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Just as evolutionary biologists endeavour to link phenotypes to fitness, sport

scientists try to identify traits that determine athlete success. Both disciplines

would benefit from collaboration, and to illustrate this, we used an analytical

approach common to evolutionary biology to isolate the phenotypes that pro-

mote success in soccer, a complex activity of humans played in nearly every

modern society. Using path analysis, we quantified the relationships among

morphology, balance, skill, athleticism and performance of soccer players.

We focused on performance in two complex motor activities: a simple game

of soccer tennis (1 on 1), and a standard soccer match (11 on 11). In both con-

tests, players with greater skill and balance were more likely to perform better.

However, maximal athletic ability was not associated with success in a game.

A social network analysis revealed that skill also predicted movement. The

relationships between phenotypes and success during individual and team

sports have potential implications for how selection acts on these phenotypes,

in humans and other species, and thus should ultimately interest evolutionary

biologists. Hence, we propose a field of evolutionary sports science that lies at

the nexus of evolutionary biology and sports science. This would allow biol-

ogists to take advantage of the staggering quantity of data on performance

in sporting events to answer evolutionary questions that are more difficult

to answer for other species. In return, sports scientists could benefit from the

theoretical framework developed to study natural selection in non-human

species.
1. Introduction
In any population, some individuals perform better than others. In humans, as

with many other animals, individuals advertise their ability to perform under

pressure through ritualized combat, usually called sport. Elite performance in a

sport brings status, resources and mating opportunities. As in most sexual

species, males engage in these ritualized displays of performance more often

than females. In fact, studies of diverse cultures showed that men engage in com-

petitive sports more often than women do [1,2], reinforcing the view that sporting

events may help establish social hierarchies important for mate choice [3]. Con-

sistent with this view, professional athletes are among the most admired and

highest paid members of modern societies.

Sports scientists endeavour to identify the traits that determine athletic

performance just as evolutionary biologists endeavour to link phenotypes to fit-

ness. Yet sports scientists and evolutionary biologists operate in isolation of one

another. At first glance, their goals may seem disparate. Sports scientists seek to

identify the qualities that make an elite human competitor [4,5], whereas evolution-

ary biologists want to know how heritable phenotypes affect the reproductive
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success of wild animals [6–8]. However, both fields address

the same question: what drives variation in performances

among individuals? As such, much can be gained from a

cross-disciplinary approach to the study of human performance

and its consequences for success in organized sports.

Sports scientists and evolutionary biologists may pursue

similar questions, but the way they approach these questions

substantially differs between the disciplines [1]. Sports

scientists have focused on proximate explanations for great

athletic performance—or, how an athlete interacts with his or

her environment (e.g. diet, training) to attain some capacity

for success. By understanding how the environment shapes

athletes, one can manipulate environmental conditions to opti-

mize athletic performance. By contrast, evolutionary biologists

seek ultimate explanations for the phenotypes observed within

populations; thus, an evolutionary biologist would be more

interested in why an ancestral environment selected for athletic

ability. Still, the proximate mechanisms that link traits to per-

formance serve as the raw material for natural selection. This

view of evolutionary biology was formalized by Arnold [9]

in his paradigm relating morphology, performance and fitness

in non-human animals. This paradigm works equally well for

studies of humans.

Sports scientists would benefit from the protocols that evol-

utionary biologists use to quantify natural selection. In sports

science, talent identification programmes are used to predict

which individuals are most likely to attain elite competitive

status, based on differences in the characteristics of elite

versus sub-elite athletes [5,10,11]. This approach has helped

to identify and nurture talent in sports such as athletics,

swimming and rowing; where power, speed and endurance

determine success. However, there has been a limited uptake

of quantitative protocols for talent identification across most

professional team sports [5,12]. Protocols that compare a

group of elite athletes with a group of non-elite athletes provide

a coarse understanding of the attributes required to reach elite

status, and yet the success of an individual depends on their

ability relative to others. In team sports, predicting whether

or not an individual will become ‘elite’ is less important than

predicting how they will perform within elite competitions.

In other words, identifying which people could become pro-

fessional players is not the same as identifying which people

could become the best professional players. The latter question

requires analyses of variation among individuals, which is

remarkably uncommon in sports science [13] yet routine in

evolutionary biology, especially when quantifying natural

selection [9,14,15].

Evolutionary biologists can also advance their discipline

by working with sports scientists. Because sports generate a

staggering quantity of data on the size, age, and performance

of competitors, sport science offers evolutionary biologists

unique opportunities to explore the drivers of success in com-

plex activities. Studies of animal performance show that

success in complex activities—such as fighting conspecifics

or escaping predators—depend on differences in speed

[8,16], size [17], strength [18–20] and physiology [21]. Still,

these studies have almost exclusively focused on quantifying

extreme capacities of animals, such as maximal strength,

speed or endurance [22,23], disregarding traits such as agility

and skill (but see [23–27]). Because agility and skill may be

compromised at high speeds or forces [23,25,28], evolutionary

biologists have missed an important aspect of animal perform-

ance that shapes natural selection. Although evolutionary
biologists rarely use data from sports to address major theories,

some researchers have explored a few areas, such as: (i) how

body shape facilitates or constrains success [29–31], (ii) how

costs and benefits influence deception [32], and (iii) how ath-

letic performance deteriorates with age [33]. Additional

studies of human athletes can help fill gaps in our knowledge

about the correlational selection of traits.

In this study, we explored the biological basis of success in

soccer, a complex activity of humans that occurs in nearly every

modern society. Our study was guided by the idea that the

strengths of sports science and evolutionary biology can be

integrated to study the biological fundamentals that shape

variation in complex traits. In the sporting arena, as in the

wild, excellence in physical activities relies on multiple dimen-

sions of morphology and behaviour (as quantified by sports

scientists). Furthermore, variation in traits and performance

among individuals drives success (as quantified in evolutionary

biologists). Soccer is an ideal sport for an integrative study such

as ours, because soccer enables one to identify, isolate and

quantify the traits that potentially underlie the relative success

of many individuals in multiple populations [10,34]. Soccer is

the world’s most popular team sport, played by more than

200 million registered competitors and transcends national,

cultural, religious and gender boundaries. Here, we quantified

the relative importance of morphology, athleticism, motor skill

and balance among elite soccer players to predict individual

variation in simplified one-on-one soccer-tennis games, and

standard 11-a-side competitive soccer matches. We do not

only measure success in terms of their individual actions, but

in the standard 11-a-side competitive matches we also quanti-

fied each player’s importance within the network of the team

using social network analyses.
2. Material and methods
We studied players from the University of Queensland Football

Club that play in the semi-professional league of Brisbane Men’s

Football Premier and Reserves division. For each individual

player (n ¼ 32), we measured seven parameters of morphology,

five parameters of maximum athletic performance, five parameters

of motor skill function, and a single measure of static balance

(table 1). We also quantified individual ability in two separate

soccer-game scenarios: (i) simplified one-on-one soccer-tennis

games (n ¼ 27), and (ii) standard 11-a-side competitive soccer

games (n ¼ 24).
(a) Morphology
For each individual, we measured upper and lower limb lengths,

total height, torso-length, and the maximum circumference of

leg and arm muscles using manual positioning of a tape

measure. Mass was also measured using a standard commer-

cially available balance (+0.01 kg). The first component of a

principal component analysis (PCA) based on linear measure-

ments (PCM) for all players from the soccer-tennis study

explained 51% of the variation observed in the data (electronic

supplementary material, table S1). As all vectors of PCM1

loaded in the same direction, this represented a measure of over-

all body size. The second component of the PCM (PCM2)

explained 31% of the variation and represented a description of

body shape (electronic supplementary material, table S1). Posi-

tive values of PCM2 were representative of larger arm and leg

girths and shorter limbs and height.



Table 1. Measurements of morphology, balance, athleticism, motor skill and soccer performance, as quantified for the players used in our study.

morphology balance
maximum athletic
performance motor skill function soccer performance

(i) height (m)

(ii) full leg

length (m)

(iii) full arm

length (m)

(iv) upper-arm

girth (m)

(v) lower-arm

girth (m)

(vi) upper-leg

girth (m)

(vii) lower-leg

girth (m)

static balance:

average of left

and right foot

fastest sprint speed over

40 m (m s21)

fastest sprint speed through

44.8 m agility course

(m s21)

fastest speed over 1500 m

(m s21)

highest lower-body power:

static jump distance (cm)

greatest lower-body

endurance: timed wall

squat (s)

juggling ability: keep-up ability of size

1 football using only feet (average)

passing accuracy: passing towards

target at 15 and 30 m

volley accuracy: kicking served ball

towards target at 5 and 10 m

heading accuracy: heading served ball

towards target at 5 and 10 m

dribbling speed: fastest speed when

kicking a ball through 44.8 m agility

course (m s21)

soccer-tennis ability

total accumulated score

in tournament

match performance

(i) match success—

across all tasks

(ii) match activity—

across all tasks

(iii) match efficiency—

across all tasks

team performance

social network analysis

on ball movement
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(b) Maximum athletic ability
For each individual, we measured the following athletic ability

traits: (i) maximum speed over 1500 m, (ii) total squat time,

(iii) maximum jumping distance, (iv) fastest sprint speed over

40 m, (v) and fastest speed through an agility circuit. Perform-

ances were quantified using identical methods to those

outlined in Wilson et al. [23].

The first component of a PCA based on measures of maxi-

mum athletic capacity from the soccer-tennis study explained

48% of the variation observed in the data (electronic supplemen-

tary material, table S3). All vectors of PCATH1 loaded in the same

direction, and because larger positive values were indicative of

better athleticism, PCATH1 represented a measure of overall maxi-

mum athletic performance. The second component of the PCATH

explained 25% of the variation and described the negative associ-

ation between acceleration/power with maximum sprinting

speeds (electronic supplementary material, table S3). Positive

values of PCATH2 were representative of faster speeds through

the agility circuit and longer jump distances (rapid acceleration

and high lower-body power) and lower top speeds over 40 m

and 1500 m (low linear running speeds). The PCA based on

the athletic performance of players from the 11-a-side competi-

tive soccer game experiment are presented in electronic

supplementary material, table S4.
(c) Motor skill function
For each player, we measured performance in five soccer-specific

motor-skill tasks: (i) maximum dribbling speed, (ii) average

juggling (i.e. keep-up) ability of a size 1 football, (iii) static-ball pas-

sing accuracy, (iv) volley-kick accuracy, and (v) heading accuracy.

Motor skill traits were quantified using identical methods to those

outlined in Wilson et al. [23] and represent repeatable measures of

individual skill. The first component of the PCA based on

measures of skill performance (PCSK1) from the soccer-tennis

study explained 48% of the variation observed in the data (elec-

tronic supplementary material, table S5). All vectors of PCSK1

loaded in the same direction, and because larger positive values

were indicative of better skill in each trait, PCSK1 represented a

measure of overall skill performance. The second component of

the PCA for measures of motor skill performance (PCSK2)

explained 18% of the variation and described the negative associ-

ation between juggling ability and passing ability (volley and
passing accuracy) (electronic supplementary material, table S5).

The PCA based on the athletic performance of players from the

11-a-side competitive soccer game experiment are presented in

the electronic supplementary material, table S6.

(d) Balance
An individual’s relative balance was taken from the average of

three trials (for each leg) where we recorded the total time taken

to lose balance when standing on high-density foam (40 � 40 �
7.5 cm high-density physiotherapy foam) with their eyes closed

and non-standing leg flexed at the knee at a right angle.

(e) Soccer-tennis performance
We quantified an individual’s soccer-tennis performance using a

tournament design involving 30 players. Soccer-tennis is a com-

monly employed training activity for professional soccer players

and provides a statistically independent measure of individual suc-

cess that probably relies upon a similar suite of underlying

morphological and performance traits as 11-a-side soccer matches.

Games of soccer-tennis were played on a 16 m long by 8 m wide

grass court with a 1 m high net in the middle. Players alternated

a kick-serve (after bouncing the ball when dropped from their

hands) from behind the baseline and each player was allowed a

maximum of two touches of the soccer ball and one bounce on

their side of the court before they had to return the ball into the

opponent’s side of the court. Games consisted of a total of 10

points and players accumulated points throughout a tournament

based on their score in each game. Thus, if an individual played

three games and their results were an 8-2 win, 10-0 win and 5-5

draw, then their total score was 23 points (with a maximum of

30 points).

For our experiment, one-on-one soccer-tennis games were con-

ducted in a tournament design [35] where each individual played

15 games, thus allowing a detailed hierarchy of success to be deter-

mined for each player. Individuals were randomly placed into five

groups of six individuals, with all individuals playing each other

once. After this first round, all players were then randomly distrib-

uted to another five groups of six individuals, with all individuals

playing each other once again. A third round was also conducted

using five groups of six individuals. Analyses were conducted

using only the 29 players whose morphology, balance, motor

skill and athletic ability were also quantified.
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( f ) Match performance
We explored the underlying basis of success in 11-a-side soccer

games to replicate the more realistic, complex and interactive com-

petitive games that are played by most soccer players and

encompass many team sports. To quantify individual match abil-

ity, we recorded footage from 10 in-season matches (�x ¼ 69 min

observed per match) from two Division 1 leagues (premier

league, n ¼ 5; reserve league, n ¼ 5). Four players participated in

both leagues. Matches were recorded from an elevated position

using a Sony HD camcorder that enabled individuals to be ident-

ified using post-match analyses. Each ball involvement by an

individual was categorized into the following five skilled match

tasks: challenging (player and opposition compete for the ball

using a header or tackle), dribbling (player has three or more con-

secutive touches of the ball), intercepting (player gains ball from

opponent), passing (player delivers the ball to another player on

his team) and shooting (player strikes ball at opposition’s goal).

For each action we recorded whether this was successful or unsuc-

cessful. An action was classified as successful when the player’s

team retained possession following the execution of a skilled

task, with the exception of shooting where only an on-target shot

was considered as successful. We only chose actions and defined

success in a way that ensured that individual success always had

a net positive for the team. This does not mean that an individual

made the best choice (i.e. a player could have completed an alter-

native action that provided a greater help to their team), but

regardless, any successful action was still at least a positive

action for the team.

For each of the five match activities, three measures of perform-

ance were quantified: (i) successes (number of attempted skilled

actions that were successful), (ii) attempts (number of attempted

skilled actions involving the ball), and (iii) efficiency (success/

attempts). These three different match traits were selected to rep-

resent the different types of players involved in 11-a-side games.

We also calculated measures of match success, activity and effi-

ciency across all tasks combined to provide metrics of overall

match performance; total successes, total activity, and total effi-

ciency. Since our initial analyses revealed that the execution of

skilled tasks in matches varies significantly across 5 min intervals

but not 15 min intervals, players that participated in a match for

less than 15 min were excluded from analyses. For measures of

match success and activity, each of the metrics analysed were

divided by the number of minutes that an individual played in

each game. An average of a player’s successes and activity across

their matches was then calculated and used in subsequent ana-

lyses. As measures of efficiency were proportions and not

sensitive to the number of minutes played in a game, a player’s

average efficiency across matches was calculated and used in

subsequent analyses.
(g) Player connectedness within matches
Social network analysis was used to quantify individual player

performance and connectedness within a team. To do this, we

used the igraph package [36] within the R software environment

[37] to construct a complete network [38] for every match in the

tournament, of all players within one team. Each player formed

a node, and directed edges [39] linked players in the direction

they passed to one another, weighted according to the number

of passes. So if player A had successfully passed to player B five

times in a game, a directed edge with a weight of five would

link from player A to player B. There would be no reciprocal

edge from player B to player A unless the former had also success-

fully passed to the latter, in which case this directed edge would be

weighted according to the number of such passes.

From these match networks, seven measures of connectedness

were calculated for each player (node) based on the successful

passes executed between pairs of players (edges): out-degree
(number of players one successfully passes to), in-degree (number

of players one receives passes from), overall-degree (total number

of players one is connected to via passing, sum of out- and in-

degree), out-strength (number of passes one successfully makes),

in-strength (number of passes one successfully receives) and over-

all-strength (total number of successful passing interactions one is

involved in (sum of out- and in-strength). In addition, we calculated

the weighted undirected closeness centrality, hereafter referred to as

closeness—the inverse of the average weighted number of steps

from a player to each other player in the network. Closeness treats

ties as undirected, equating passes sent or received. In this case, it

reflects the ease with which a player could send or receive the ball

to or from any other player through the network [38,40]. The complete

network for each game is presented in the electronic supplementary

material, figure S1.

(h) Statistical analyses
We used a path model to estimate the relationships among mor-

phology and performance in soccer tennis. The first set of paths

related morphology to balance, skill and athleticism. The second

set of paths related each of these variables to the player’s score.

Scores of the first and second principal components for mor-

phology, athletic ability or skill were used as variables in the

path models. All analyses were performed with the R statistical

package [37].

We used a multivariate analysis of variance to see how a

player’s balance, athleticism and skill affected his scores in three

aspects of 11-a-side soccer: successes, activity and efficiency. Fol-

lowing this analysis, we used generalized linear modelling to

estimate the most likely effect of each independent variable on

each dependent variable. We used Akaike’s information criterion

(AIC) to compare a model with a Gaussian distribution of error

to one with a gamma distribution of error [41]. To estimate

the fixed effects, we used multimodel averaging as described by

Burnham and Anderson [42]. First, we used the MuMIn library

[43] to fit all possible models to the data. Then, we calculated the

AIC and Akaike weight of each model, the latter variable being

the probability that the model best describes the data. Finally, we

calculated the weighted average of each parameter including esti-

mates from all models. The resulting values of parameters were

used to calculate the most likely mean for each group.

To investigate the relationship between balance, athleticism

and skill with network performance, we fitted mixed effects

models using the lme4 package in the software package R,

which account for the dependence of some players appearing in

multiple games. Random intercepts were fit for game ID, player

ID and player’s stated position for each game. Player time on the

field in each game, and the league of the game, were modelled

as fixed effects and included as controls. Analyses predicting out-

comes from each ability indicator separately indicated that only

PCSK1 and PCATH2 reliably predicted any network outcomes.

Because of this, these two predictors were included together as

fixed predictors of each outcome. Significance tests were modelled

using the lmerTest package in R, based on the Satterthwaite

approximation, which results in fractional degrees of freedom.
3. Results
Path analysis revealed a link between morphology and total

points in the soccer tennis tournament, mediated primarily

by skill (figure 1d). Both greater balance and greater skill

(PCSK1) increased a player’s score (figure 1a,b). However,

only PCSK1 was affected by morphology (PCM1), and based

on its loadings (electronic supplementary material, table S1),

this shows that players with greater mass or girth were more

skilled (figure 1d).
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Figure 1. Relationship between morphology, maximum athletic capacity, motor skill function and balance with performance in the soccer-tennis tournament. We
found (a) overall motor skill function (PCSK1) and (b) balance were highly positively correlated with cumulative soccer-tennis score. (c) Overall athletic ability (PCATH1)
was not associated with soccer-tennis score. (d ) The best predictive path model that describes the relationship between morphology, balance, maximum athletic
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Skill was the only factor that was strongly associated with a

player’s performance in 11-a-side soccer matches (figure 2).

Our multivariate analysis revealed a significant effect of scores

for PCSK1, but no other significant effects (table 2). Our univari-

ate analyses confirmed that skill was associated with activity

(electronic supplementary material, table S7) and successes

(electronic supplementary material, table S9), but not efficiency

(electronic supplementary material, table S11). PCSK1 was

included in the most likely models according to the AIC (see

the electronic supplementary material, tables S6 and S8). The

likelihood that the best model of activity or performance

included skill (PCSK1) equalled or exceeded 95% (see estimates

of importance in the electronic supplementary material, tables

S7 and S9). Specifically, players with higher PCSK1 were more

likely to have higher activity and successes in the match.
Based on comparisons between individuals playing in the

different levels of competition, we found premier league

players had greater overall athletic ability (PCATH1) than reserve

players (F1,22¼ 5.37, p ¼ 0.030) (table 3). However, there was no

difference in either balance (F1,22¼ 0.45, p ¼ 0.51) or overall

motor skill (PCSK1) (F1,22¼ 0.001, p ¼ 0.98) between the premier

and reserve players. Player position only had a significant

association with balance (F4,19¼ 3.85, p ¼ 0.019), with forwards

possessing greater balance than central-defenders (p ¼ 0.020)

and wide-midfielders (p ¼ 0.039).

For each of the network outcomes, total time on the field

was the strongest predictor and was significant in each analy-

sis. Players’ league was not significantly associated with

any network outcomes (table 4). Maximum athletic abilities

(PCATH2) predicted in-degree (the number of different players
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Table 2. Multivariate analysis of variance (MANOVA) for activity, successes,
and efficiency in the 11-a-side soccer matches and their relationship with
balance, skill and athleticism. (Parameter estimates are provided in the
electronic supplementary material.)
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from which an individual received the ball) and total degree,

but no other network outcomes. By contrast, PCSK1 significantly

predicted all social network metrics except for out-degree,

which was the number of different players to which an individ-

ual successfully passed the ball (B ¼ 0.06, t15.55 ¼ 0.449, p ¼
0.660). For in-degree, total degree, weighted in-degree,

weighted out-degree, weighted degree, and closeness, PCSK1

significantly predicted higher scores (all p’s less than 0.04).

balance 0.074 0.424 0.738

skill 1 (PCSK1) 0.503 5.390 0.009

skill 2 (PCSK2) 0.155 0.976 0.428

athleticism 1 (PCATH1) 0.126 0.768 0.529

athleticism 2 (PCATH2) 0.209 1.408 0.277
4. Discussion
Our study is, to our knowledge, the first to quantify how

skill, balance and athleticism drive success among



Table 3. Average differences in skill, athleticism and balance between players from the higher premier league grade and the lower reserve team grade.
(The only difference between the grades was in overall athleticism (PCATH1). League means with s.e.m.; ANOVA; MS, mean squares value; F, F ratio. Italic value
indicates statistical significance.)

mean league effect

premier reserve d.f. MS F P

motor skill 1 (PCSK1) 0.00+ 0.44 0.00+ 0.43 1,22 0.00 0.00 0.991

motor skill 2 (PCSK2) 0.14+ 0.31 20.14+ 0.29 1,22 0.49 0.46 0.503

athletic ability 1 (PCATH1) 0.67+ 0.46 20.67+ 0.35 1,22 10.85 5.37 0.030

athletic ability 2 (PCATH2) 0.02+ 0.33 20.02+ 0.30 1,22 0.01 0.01 0.916

balance 0.14+ 0.30 20.14+ 0.28 1,22 0.46 0.45 0.509

Table 4. The effects of motor skill (PCSK1), overall athletic ability (PCATH2) and time on field on metrics of social network connectedness calculated on the
movement of the ball through 11-a-side soccer matches. (None of the other predictors were found to have a significant effect on the social network traits.
Game league was included as a control but was never significant and is not shown here. Significance is taken at the level of p , 0.05 (using Wald tests) and
denoted by text in italics. Standard errors are provided.)

Social network metric PCSK1 PCATH2 field time

number of players passed to (out-degree) 0.03+ 0.07 0.11+ 0.06 0.69+ 0.07

number of players received from (in-degree) 0.17+ 0.07 0.19+ 0.07 0.52+ 0.06

number of passing partners (overall-degree) 0.18+ 0.07 0.17+ 0.07 0.70+ 0.06

number of successful passes made (out-strength) 0.24+ 0.08 0.07+ 0.08 0.73+ 0.06

number of successful passes received (in-strength) 0.32+ 0.08 0.16+ 0.08 0.75+ 0.06

number of successful passes (overall-strength) 0.32+ 0.08 0.12+ 0.08 0.79+ 0.06

closeness (network centrality) 0.22+ 0.05 0.07+ 0.05 0.72+ 0.05
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individuals in a complex physical activity in any species, and

does so by viewing soccer players through the analytical lens

of evolutionary biology. We found that individuals with

greater skill were more likely to perform well in soccer-

tennis games and 11-a-side matches. Furthermore, skill was

also the best predictor of an individual’s contribution to the

success of a team, based on a social network analysis of

ball movement.

Although our study shows skill was the best predictor of

success in soccer matches, at least in theory this could be

because our specific measures of athleticism do not capture

variation in overall athleticism and/or are irrelevant to soccer

match performance [44,45]. However, this seems unlikely, as

the athletic traits we quantified included metrics of agility,

speed, acceleration, power and endurance—all of which are

generally considered to be relevant to soccer [4,46]. Furthermore,

the first principal component explains most of the variation in

athleticism and all measures were strongly positively correlated,

suggesting it captures meaningful variation.

Most quantitative protocols for talent identification in

soccer focus more on the generic athletic attributes of team

sports, such as speed, strength, agility and endurance, rather

than skill [5,46,47]. In fact, the vast majority of science that

occurs on soccer players focuses on how to improve speed,

strength and fitness, and how to facilitate rapid recovery after

matches or following injury. Quantitative assessments of

soccer-specific skill and experimental testing of programmes

designed to improve the uptake of skill are almost non-existent
in football academies and professional clubs. This is surprising

given that soccer is primarily a game that rewards high techni-

cal skill and the game’s most skilful players attract the highest

salaries and are the most revered and coveted. So why is

there still no detailed and widely used quantitative metric for

soccer-specific skill? Tests of soccer-specific skill are usually

more time-intensive and can offer lower repeatabilities than

measures of athletic performance [23]. Furthermore, there are

also disagreements over which skills are the most relevant

[10]. Finally, many coaches still feel that assessment of skill is

their domain, and not that of scientists. But despite these poten-

tial barriers, the development of a comprehensive protocol for

soccer-specific skill could markedly improve both talent identi-

fication and development [34]. Our study has shown that the

best players in matches also have the higher skill, yet the impor-

tance of skill to match success is currently not reflected in

soccer science.

Although players from the premier team were more athletic

than those in the reserve team, athleticism failed to predict

which players performed best within each grade, suggesting

that grades may reflect only a minimal level of athleticism

required for entry or differences in training load. Traditionally,

scouting and training programmes have relied heavily on those

athletic traits that differ between elite and sub-elite grades,

while overlooking variation within each grade. These same

programmes ignore the complexity of performance in dynamic

environments, including competitors, teammates and a ball.

This may also help to explain why there has been a limited
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uptake of quantitative protocols for talent identification across

most professional team sports, especially soccer [5,12]. Wild

animals modulate their movements to account for their

environment—for example, slowing along thinner branches

[48] or when turning sharply [25]. Similarly, in a soccer

game, players must respond to a variety of dynamic environ-

mental conditions through motor performance [30], such as

sprinting, dribbling, heading, passing, pivoting, feinting,

shooting and even diving [32]; these performances may inter-

act with each other in complex ways. Advances in sports

science require that performances are compared among indi-

viduals within a grade in similar ways as when evolutionary

biologists compare performance among individuals in a

natural population.

Evolutionary biologists also have much to gain by crossing

taxonomic divides. Although it’s easier to measure sprint

speeds than motor skill in almost any animal species, including

humans, such measures of maximal performance alone are

simply not enough to predict success during a complex

activity. For example, sprint speed is widely cited as important

for escaping predators [16,22], but there are as many studies

that report no relationship between speed and survival as

there are that report a positive relationship [22]. Apparently,

speed is just one trait that can determine escape from predators

and in certain environments or situations, other traits will be

more important. Because almost all predators are faster than

their prey, escape probably depends on acceleration and

agility, as well as speed. An adaptive landscape may have mul-

tiple optima for escape strategies, based on different

combinations of phenotypes. For example, an individual that

is fast but not agile may be as successful as one that is slow

but agile [49]. Hence, the future of performance research

relies on integrating biomechanics, performance, and behav-

iour in a multi-dimensional phenotypic space. By quantifying

multiple performances simultaneously, one can see whether

multiple phenotypes can lead to similar success. The benefit

of working with humans is that they (often) behave as

instructed, which helps researchers test theoretical models

and refine experimental protocols (e.g. [49]). The knowledge

gained from studies of humans can subsequently be extended

to non-human animals in uncontrolled environments.
Here we have argued that analyses of sporting data and

human physical function can be used to address an enormous

range of evolutionary topics that are difficult to address in

nonhuman models. Such topics include deception [32], senes-

cence [33] and functional trade-offs [29,30]. Similarly,

approaches to data analysis used by evolutionary biologists

to study adaptation, multivariate trait evolution and adaptive

landscapes can also contribute to advances in sports science.

Sports scientists might better accomplish their aims—identify-

ing talented players, nurturing young athletes, and managing

and estimating the rates of senescence of individual perform-

ance [50]—using methods from evolutionary biology. Both

fields would benefit from changing current mindsets that

hold back collaborations between disciplines.

Humans are governed by the same musculoskeletal con-

straints as other terrestrial vertebrates; therefore, analyses of

human function and behaviour can address fundamental ques-

tions in biology. Although sports reflect cultural effects

imposed by social environments, they also reflect the human

desire to compete in ritualized contests that advertise the qual-

ity of a genotype. Thus, our path analysis of morphology, skill

and performance could be extended to examine the effects on

mating success. Such an extension would bring the power of

Arnold’s paradigm for studying selection gradients to bear

on competitive behaviours that occur throughout human

populations [9]. In light of this potential, future collaborations

between evolutionary biologists and sports scientists should

promote an exciting new field of evolutionary sports science.
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