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Efficient use of Virtual Physiological Human (VPH)-type models for personal-

ized treatment response prediction purposes requires a precise model

parameterization. In the case where the available personalized data are not

sufficient to fully determine the parameter values, an appropriate prediction

task may be followed. This study, a hybrid combination of computational

optimization and machine learning methods with an already developed

mechanistic model called the acute lymphoblastic leukaemia (ALL) Oncosi-

mulator which simulates ALL progression and treatment response is

presented. These methods are used in order for the parameters of the model

to be estimated for retrospective cases and to be predicted for prospective

ones. The parameter value prediction is based on a regression model trained

on retrospective cases. The proposed Hybrid ALL Oncosimulator system has

been evaluated when predicting the pre-phase treatment outcome in ALL.

This has been correctly achieved for a significant percentage of patient cases

tested (approx. 70% of patients). Moreover, the system is capable of denying

the classification of cases for which the results are not trustworthy enough.

In that case, potentially misleading predictions for a number of patients are

avoided, while the classification accuracy for the remaining patient cases

further increases. The results obtained are particularly encouraging regarding

the soundness of the proposed methodologies and their relevance to the pro-

cess of achieving clinical applicability of the proposed Hybrid ALL

Oncosimulator system and VPH models in general.
1. Introduction
The shared long-term objective and vision of the emerging interdisciplinary fields

of in silico oncology, in silico medicine [1,2] and the Virtual Physiological Human

(VPH) Initiative (http://www.vph-institute.org/) [3] is the development of com-

putational models that contribute to the personalization of disease treatment,

primarily through their potential predictive capabilities. Among several signifi-

cant contributions reported in the domain so far, a VPH-type multiscale model,

with the aim of simulating acute lymphoblastic leukaemia (ALL) progression

and response to treatment, has been developed, clinically adapted and evaluated.

The latter took place in the context of the European Commission-funded p-medi-

cine project (‘p-medicine—from data sharing and integration via VPH models to

personalized medicine’, http://www.p-medicine.eu/). The aforementioned

model, called the ‘ALL Oncosimulator’, was originally presented at the

VPH2014 conference [4]. In this paper, a set of additional methodologies based

on computational optimization and machine learning (ML) approaches, with

the aim of expanding its predictive capabilities and supporting their evaluation,

are presented.

ALL is the most common neoplastic malignancy in children, with thousands of

young patients diagnosed every year and a significant percentage of them being
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recruited in ALL-BFM clinical trial series (http://www.bfm-

international.org/). In the majority of treatment schemes,

including those proposed by the ALL-BFM trials, a pre-phase

treatment, primarily referring to the administration of glucocor-

ticoids [5], is initially followed. In the context of the ALL-BFM

clinical trial series, from which the data used in the present

study originate, the pre-phase treatment lasts 7 days and

involves the administration of daily doses of prednisone (gluco-

corticoid) and one dose of methotrexate. The response to this

treatment cycle (usually reported as prednisone response) is

assessed by observing the peripheral blood blast cell count on

day 8 of treatment. This result is a strong prognostic factor

for the stratification of patients into risk groups [5,6]. Patients

showing lower than 1000 lymphoblasts per microlitre are

characterized as good responders, while patients with more

lymphoblasts are characterized as poor responders. In the con-

text of the present study, we have focused on this treatment

phase so that the development of the ALL Oncosimulator and

the supporting methodologies, as well as the investigation of

their performance, could be based on real and well-defined

clinical scenarios and questions.

The ALL Oncosimulator, as with any model of its kind,

should be parameterized as precisely as possible in order for

its simulation results to approach clinical reality and gain

descriptive and potentially predictive value. The latter is dic-

tated by properties such as the sensitivity observed in its

response regarding the choice of parameter values [7,8]. Refer-

ring to retrospective patient cases, for which both the pre- and

post-treatment data are available, the estimation of the model

parameter values can be achieved using adaptation/parameter

estimation methods. For a newly introduced case, however,

an alternative approach should be followed. This is due to

the availability of only pre-treatment information, medical

examination results or any other types of data. Therefore,

the necessity for the addition of extra components to the

ALL Oncosimulator clearly emerges. First, these components

should be able to identify the correct parameter set input of

the ALL Oncosimulator for the retrospective patient cases

(i.e. to optimize the input parameter set so as the output

of the model adequately matches a patient’s post-treatment dis-

ease state). Second, they should be able to predict as accurately

as possible the parameter input sets that would lead to a sound

prediction of the treatment outcome for a newly arrived

patient before this treatment is administered. Therefore, on

the one hand, computational optimization methods should

be exploited for the adaptation/parameter estimation of the

ALL Oncosimulator input for retrospective patient cases. On

the other hand, ML methods that would try to learn the

relationship between personalized patients’ data and the best

possible oncosimulator parameterization for each patient case

should be developed. The combination of these methods with

the Oncosimulator leads to the formulation of a hybrid compu-

tational model consisting of a mechanistic part and several

computational optimization and ML-based components.

In this context, an adaptation methodology of the ALL

Oncosimulator on retrospective patient cases and regression

models with the aim of predicting a personalized value for

the chemosensitivity-related parameter of the ALL Oncosi-

mulator for prednisone have been presented and evaluated

in [4]. Training of the regression models was based on

pathway-aggregated [9] gene expression profiles. Moreover,

the first results of an extended, fully automated and complete

workflow for estimating and predicting the parameter values
of the ALL Oncosimulator were presented at the VPH2016

conference [10]. Based on the previous efforts, a detailed pres-

entation and a more thorough study of the Hybrid ALL

Oncosimulator is provided in this paper. Despite the com-

plexity of the assembled system, the end user may interact

with the latter at the front end as if they interacted with

any classifier. This is illustrated in figure 1.

In the context of the present study, the model is used in

order to predict the pre-phase therapy effect in childhood

ALL patients. The basic evaluation criterion has been the accu-

racy in classifying a patient in either of the two prednisone

response groups. This has been assessed in a cross-validation

manner, explained in detail in the text. Taking into account

the prognostic value of this classification in clinical practice

and setting, the correct prediction of the prednisone response

before the initiation of the treatment may facilitate the optimal

treatment decision to be taken by the clinician at an earlier

stage. Ideally, the validity and the added value of this predic-

tion should be additionally assessed in the context of a

prospective trial, a concept that is further discussed in

subsequent parts of the paper.
2. Models and data
2.1. Available data
The data used in the present work originate from a cohort of 191

patients enrolled in the ALL-BFM 2000 clinical trial. For this

specific group of patients, in addition to a set of commonly col-

lected clinical variables and disease progression data

(leukaemic blast counts), whole-genome expression measure-

ments were made available. This molecular part of the

dataset consists of log2 R/G normalized ratio (mean) measure-

ments for 39 778 probes (annotated as IMAGE CloneIDs).

Details on the gene expression data accumulation procedure

are given in [11]. Both clinical and gene expression data have

been provided in an anonymized form within the framework

of the p-medicine EU-funded project (FP7-ICT-2009-6-

270089). All patients had received a pre-phase treatment, i.e.

7-day prednisone monotherapy with 60 mg m22 per day and

one dose of intrathecal methotrexate on day 1 [12]. The eligi-

bility criteria for the present study, except for the provision of

whole-genome expression data, have been the availability of

leukaemic blast counts before the initiation of treatment and

at day 8 of treatment (immediately after the completion of the

pre-phase treatment). Moreover, as suggested in [11], patients

presenting BCR-ABL, MLL-AF4 or TEL-AML1 rearrange-

ments, together with patients with DNA index measurement

different from 1, were also excluded from the subsequent

steps of the analysis, resulting in the inclusion of 87 patient

cases in the study cohort. Table 1 presents several statistical

properties of the available exploitable data.

2.2. The acute lymphoblastic leukaemia Oncosimulator:
the mechanistic part of the model

A mechanistic model called the ALL Oncosimulator simulating

ALL progression and response to pre-phase treatment, as is fol-

lowed in ALL-BFM clinical trial series, has been developed in

the context of the European Commission-funded p-medicine

project (http://www.p-medicine.eu/). The model was orig-

inally presented in [4]. The latter constitutes an extensive

modification of algorithms and models (oncosimulators)

http://www.bfm-international.org/
http://www.bfm-international.org/
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http://www.p-medicine.eu/
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Figure 1. The Hybrid ALL Oncosimulator abstract structure and front-end and back-end layers. At the front-end, the user interacts with the system as with a
classifier. At the back-end, the data provided for the retrospective cases (which should include disease/treatment progression data) are used for the estimation
of the ALL Oncosimulator parameters and for the training of a regression model that is subsequently used for parameter value prediction for the prospective
cases. The predicted values are passed to the ALL Oncosimulator resulting in the final classification via multiple simulations.

Table 1. Statistical properties of the available exploitable data.

factor

age ,10 yr (0.54%) .10 yr (0.46%)

gender female (41%) male (59%)

white blood cell

count at diagnosis

(lymphoblasts per ml)

,50.000 (41%) .50.000 (59%)

prednisone response good (44%) poor (56%)

immunophenotype B-lineage ALL

(78%)

T-lineage ALL

(22%)
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previously proposed by the In Silico Oncology and In Silico

Medicine Group (http://in-silico-oncology.iccs.ntua.gr/) for

example [1,7,13–16]. Changes have been dictated by the
special nature of ALL (non-solid tumour). It is noted that the

terms Oncosimulator, ALL Oncosimulator and mechanistic

part of the ALL Oncosimulator are used interchangeably

throughout the text.

The core algorithmic formulation of the aforementioned

Oncosimulators, including the ALL Oncosimulator, is based

on the extensive use of cellular automata. The new feature of

the ALL-specific model is the consideration of more compart-

ments for proliferating and dormant cells. In classical

oncosimulators [1,7,13–16], cycling cancerous cells are distrib-

uted over four-cell classes corresponding to the four phases of

the active cell cycle (G1, S, G2 and M), whereas resting G0 cells

constitute a single-cell class.

The ALL-specific model considers a number of cell classes

for the proliferating or resting G0 cells, equal to the discrete

duration of the active cell cycle or the resting phase, respecti-

vely, expressed in hours. More specifically, each cell class

corresponds to a time interval equal to 1 h within the

http://in-silico-oncology.iccs.ntua.gr/
http://in-silico-oncology.iccs.ntua.gr/
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Figure 2. ALL Oncosimulator generic cytokinetic model of bone marrow and peripheral blood cell compartments (cell category/phase transition diagram) for cancer
response to chemotherapy. STEM, stem cell; LIMP, limited mitotic potential cancer cell (also called committed or restricted progenitor cell). Prolif, proliferating cell;
G0, dormant cell; Chemo, chemotherapeutic treatment; HIT, lethally hit cells by the drug.
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corresponding cell cycle phase (figure 2). The ALL cell multipli-

cation rules of the model are based on the well-documented

hypothesis of cancer stem cell theory [17–19]. Two major

cancer cell compartments are distinguished: the bone marrow

(BM) and the peripheral blood. The model assumes that leukae-

mic cancer stem cells are located in the BM and have the ability

of unlimited self-renewal and differentiation. For this compart-

ment, three additional leukaemic cell categories are considered:

limited mitotic potential (LIMP) or restricted/committed pro-

genitor cells, apoptotic cells and necrotic cells. Stem and LIMP

cells can be either proliferating or resting, distributed over the

cell classes previously described. The peripheral blood, in

which peripheral leukaemic blasts are circulating, serves as

the second cellular compartment of the model. As a first

approximation, peripheral blasts are considered quiescent.

The model simulates a plethora of cellular and super-

cellular bio-mechanisms, which are: (a) progression of

proliferating cells through the active cell cycle, the ‘exit’ of

proliferating cells to the resting G0 phase and the cell cycle

re-entering of G0 cells, (b) symmetric and asymmetric div-

isions of stem cells, the former giving rise to daughter cells

with stem-like cell fate and the latter giving rise to two dis-

tinct daughter cells, one with a stem-like and one with a

LIMP-like cell fate (c) maturation arrest of LIMP cells after

performing a limited number of divisions and entrance to cir-

culation (i.e. to the peripheral blood compartment) through

the mitosis phase and (d) cell loss primarily via apoptosis

(either spontaneous or treatment-induced) in both BM and

peripheral blood compartments. The rules governing the

transition between the various cell compartments are

depicted in figure 2. Additionally, the set of parameters

related to these processes are listed and described in table 2.

Regarding the simulation of ALL treatment, cells of the BM

lethally hit by a drug enter a rudimentary cell cycle that leads to
apoptotic death via a specific phase. Drug hitting is applied to a

proportion of tumour cells, determined by the sensitivity of

cells to the drug administered. A specific parameter of the

ALL Oncosimulator, called cell kill rate (CKR), is defined for

each drug administered. In the context of the present study,

two parameters of this kind are defined, one for the drug

prednisone (CKRPRED) and one for the drug methotrexate

(CKRMTX). The exact phase through which the cells enter the

apoptotic process is dictated by the action mechanism of the

drug considered. Methotrexate, a folate analogue showing

activity in the S phase [26], is assumed to be absorbed at cycling

phases only, whereas apoptotic death of treatment hit cells

takes place in the S phase. Prednisone, a cell cycle non-specific

drug, is assumed to affect cells at G0 and cycling phases,

whereas apoptotic death of hit cells takes place at the end of

the G1 phase [27]. Only prednisone is assumed to have a

direct cytotoxic effect on peripheral blast cells.

The mechanistic part of the ALL Oncosimulator has been

implemented using the Cþþ programming language. For

the needs of the present study, the model has been used

both as an executable (.exe) and as a dynamic-link library

(.dll). The .dll form was specifically chosen for the efficient

integration of the model into the environment of the R

language [28] in which the development of the Hybrid ALL

Oncosimulator has been done. For the needs of this integration,

the .C Interface function of the R language has been used.

2.3. Machine learning-based aspects of the Hybrid
Oncosimulator

As already discussed in the Introduction, the ability of the

mechanistic part of the ALL Oncosimulator to accurately

simulate or to predict disease progression and treatment out-

come for a specific patient’s case is significantly determined



Table 2. ALL Oncosimulator (mechanistic part) input parameters and their ranges.

parameter description
range set during
parameter estimation references

Tc cell cycle duration 24 – 200 h [20 – 23]

TG0 duration of dormant (G0) phase 0 – 120 h (estimated)b

TN time needed for both necrosis to be completed and its lysis products to be

removed from bone marrow

100 – 140 h [24], (estimated)b

TA time needed for both apoptosis to be completed and its products to be

removed

6 h [25]

NLIMP number of mitoses performed by LIMPa cells before they are arrested 7 (assumed)c

RA apoptosis rate of living stem and LIMPa cancer cells in bone

marrow(fraction of cells dying through apoptosis per hour)

0.0001 – 0.1 h21 (estimated)b

RA( peripheral blasts) apoptosis rate of peripheral blasts (fraction of cell number per hour) set equal to RA

PG0 to G1 fraction of dormant (stem and LIMPa) cells that have just left dormant

phase and re-enter cell cycle

0.005 – 0.9 (estimated)b

Psleep fraction of cells that enter the G0 phase following mitosis 0.001 – 0.3 (estimated)b

Psym fraction of stem cells that perform symmetric division 0.2 – 0.8 (estimated)b

CKRPRED cell kill rate of prednisone 0 – 0.8 (estimated)b

CKRMTX cell kill rate of methotrexate 0.2 (assumed)c

aA LIMP cancer cell denotes a limited mitotic potential cancer cell (also referred to as LIMP or committed progenitor cancer cell).
bThe value of the parameter was estimated during the parameter estimation process.
cAn assumption was made for the value of the parameter.
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by the choice of its parameter values. Therefore, a combi-

nation of optimization and ML methods with the

mechanistic part of the ALL Oncosimulator so as to form

the Hybrid ALL Oncosimulator is proposed and evaluated.

The abstract structural form of this combination has been

depicted in figure 1. These extra components serve the need

for: (i) automated and accurate parameter estimation for a

set of retrospective patient cases and (ii) the tailoring of a pro-

cedure that would predict the most appropriate parameter

values for prospective patient cases, based on the knowledge

obtained from retrospective cases. The more precise this

parameter prediction is, the more exact would the final

prediction of the treatment outcome be (e.g. prednisone

response category) based on ALL Oncosimulator simu-

lation(s). In the following subsections, the detailed choices

for the implementation of these components are presented.
2.3.1. Mechanistic model parameter estimation
As can be inferred from the presentation of the ALL Oncosimu-

lator (§2.2), two basic sets of parameters have to be estimated

[4]. The first one includes the parameters referring to the

tumour growth properties (parameters Tc to Psym in table 2),

whereas the second one includes the chemosensitivity-related

parameters (CKRs).

In general, the objective of the parameter estimation pro-

cedures is the minimization of the difference between the

simulated tumour evolution (in the absence or presence of

treatment) and the clinically observed disease progression for

the retrospective patient cases. However, for the free tumour

growth-related parameters, their direct estimation from the

data is usually not practical. This is because the available clini-

cal datasets do not usually include patient-specific proliferation
indices or multiple tumour size measurements (in leukaemia,

lymphoblasts measurements) for an adequate period of time

before treatment. In that case, tumour growth descriptive

characteristics reported in the literature may be used in order

to estimate the parameter sets that lead to the simulation of

tumour with specific properties [4]. For example, the doubling

time (Td) and the growth, apoptotic and necrotic fractions (or

indexes), etc., of the inspected tumour may be exploited. This

is also the case in the available dataset of the present study.

Therefore, plausible parameter sets leading to six different rea-

listic values for the doubling time (Td) of ALL (7–42 days)

[25,29,30] were estimated by minimizing the following

objective function:

Tdobjectivefuni
ðTc,TG0,TN,RA,RAðperipheral blastsÞ,Psleep,Psym,PG0 to G1Þ

¼ jTdsimulated
ðTc,TG0,TN,RA,RAðperipheral blastsÞ,Psleep,Psym,PG0 to G1Þ

� Tdobjectivei
j,i ¼ 1, . . . , 6,

where Tdsimulated
ðTc,TG0,TN,RA,RAðperipheral blastsÞ,Psleep,Psym,

PG0 to G1Þ is the doubling time of the leukaemic tumour as esti-

mated by the ALL Oncosimulator for given specific values of

the parameters and Tdobjective i
is the doubling time set as the objec-

tive (7, 14, 21, 28, 35, 42 days, respectively). The selection of the

above-presented objective function is dictated by the need for

acquiring a parameterization that would lead to a simulated

tumour with doubling time as close as possible to the target

one. Moreover, the straightforwardness of the comparison

between simulated and target doubling times renders the

simple absolute difference, commonly chosen in similar

parameter estimation tasks, adequate for the optimization algor-

ithm to converge. The optimization procedure is also subjected

to specific constraints: first, a criterion for self-sustained



Table 3. Constraints set on ALL growth properties during the parameter
estimation process.

constraint references/justification

0:7 � growth fractionbone marrow � 1 [31]

0:001 � apoptotic fraction � 0:072 [21]

necrotic fraction � 0.02 a relatively small percentage

of necrotic cells is allowed
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Figure 3. Detailed structure of the Hybrid ALL Oncosimulator and cross-validation-based performance evaluation steps (see text for details).
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untreated tumour [7]—already implemented in the mechanistic

part of the Oncosimulator—and second, specific constraints for

tumour dynamics and constitution characteristics as given in

table 3.

The implementation of the optimization procedure has

been done by estimating plausible sets of parameter values

of the ALL Oncosimulator (in free tumour growth mode)

through the use of the global stochastic differential evolution

algorithm [32] implemented in the DEoptim R Package [33].

The tuned parameters and the ranges set for them during

the parameter estimation process are included in table 2.

Subsequently, the related CKR values for each patient

included in the available dataset and for each Td value have

to be estimated. This would be achieved by minimizing the

difference between the value predicted by the Oncosimulator

for the leukaemic cells in peripheral blood on day 8 and the

real value observed in the dataset. In the context of the present

study, the CKR value for the drug methotrexate (CKRMTX) is

arbitrarily assumed to take the value 0.2 as in [4], and therefore

the CKRPRED is box-constrained inside the range [020.8]. The

estimation of the personalized CKRPRED for each Td has been

done using the optimize function of the stats package [28] in R

by minimizing the following objective function:

CKRPREDobjectivefuni,j
ðCKRPREDi,jÞ

¼ jPBblastsday 8predicted
ðTci ,TG0i,TNi ,RAi ,RAðperipheral blastsÞi ,

Psleepi
,Psymi ,PG0 to G1i ,CKRPREDi,j ,PBblastsday 0observed

ðpatientjÞ

� PBblastsday 8observed
ðpatientjÞj,
where i ¼ 1, 2, . . . , 6 (the parameter sets for the different dou-

bling times), j ¼ 1, 2, . . . , 87 (the different patients considered).

The reasons dictating the specific choice of the objective

function are similar to those referring to the doubling time-

related parameter estimation. Finally, it should be mentioned

that the process described above is executed for each patient

independently. Therefore, no interpatient correlations in

CKRPRED exist.

2.3.2. Treatment outcome prediction workflow
Following the presentation of the processes for adapting the

mechanistic part of the model to the available retrospective

data, the parts of the Hybrid Oncosimulator leading to a

treatment outcome prediction for a prospective patient case

are defined. The overall workflow is divided into seven

basic sets of steps, shown in figure 3, including those that

enable its cross-validation-based evaluation. The workflow

has been implemented using the R language (v. 3.2.1–3.3.1)

and several additional packages, mentioned in detail through-

out the text of the present subsection. The whole workflow may

be executed either once or many times (in an external CV

manner) in order for the mean prediction accuracy to be esti-

mated. In this study, five external CVs (kout-CV in figure 3)

were realized.

In step (a), the dataset is randomly divided into Train and

Test sets for the needs of the external CV. This is a necessary

step in the case where an evaluation of the workflow without

available prospective data (as is the case of the present study)

needs to be done. Otherwise, the step can be omitted and the

retrospective dataset can be provided directly to the predic-

tion-related steps of the workflow. This separation approach

is commonly followed in the literature for a classifier evalu-

ation. In the present study, this step has been implemented

using the createDataPartition function (specifically its createFolds
functionality) of the caret package in R. The function splits the

available dataset into non-overlapping parts, the Train and the

Test sets. The separation is balanced based on the observed

classes of the patients included in the dataset, in this work

the binary prednisone response category (i.e. the proportions

of the classes are preserved in Train and Test sets). For

the needs of the present evaluation of the Hybrid ALL
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Oncosimulator, five folds of the exploitable part of the dataset

have been created. In more detail, the dataset is split into five

balanced parts and each part is used as the Test set for each

execution of the workflow (external cross-validation), while

the remaining four parts, combined, constitute the Train set.

This step is followed by the parameter estimation process

(step (b)) for the Train set, as described in the previous sub-

section. Before this step is executed, the clinical data and the

Td scenario choice should be provided. This refers to the selec-

tion of the doubling time(s) that the simulated tumours will

exhibit. In the case where a choice from a pre-defined set of

doubling time scenarios (as those discussed in §2.3.1) is

made, the mechanistic part of the model is parameterized in

a straightforward way. For these scenarios, the tumour

growth-related Oncosimulator parameters have already been

estimated (see §2.3.1). Otherwise, the parameters leading to

the chosen doubling time (as well as the corresponding

CKRs) should be first estimated, as presented in §2.3.1.

In step (c), a model intended to predict ALL Oncosimula-

tor parameters values (regression model) is trained for the

Train set. Its parameters are optimized by an internal k-fold

cross-validation procedure (kin-CV in figure 3) again using

the caret package [34] in R. Based on the previous experience

[4,10], the random forests algorithm [35] has been selected for

assessment. Moreover, the Weighted k-nearest neighbours

(k-NN) [36] algorithm was also evaluated. Both algorithms

are provided by the caret package (and randomForest [37]

and kknn packages [38]).

In the present study, the data types used as features in order

for the regression models to be trained include the whole-

genome expression data (the details of which have been

presented in §2.1) and the initial peripheral blood blast count

(day 0) for each patient. In the present approach, the CKRPRED

parameter has been selected as the one to be predicted (response

variable). Therefore, the estimated values of CKRPRED for the

patients included in the Train set have been provided to the

regression model. For each external-CV fold, the CKRPRED

was not estimated (or was estimated, but hidden from the rest

of the workflow) for the cases included in the Test set.

Additionally, each time the training or the predicting

procedures of the regression model algorithm are called, a

sequence of data pre-processing steps is executed.

First, the gene expression dataset provided consists of

measurements for different probes, although many of them

may refer to the same gene. Therefore, in order to render the

dataset compatible with pathway-based analysis, to strengthen

its biological interpretability and to render the subsequent

steps of analysis platform-independent as suggested in [39],

the dataset should be transformed (collapsed) from the probe

level (in our dataset IMAGE CloneIDs) to the gene level (e.g.

EntrezIDs). In order for this step to be executed, the collapseR-
ows function [39] of WGCNA R package [40] has been used.

Among the different choices for the calculation of the

expression at the gene level, the Average probes expression

has been chosen. The latter implies calculating the average

intensities of the probes among those referring to the same

gene. For the implementation of the collapsing procedure, a

mapping between CloneIDs accession numbers and EntrezIDs

should be provided in the CollapseRows function. This mapping

file has been created using the online conversion platform

SOURCE, originally developed by The Genetics Department

of Stanford University (http://source-search.princeton.edu/

cgi-bin/source/sourceBatchSearch).
Subsequently, a procedure of gene filtering by the percentage

of missing values is executed. Similar to the majority of the gene

expression datasets in general, the available dataset has some

missing values in the measurements of probes/genes. Although

the step of collapsing probes to genes may lower the number of

missing expression values in the datasets (the collapseRows func-

tion ignores probes that show missing values in higher than the

90% of cases provided), a significant number of these types of

values may still exist. Thus, the genes that still show a high fre-

quency of missing values (greater than 20%) across the dataset

have been filtered out. Those genes may be thought to have

been inadequately measured. The filtering step has been

implemented using the goodGenes function of the WGCNA pack-

age [40] in R by selecting the minimum fraction of non-missing

samples for a gene to be considered ‘good’ to be 80%.

The remaining unsuccessfully measured values of gene

expression were filled by imputation. This step is believed to

be preferable to the exclusion of all genes that show missing

values, because the experience accumulated in the literature

[41–45] has shown that an improper handling of missing

data may hinder an effective downstream analysis. An excep-

tion has been made in the previously presented filtering step

for the genes with high missing value frequency because the

performance of the imputation algorithms in terms of accuracy

has been found to drop significantly for these cases [42,45].

Therefore, these genes were filtered out. The algorithm selected

for the imputation process has been the nearest neighbours

algorithm (knn imputation) [46], recognized as the most

widely and frequently used imputation algorithm. The knn
imputation has been implemented using the Impute package

in Bioconductor-R (http://www.bioconductor.org/) and by

choosing the parameter k (the neighbours that are used in

order for a missing value to be imputed) to be 20. The latter

is one of the most commonly chosen values for this parameter

in the missing values imputation context [42].

Subsequently, in order to conduct a pathway-based gene

expression analysis, an aggregation of gene expression values

to KEGG pathways activation has been implemented. As

stated in the literature [47–49], the transformation of the gene

expression data from the gene space to the pathway space is

expected to lead to increased robustness of the results of the

downstream analysis of molecular data. This is in contrast to

the case of gene signatures that are commonly found to be

unstable. Moreover, the aggregation of gene expression to

another commonly shared space, i.e. the space of pathways, is

thought to reduce the intrinsic technological and biological var-

iances across samples. The method selected to be used has been

gene set variation analysis (GSVA) [9] implemented in the

synonymous Bioconductor-R package. The gene sets chosen in

order to aggregate the gene expression values have been those

referring to genes constituting the KEGG pathways (http://

www.genome.jp/kegg/pathway.html) which at the time of

the present analysis are 186 in number. They have been down-

loaded from the Broad Institute MsigDB (http://www.

broadinstitute.org/gsea/msigdb) as a .gmt file (CP:KEGG:

KEGG gene sets) and have been introduced into R using the

getGmt function of the GSEABase package [50]. Following

the application of the GSVA method, the molecular part of the

dataset now consists of 186 pathway activation-related features

(i.e. enrichment score for KEGG pathways) for each patient.

With the dataset in its finalized form, two additional pre-

processing steps are executed. First, the values of the features

are mean centred. Second, a step for reducing the level of

http://source-search.princeton.edu/cgi-bin/source/sourceBatchSearch
http://source-search.princeton.edu/cgi-bin/source/sourceBatchSearch
http://source-search.princeton.edu/cgi-bin/source/sourceBatchSearch
http://www.bioconductor.org/
http://www.bioconductor.org/
http://www.genome.jp/kegg/pathway.html
http://www.genome.jp/kegg/pathway.html
http://www.genome.jp/kegg/pathway.html
http://www.broadinstitute.org/gsea/msigdb
http://www.broadinstitute.org/gsea/msigdb
http://www.broadinstitute.org/gsea/msigdb


Table 4. Parameters of the pre-processing procedure and the regression model algorithms tuned by internal cross-validation on retrospective cases.

parameter name description tuning values

pre-processing parameters

collapse method method used to collapse gene expression

values from probes to genes level

average

good genes

minimum fraction

minimum fraction of non-missing samples

for a gene to be considered good and to

be kept for further analysis

0.8

imputation knn k number of neighbours to be used in the

imputation

20

correlation cut-off a value for the pair-wise (between feature

variables) absolute correlation cut-off

0.5, 0.7, 0.9, 1.0

random forest parameters

mtry number of feature variables randomly

sampled as candidates at each split

five different mtry values were tested, produced by the var_seq function of

caret package [34] in R. These values depend on the number of features

of the finally preprocessed dataset, which in turn depends on the

correlation cut-off parameter.

weighted nearest neighbours parameters

k number of neighbours considered 5, 7, 9

distance parameter of Minkowski distance 0.5, 1.0, 2.0, 3.0

kernel kernel function used in order

to weight the neighbours

according to their distances

optimal
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correlation between the predictors has been followed by

removing highly correlated features using the findCorrelation
function of caret package.

Regarding the above-presented pre-processing steps,

special versions of gene filtering, imputation, centring and

features correlation reduction have been implemented for the

prediction step of the regression model algorithm. The latter

aims to base the pre-processing of the Test set data on the

pre-processing results (e.g. filtered genes) and the data (e.g.

for imputation) of the training set.

During the above-described training and tuning process, a

number of parameters of both the pre-processing procedure

and the regression model were optimized. These parameters,

their description and the values tested are listed in table 4. The

set of best parameters is chosen based on the root mean square

error (RMSE) performance on predicting the CKRPRED value.

Referring back to the workflow presentation, in step (d) a

new series of cross-validated regression model training, further

splitting the Train set created for the external cross-validation,

is followed in order to analyse the behaviour of the finally

trained and tuned regression model error. Moreover, an esti-

mate of the distribution of the expected error based on the

model prediction residuals is acquired. For each external

cross-validation fold, an additional fivefold cross-validation-

like procedure is executed for the Train set. First, the Train

set is further split into an error distribution Train set and an

error distribution Test set. Second, the regression model

using the best-tuned parameter values identified in step (b) is

trained. Subsequently, the response values (CKRPRED) for the

error distribution Test set are predicted by the regression
model. Finally, the residuals (errors) between these predicted

CKRPRED values and those already estimated by the parameter

estimation procedure (i.e. the real CKRPRED values) are calcu-

lated for each case included in the error distribution Test set.

The residuals of all folds are combined and used, in three pos-

sible ways, in order to estimate the distribution of the error of

the regression model. The first one consists of calculating the

histogram of the residuals (and saving the midpoints and

their probabilities) using the hist base function in R. The

second one refers to the fitting of a normal distribution on

the residuals (using the fitdist function of fitdistplus package

[51]). The third one resorts to the computing of kernel density

estimates (using the density base function in R, with default

parameters). The way that this distribution is used in the next

steps of the workflow and the effect of the choice of the

method on the final results are discussed later.

Thereafter, in step (e), the finally trained and tuned

regression model is used to produce predictions for the

CKRPRED value of the patient cases included in the Test set or

prospective cases in general. The extracted predictions are

used in order for a number of simulations of the mechanistic

part of ALL Oncosimulator (n repeats in figure 3, 500 repeats

here) for each patient to be realized. In each simulation, a differ-

ent value of additive noise, sampled from the aforementioned

error distribution, is added to the predicted CKRPRED value.

With this parameter value as part of the input, a prediction

of the number of lymphoblasts in the peripheral blood at day

8 is returned by the Oncosimulator. After the execution of

the simulations, in step (f), each patient is finally classified

into the prednisone response group that most frequently was



Table 5. Estimation procedure results for the tumour growth-related parameters of the mechanistic part of the ALL Oncosimulator for six different doubling
time (Td) scenarios.

parameter name

estimated values

Td 5 7 d Td 5 14 d Td 5 21 d Td 5 28 d Td 5 35 d Td 5 42 d

Tc 82 h 99 h 109 h 135 h 158 h 182 h

TG0 82 h 82 h 80 h 78 h 108 h 97 h

TN 106 h 119 h 126 h 113 h 133 h 120 h

RA ¼ RA(peripheral blasts) 0.001508683 h21 0.001280446 h21 0.0005444389 h21 0.0008812038 h21 0.0006393167 h21 0.000464761 h21

Psleep 0.09283396 0.1712635 0.1044412 0.1523759 0.0735677 0.1194185

Psym 0.6881355 0.4957694 0.2705583 0.3605559 0.3041863 0.3208003

PG0 to G1 0.5676784 0.7851885 0.8349451 0.7924908 0.6382258 0.4995043

0.8

0.6

0.4

0.2

C
K

R
PR

E
D

(m
ea

n)

0

0 20 40

patient index

60 80

good responder

poor responder

Figure 4. Scatter plot of mean CKRPRED estimated value (six different dou-
bling time scenarios) for the patients included in the study. Prednisone poor
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predicted (based on the 1000 lymphoblasts per microlitre

threshold). In the extreme case where a patient is equally fre-

quently classified into the two groups, a last run is executed

and the result of this simulation is considered the final predic-

tion. The execution of multiple simulations is viewed as

essential because it is known a priori that the CKRPRED would

be predicted with an error. Therefore, instead of uncondition-

ally adopting the predicted CKRPRED and use it to produce

the patient category prediction, a number of simulations with

slightly changed parameter input are expected to be able to

show possible trends in the response categorization of the

patient. Moreover, a quantification of the confidence for the

resultant classification is produced based on the rate by

which this classification result is returned from the multiple

simulations for each patient. Such a feature is considered essen-

tial for any system claiming future clinical application, such as

the Hybrid Oncosimulator. The latter is expected to offer its

user the opportunity to decide whether or not the final predic-

tion should be adopted as a means supporting clinical

decisions.

Finally, in step (g) the classification results for each

external fold and for the overall procedure are accumulated.

responders tend to have lower chemosensitivity parameter values compared
with prednisone good responders. (Online version in colour.)
3. Results and discussion
3.1. Parameter estimation results
Regarding the estimation of free tumour growth-related par-

ameters for the six Td scenarios, the latter was achieved with

objective function values (targeted Td minus simulated by the

Oncosimulator Td) ranging from 0.00018 to 0.00626 days. This

shows an almost completely successful estimation of the par-

ameters. The resulting parameter values are shown in table 5.

The results of the overall model adaptation procedure are sum-

marized in the mean CKRPRED estimation values given in

figure 4. For each patient, six different CKRPRED values were esti-

mated, one for each Td case. It should be noted that for a number

of patients, not all Td scenarios lead to the estimation of a valid

CKRPRED value. These patients were characterized by a higher,

instead of lower, blast cell count on day 8 of treatment compared

to day 1. This behaviour can be explained by very rapid growth

rates and/or low chemo-sensitivities. Low growth rates,

reflected in scenarios with high doubling times, were unable

to catch the observed behaviour; particularly, the simulated
final blast count was always lower than the observed one,

even in the absence of therapy. Such patients were excluded

from further analysis.

For each patient, and for the range of values of model

parameters and the Td scenarios considered, the variance in

the CKRPRED value for the six Td scenarios was not found

to be significant (mean CKRPRED variance: 1.5036 � 1024).

This behaviour can be explained by the fact that the 7 days

duration of the pre-phase treatment is probably too short

for the effect of the different doubling times to the treatment

simulation to be evident. Therefore, in the context of the pre-

sent study, only the Td scenario of 7 days was chosen for the

further analysis steps.

As can be seen in figure 4 and in agreement with [4,10],

prednisone good responders tend to have higher mean

CKRPRED values compared to prednisone poor responders.

This finding further supports the validity of the parameter

estimation/adaptation procedure and of the ALL Oncosimu-

lator model as a whole. However, for a range of CKRPRED
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values approximately [0.4–0.6] an overlapping of the two cat-

egories is observed. For these cases, the prediction of

the outcome is expected to be a more difficult task.

It should be noted, however, that the observed overlap

regarding this feature is expected not to undermine the

ability of the proposed methodology to classify the patients

to poor or good responders. This is because except for the

prediction of the CKR values, the methodology also relies

on the initial blast cell count and the biological rules

coded through the mechanistic model. These two sources of

information are expected to significantly contribute to the

successful separation of patients.

3.2. Cross-validation results regarding prednisone
response category prediction

The overall results of the execution of the workflow are

presented in table 6. For each regression algorithm and

regression model error distribution estimation method, five

external cross-validation procedures were followed. The result-

ing mean performance measurements are presented. As can be

seen, the classification accuracy evaluated in the whole Test set

(16 patients for every external CV fold) ranges in the

interval [0.62–0.68] for the weighted k-NN algorithm and

in the interval [0.55–0.65] for the random forests algorithm.

This means that for a newly arrived patient, the fully tuned

system (after choosing the best regression model and the best

regression model error distribution estimation method) is

expected to correctly classify approximately 70% of patients.

The execution of the fivefold external cross-validation of the

whole system (including data pre-processing, regression

model training and tuning, error distribution estimation and

prednisone response category prediction by multiple ALL

Oncosimulator simulations) required 189 min on a personal

desktop computer equipped with a CPU with four cores syn-

chronized at 3.50 GHz and 16 GB of RAM. Although the

training of the system may require several minutes, the process

of predicting the response category of a single new patient

(which includes the steps of pre-processing the personalized

data, predicting the CKRPRED value, executing 500 ALL Oncosi-

mulator simulations and aggregating the results in a final

response classification decision) lasts less than 1 min. It should

be noted, however, that these durations, and especially the dur-

ation of the cross-validation process, may be significantly

increased if a larger dataset (in terms of patient cases) is

provided in the future. Nevertheless, both the external cross-

validation repetitions and the multiple ALL Oncosimulator

simulations may be easily executed in parallel because there

are no dependencies between the different execution loops.

Such a parallelization step may significantly lower the execution

time of both processes. Presently, the Hybrid ALL Oncosimula-

tor system is executed through the R language environment.

Therefore, any computational infrastructure that supports this

environment, including personal computers, virtual machines

at the cloud and servers (e.g. an R server) could be used for

the execution of the workflow. Regarding the underlying

mechanistic model, which is developed in Cþþ, the inherent

capabilities of all the widely used operating systems (either Win-

dows or Unix based) are adequate to support its execution either

as an executable or as a dynamic library.

Moreover, for the majority of method combinations, the

system has been found to respond with higher confidence

when its classification decision is correct. Therefore, the
following hypothesis can be formulated: if only the patient
cases included in the test set for which the Hybrid ALL Oncosimu-
lator responds with relatively high confidence are taken into
account, the classification accuracy can be increased and eventual
misleading predictions could be avoided. The hypothesis has

been tested, by setting four different confidence thresholds

and re-calculating the accuracy only for the cases for which

their classification was predicted with higher than the

threshold confidence. As shown in table 6, by setting the con-

fidence threshold to 0.9, the accuracy of the system may reach

the 0.95 performance value when the weighted k-NN and the

kernel density estimation methods are used. However, this

accuracy is achieved by paying the price of denying the classi-

fication for the vast majority of the patient cases (only 2.2 out of

16 patients on average are classified). For lower values of the

threshold, ‘trustworthy’ classification results are returned for

a higher number of patients, generally with higher accuracy,

compared to the unthresholded case, especially when the

weighted k-NN algorithm is used. It is noted that the architec-

ture of the Hybrid ALL Oncosimulator constitutes a proposal

on the way through which a VPH model would become able

to predict the treatment outcome of a real clinical scenario.

Such a feature could allow the user (probably a clinician) to

decide on the level of confidence through which he or she

may trust the predictions of a system of this kind. Such a strat-

egy could considerably support treatment-related decisions

based on the model predictions.

The central property of the workflow that allows such a

guidance is its ability to execute multiple simulations via the

ALL Oncosimulator. In order to illustrate the way through

which these simulations are exploited in order for the final

classification decision to be made, the histograms of the periph-

eral blasts at the end of the pre-phase treatment (at a

logarithmic scale) predicted by the ALL Oncosimulator for

two indicative patient cases are given in figure 5. Both cases

were correctly classified using the weighted k-NN algorithm

and the kernel density estimation method. The first case

depicted in figure 5a is a prednisone good responder, while

the second case depicted in figure 5b is a prednisone poor

responder. In both panels, the 1000 lymphoblasts per microlitre

threshold is indicated with a red line, while the real number of

peripheral blasts at the end of the treatment for the specific

patients is indicated with a purple one. As can be seen, the

vast majority of simulations for the good responder case con-

clude in a prediction for peripheral blood blast number,

lower than the aforementioned threshold, while the opposite

is true for the poor responder case.

Regarding the comparison between the two regression

algorithms tested, the weighted k-NN has proved to achieve

better results compared with the random forests algorithm.

The latter applies not only in classification accuracy terms

but also in the number of patient cases for which a classification

result with high probability of correctness is returned when a

confidence threshold is set. This could be explained not only

by the higher accuracy in predicting the value of CKRPRED,

as shown in table 6 but also by the significantly elevated R2 per-

formance (proportion of the variance in the response variable

that is predictable from the feature variables) compared with

those achieved by the random forests algorithm.

The results presented appear promising regarding the

soundness of the proposed combination of methods as a work-

flow (Hybrid ALL Oncosimulator). Moreover, the approach’s

eventual contribution to the formulation of foundational
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Figure 5. Histograms of multiple ALL Oncosimulator simulations for two
representative patient cases. Both cases were correctly classified by the
Hybrid ALL Oncosimulator system. Good/poor response threshold is indicated
by a red line, while lymphoblasts actually observed on day 8 of treatment for
the specific patients are indicated by a purple line. (a) The majority of simu-
lations end up to day 8 lymphoblast number predictions lower than the good
to poor response threshold for a prednisone good responder. (b) Simulation
results more frequently return predictions higher than the threshold for a
prednisone poor responder.
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guidelines for the clinical application of VPH models through

predictive tasks appears a realistic endeavour.
4. Conclusion
In the present paper, a combination of a mechanistic VPH-type

model, simulating ALL progression and treatment, called the

ALL Oncosimulator [4], with computational optimization and

ML methods, has been presented and their performance has

been studied. The former methods have been used for

parameter value estimation purposes, while the latter for

parameter value prediction. The formulated system, entitled

the Hybrid ALL Oncosimulator, has been exploited in order

for the prednisone response category of a newly arrived ALL

patient to be predicted. The cross-validation results have

shown that the proposed system is expected to correctly classify

approximately 70% of patients. Moreover, the accuracy may be

elevated up to 95%, when the precision of the classification task

via multiple simulations of the mechanistic model is requested

to be high (classification confidence threshold set to 0.9) in order

for only trustworthy classification decisions to be returned and

eventual misleading predictions to be rejected. The adoption of

already established clinical classification/stratification criteria is

thought to be preferable in comparison with the adoption of a

non-confident prediction by the system. Therefore, the confi-

dence thresholding feature is considered crucial if the
ambition for future clinical application and effective medical

decision support of this type of system is taken into consider-

ation. In the present study, the increase in classification

accuracy and confidence has, however, been found to be

coupled with a significant reduction in the number of patients

for which an acceptable classification has been returned (only

2.2 out of 16 patients per each cross-validation fold have been

finally classified with the classification confidence threshold

set to 0.9). Among other possible reasons probably related to

the system design (discussed in detail below), the lack of a suf-

ficiently large set of admissible patient cases for the conduction

of the present analysis may be responsible for the significant

reduction in the cell occupancy of different prednisone response

classes. Therefore, more comprehensive and standardized

larger scale datasets would be required in the future to

underpin this area of cross-disciplinary research.

Viewing the relative success of the proposed Hybrid ALL

Oncosimulator system in predicting the outcome of the pre-

phase treatment in ALL as a proof of concept, the fundamental

steps formulated in the present study can be considered a good

base for future advances of the system. Such envisaged

advances could include the following: first, the predic-

tive accuracy and the robustness of the proposed workflow

should be increased as much as possible. In future efforts,

further exploitation of regression methods, data pre-processing

methodologies and exploitation of more data types (e.g.

additional types of -omics) might increase the performance of

the system. Additionally, potential alternative ways to exploit

the ability of the system to execute multiple simulations

should be studied in terms of final classification decision and

the related classification confidence calculation.

The cross-validation-based evaluation of classifiers fre-

quently appears in the ML-related literature. Nevertheless, a

predictive system, as the one proposed (together with any event-

ual future improvements), should be thoroughly validated

regarding its ability to predict the response of really prospective

patient cases (independent validation set). Moreover, specifi-

cally for the pre-phase treatment-related Hybrid ALL

Oncosimulator, the real benefits of predicting the prednisone

response group for prospective patients, regarding the effective

modification of their treatment, should be confirmed. Both these

crucial steps would be integrated in a prospective clinical trial

including two additional distinct phases. During the first

phase, the Hybrid ALL Oncosimulator, which has already

been tested using retrospective data, should prove its ability to

predict the patient response group. Following this confirmation,

in the second phase, an initial set of patients would be treated as

suggested by the established clinical protocol, including the pre-

dnisone response evaluation through the pre-phase treatment.

For another set, the prednisone response group would be pre-

dicted by the Hybrid ALL Oncosimulator and influenced by

this stratification therapy, decisions would be taken immedi-

ately. After completing treatment, the potential benefits of

accelerating the treatment would be extracted by comparing

disease control success between the two sets.

Following such a future extensive validation, a natural next

step would be to study the ability of a similar system to predict

the outcome of a longer and more complex treatment or of a

combination of treatment phases. For example, minimal

residual disease (MRD) detection is of crucial importance for

treatment response evaluation and the further stratification of

patients into risk groups [52–54]. Such a step would require,

on the one hand, the modelling of the administration of
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additional drugs using the mechanistic part of the model. On

the other hand, this would require the prediction of more

than one parameter by the ML methodologies. Such par-

ameters would be chemosensitivity related (similar to the

CKRPRED predicted in this paper) as well as tumour growth

related. Tumour growth-related parameter value estimation

is thought essential because the doubling time of the simulated

tumour may affect the simulation results of an extended treat-

ment phase. The prediction of more than one parameter would

require either multiple regression models or a single regression

model with multiple responses. However, this process may be

assisted by the addition of further mechanistic models focusing

on specific ALL-related phenomena (e.g. [55–57]).

The results presented in this paper further support the

idea that an effective combination of several heterogeneous

models (in terms of biocomplexity scales and modelling prin-

ciples) could lead to the emergence of systems able to assist

treatment-related clinical decisions. It is envisaged that the

healthcare personnel would easily interact with the under-

lying complex system using a clinical decision support (CDS)

system, as proposed in [58]. Both the fields of effective model

combination (hypermodelling) and integration of models into

a CDS system have been central research fields of the CHIC

and the p-medicine VPH projects, respectively. Their mid- and

long-term goal is obviously to translate multiscale VPH

models to clinical reality for the benefit of the patient.
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