieved.

Results showed in Fig. 5b indicate the bromelain antimicrobial activity has a relation with its enzymatic activity. 
It is possible observe this effect for all microorganism, to E. coli, bromelain release solution MIC was 0.99 U/mL,  
6 times higher than initial solution MIC. The same behavior was observed for P. aureoginosa, where MIC was 
achieved at 0.25 U/mL in the release solution, 6 times higher than MIC of initial solution 0.04 U/mL, and for S. 
aureus bromelain release solution MIC was 0.5 U/mL, 12 times higher than initial solution MIC.

According to Ali, et al.36, crude bromelain is more effective in inhibiting Gram-positive bacteria growth than 
Gram-negative. Our results, however, pointed in a different direction, since bromelain inhibit all tested micro-
organisms, especially for release solution. Dutta and Bhattacharyya23 reported bromelain antimicrobial activity 
against S. aureus. A bromelain solution with 1.95 mg/mL concentration inhibited S. aureus growth by 50%, how-
ever bromelain enzymatic activity was not reported. The same study showed the bromelain concentration of 1.86 
and 2.11 mg/mL were responsible to inhibit E. coli XL1 blue and E coli DH5α Pet16b (Amp)r growth, respectively. 
Our results (Fig. 5a) showed a higher protein concentration for bromelain initial solution (3.2 mg/mL) and lower 
concentration for release bromelain solution (0.72 mg/mL) when compared to previous study, which also could 
be explained by the high specific activity of bromelain after incorporated in BNC membranes.

Crude bromelain extract (1.8 mg/mL) and standard bromelain (2 mg/mL) created a 22 mm zone of inhibition 
of E. coli growth at 37 °C in neutral pH. However, at alkaline pH, crude bromelain extract and standard bromelain 
created a zone of growth inhibition of 8.33 and 9.67 mm, respectively36. In our study, initial bromelain solution 
and release solution MIC was 12.79 mg/mL and 1.41 mg/mL concentration, and enzymatic activity was 0.17 AU/
mL and 0.99 AU/mL, respectively. In this case, it was also observed a lower protein concentration with higher 
enzymatic activity for release solution.

Aggregatibacter actinomycetemcomitans, Porphyromonas gingivalis, and Streptococcus mutans have been pre-
dominantly associated with periodontal diseases. Bromelain was investigated as a potential antimicrobial agent to 
be used as a monotherapy and as an adjunct with mechanical debridement. Bromelain showed antibacterial effi-
cacy against all the isolated strains of both aerobic and anaerobic microorganisms. S. mutans showed sensitivity 
at the lowest concentration (2 mg/mL), followed by P. gingivalis (4.15 mg/mL). While A. actinomycetemcomitans 
demonstrated the higher resistance and a MIC of 16.6 mg/mL37.

For agar diffusion modified assay, bromelain-loaded BNC membranes showed antimicrobial activity for all 
tested microorganisms (Fig. 6b), differently from BNC membranes without bromelain (Fig. 6a).

Bromelain antioxidant activity.  Proteases enzymes, such as bromelain and papain, present antioxidant 
activity as free radical scavenging and lipid peroxidation inhibition38. Bromelain antioxidant activity was meas-
ured against 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical, which provides an easy and rapid way to evaluate 
antiradical activities39.

Figure 5.  Protein concentration (a) and enzymatic activity (b) of initial and residual bromelain solution, and 
release solution found as MIC.
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Figure 7 shows the antioxidant activity of different concentrations of bromelain initial solution over 60 min-
utes. According with our results, bromelain antioxidant activity was dose-dependent, and so the highest bro-
melain concentration (30 mg/mL) presented the highest antioxidant activity, in the lowest reaction time. At the 
lowest concentration (1.625 mg/ml) antioxidant activity was not significant (p > 0.05).

Both bromelain at 30 and 15 mg/mL were statistically similar to glutathione (GSH), antioxidant standard 
(0.150 mg/mL), initially and after 15 minutes. However, over time, bromelain at 15 mg/mL showed a statistically 
lower antioxidant activity than GSH (p < 0.05) and bromelain at 30 mg/mL (p < 0.05). It is important to observe 
that antioxidant capacity of bromelain increased over time even in the lowest concentrations, a behavior also seen 
in GSH. This feature is relevant mainly when considering a formulation for topical application for example, in 
which the antioxidant activity remains and even increases after its application.

Several studies have been reported about bromelain and its medical use, such as inhibition of platelet aggre-
gation and fibrinolysis40, effects on cardiovascular diseases41, modulation of inflammatory system42 and skin 
debridement properties43. Among them, the latter two are very convenient when associated to the antioxidant 
and antimicrobial capacity found in this study, once these four properties are essential in skin lesions, as a wound 
healing.

Mucoadhesive property.  Mucoadhesive property was evaluated by a tensile test, and is a property related 
to the ability of a material (synthetic or biological) to adhere to a biological tissue during a certain period of 
time44. In this way, mucoadhesion analysis evaluates the interaction between the membrane and the surface of the 
mucosa at a temperature of 37 °C45,46.

Analysis of the results shows that maximum strength values significantly (p < 0.05) reduced from 0.493 ± 3.6 N 
to 0.112 ± 0.1 N, respectively for bacterial cellulose membrane without and with bromelain. According to Yadav, 
et al.44, mucoadhesion may occur by increasing the viscosity of the system or by molecular interactions, such 
as ionic interactions or formation of hydrogen (OH) bonds. It is worth mentioning that the immobilization of 

Figure 6.  Antimicrobial activity evaluated by modified agar diffusion method of bacterial nanocellulose 
membranes (a) and bromelain-loaded membranes (b) for S. aureus (1), E. coli (2) and P. aeruginosa (3).

Figure 7.  Percent of 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical inhibition by the bromelain (Bro, in 
different concentrations) by the reduced glutathione (GSH), where error bars correspond to standard deviation.
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bromelain in the bacterial cellulose membrane occurs by the formation of hydrogen bonds between OH of bac-
terial cellulose membrane and bromelain NH2

47. In this way, one can suggest that the decrease of the mucoad-
hesive property occurred by the decrease of free OH groups in the membrane of bacterial cellulose containing 
bromelain, results evidenced in the FTIR analysis.

Conclusion
BCN membranes were able to selectively absorb and release bromelain. Bromelain itself present antimicrobial and 
antioxidant activities, however, after incorporated into BNC membranes, its antimicrobial activity increased. BNC 
membranes presented mucoadhesive properties, which decreased after bromelain loading. This can be explained 
by the presence of H-bonds between bromelain and BNC membrane, leading to a decrease in molecular interac-
tions between BNC and mucin. The broad bromelain solution and BNC membrane antimicrobial spectrum and 
their tissue adhesion make them an alternative method for wound contamination control, since the membrane 
may act as platform that delivers antimicrobial gradually avoiding biofilm formation. Thus, bromelain-containing 
BNC membrane proved to be a promising drug delivery system to minimize healing period, reducing the risk of 
infection and promoting patient comfort and pain relief.

Materials and Methods
Materials.  Bromelain, Folin-Ciocateau and bicinchoninic acid assay kit were purchased from Sigma-Aldrich 
(Brazil). Other reagents were of analytical or food grade. Assays were performed in triplicate.

Production and purification of bacterial cellulose membranes.  Bacterial nanocellulose membranes 
(BCN membrane) were produced through Gluconacetobacter xylinus (ATCC 53582) cultivation in Hestrin & 
Schramm medium (20 g/L glucose, 5 g/L bacteriological peptone, 5 g/L yeast extract, 2.7 g/L anhydrous sodium 
phosphate, 1.5 g/L monohydrate citric acid). Microorganism growth in 24-well cell culture plates, containing 
1 mL of a 106 CFU/mL inoculum per well.

Plates were kept for 4 days in static culture at 30 °C, yielding 2 mm thick membranes. After growth, mem-
branes were washed in 2% sodium dodecyl sulfate (SDS) solution overnight, rinsed with distilled water until 
SDS removal, and immersed in 1 M NaOH solution with stirring at 60 °C for 1 and a half hours. After this period, 
membranes were washed again until reaching neutral pH. Then they were packaged and autoclaved at 121 °C for 
15 minutes in Milli Q water, and stored at 4 °C (Fig. 8).

Enzymatic activity and protein quantification.  Enzymatic activity was determined by adapting the 
non-specific protease activity assay from Sigma®48–50. Briefly, the method consists in casein cleavage by bro-
melain for 10 minutes at 37 °C and pH 7.5 and the reaction was stopped by adding trichloroacetic acid (TCA). 
The resulting solution was centrifuged at 4,000 g for 20 minutes, and a supernatant aliquot placed to react with 
Folin-Ciocalteau, in the presence of sodium carbonate. The reaction of Folin primarily with tyrosine produces 
free chromophore with a blue color, which is measured by absorbance analysis at 660 nm. The standard curve was 
drawn with L-tyrosine. Protein concentration was determined with bicinchoninic acid assay51.

Bromelain loading in bacterial cellulose membranes.  In 24-well plates, BNC membranes were dis-
posed and 1 mL of 30 mg/mL bromelain solution in citrate-phosphate buffer (pH 5.0) was poured into the plate. 
In the fourth well only bromelain solution was added. Plates were kept in 100 rpm orbital shaker at 25 °C for 
various periods ranging for 4, 8, 12 and 24 hours. After each period, supernatants were collected and bromelain 
activity and protein quantification were evaluated in the isolated residual solutions.

Bromelain release from bacterial cellulose membranes.  This methodology was used to assess bro-
melain release from BNC membranes. In 24 well plates, membranes loaded with bromelain (after 24 hours load-
ing time) were disposed in triplicate, with a negative control (membrane without bromelain) in the fourth well. 
In each well 1 mL of citrate-phosphate buffer (pH 5.0) was added. Plates were placed in 100 rpm orbital shaker 

Figure 8.  Bacterial nanocellulose membrane (BCN membrane): appearance after production (a) and after 
NaOH treatment and sterilization (b).



www.nature.com/scientificreports/

7SCIENTIFIC REPOrtS |  (2017) 7:18031  | DOI:10.1038/s41598-017-18271-4

at 25 °C. At different periods (0, 0.5, 2, 4, 6, 24, 36 and 48 hours), membranes and supernatant were collected. 
Bromelain activity and protein quantification were assayed in the isolated released solution.

Scanning Electron Microscopy.  BNC membranes structure was observed using a Leo 440i scanning elec-
tron microscopy with 6070 X-ray dispersive energy detector (LEO Electron Microscopy, England). SEM images 
were obtained using an accelerating voltage of 15 kV. Before analysis, samples were lyophilized for 24 hours and 
coated with gold (92 A°) using SC7620 Sputter Coater POLARON (VG Microtech, England).

Fourier Transform Infrared Spectroscopy (FTIR).  The free bromelain and bacterial cellulose membrane 
with and without bromelain were analysed using Fourier Transform Infrared Spectroscopy (FTIR) (Shimadzu, 
FTIR IRAffinity-1S, Kyoto, Japan) using transmittance modes. Membranes were kept in an oven at 30 °C, after 
drying they were ground. Approximately 2 mg of the sample was mixed with 300 mg of KBr to form the pellet. 
Spectra were obtained in the 4000 to 400 cm−1 wavelength range after 64 scans, with a resolution of 4 cm−1. The 
spectra were normalized and the vibration bands were associated with the main chemical groups.

Evaluation of bromelain antimicrobial activity.  In this assay, the microorganisms used were Escherichia 
coli (ATCC 25922) and Pseudomonas aeuroginosa (ATCC 9721), representing the class of gram-negative; and 
Staphylococcus aureus (ATCC 10390), representing the class of gram-positive.

Minimum inhibitory concentration.  Minimum inhibitory concentration (MIC) classical method of successive 
dilution was adapted to 96-well plates, in triplicate52,53, using (i) initial bromelain solution; (ii) residual bromelain 
solution; and (iii) bromelain solution after being released from BCNs.

Agar diffusion assay.  The agar diffusion assay was modified to verify qualitatively the antimicrobial activity in 
BCN membranes itself and after bromelain loading54,55. Membranes were placed in 24-well plates with 1 mL of 
culture medium and 100 μL of the microorganism suspension (106 CFU.mL−1), and plates incubated for 24 hours 
at 37 °C. After this time, the resulting membrane and solution were inoculated intro Petri dishes containing agar 
of the culture medium.

Bromelain antioxidant activity.  Antioxidant activity was determined based on absorbance decrease at 
515 nm after the reaction between radical 1,1-diphenyl-2-picrylhydrazyl (DPPH) and initial bromelain solutions, 
according to Brand-Williams, et al.39.

Mucoadhesive strength proprieties.  Mucoadhesive strength of the bacterial cellulose membrane with 
and without bromelain was evaluated by the force required to remove the membrane from a mucin disc using the 
TAXTPlus texture analyzer (Stable Micro Systems, UK). Samples were fixed in a water bath with a temperature 
set at 37 °C. The mucin discs were prepared by compression (Lemaq, rotary compressor machine, Mini Express 
LM-D8, Diadema, BR). The surface of the mucin disc was hydrated and the disk attached to the lower end of the 
analytical probe. Mucin disc was compressed apical → basal on the surface of the samples, with a compression 
force of 0.1 N. The contact time of the disc with the surface of the samples was 200 s. Removal of the analytical 

Parameters

Aparate Film Support Rigg Part Code. HDP/FSR 
Batch n 13085

Test Mode Compression

Pre-Test Speed 0,5 mm/s

Test Speed 0,5 mm/s

Post-Test Speed 10 mm/s

Target Mode: Distance

Distance —

Trigger Type Auto

Trigger Force 0,049 N

Table 2.  Parameters used to evaluate the mucoadhesive property of bacterial cellulose membrane with and 
without bromelain.

Protein Concentration 
(mg/mL)

Enzymatic Activity 
(U/mL)

Specific Activity 
(U/mg)

Initial Solution 25.57 8.7 0.34

Residual Solution* 17.63 6.78 0.38

Release Solution* 1.43 1.42 0.99

Table 1.  Total protein concentration, enzymatic and specific activity of bromelain solution in initial condition 
and after BCN membranes loaded and release. *Collected after 24 hours.
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probe was at the rate of 0.5 mm.s−1. The force required to separate the surfaces was determined by time versus 
force ratio (n = 3), and analysis parameters were described on Table 2.

Statistical analysis.  Data is presented as mean ± standard deviation. Differences among bromelain con-
centrations were evaluated by one-way ANOVA, followed by Tukey multiple range tests. P values < 0.05 were 
considered significant. Data were analyzed using Statistica®8.0 (Statsoft software, Tulsa, OK, USA).
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