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In wild primates, social behaviour influences exposure to environmentally

acquired and directly transmitted microorganisms. Prior studies indicate

that gut microbiota reflect pairwise social interactions among chimpanzee

and baboon hosts. Here, we demonstrate that higher-order social network

structure—beyond just pairwise interactions—drives gut bacterial compo-

sition in wild lemurs, which live in smaller and more cohesive groups than

previously studied anthropoid species. Using 16S rRNA gene sequencing

and social network analysis of grooming contacts, we estimate the relative

impacts of hierarchical (i.e. multilevel) social structure, individual demo-

graphic traits, diet, scent-marking, and habitat overlap on bacteria

acquisition in a wild population of Verreaux’s sifaka (Propithecus verreauxi)
consisting of seven social groups. We show that social group membership is

clearly reflected in the microbiomes of individual sifaka, and that social

groups with denser grooming networks have more homogeneous gut

microbial compositions. Within social groups, adults, more gregarious indi-

viduals, and individuals that scent-mark frequently harbour the greatest

microbial diversity. Thus, the community structure of wild lemurs governs

symbiotic relationships by constraining transmission between hosts and parti-

tioning environmental exposure to microorganisms. This social cultivation of

mutualistic gut flora may be an evolutionary benefit of tight-knit group living.
1. Introduction
Mammalian gastrointestinal tracts harbour complex microbial communities that

are critical to host development, metabolism, immune function and protection

from pathogens [1–4]. Discovery of these essential physiological functions has

shifted the traditional pathogen-dominated view of host–bacterial interactions

[5] and spurred researchers to characterize the composition and function of

host-associated microbial communities. Gut microbiome composition and the

coevolution of gut microbiota and their hosts are likely influenced by a combi-

nation of heritable factors (e.g. host genetics and vertical transmission),

environmental factors (e.g. geographic location and diet) and behavioural fac-

tors (e.g. social networks arising from daily contacts and proximity among

individuals) [6–8]. However, we do not yet know the relative importance

and interactions of vertical, horizontal and environmental transmission.

Primates exhibit diverse patterns of social organization, ranging from

entirely solitary to dispersed to gregarious [9]. These social groupings mediate

exposure to environmentally acquired and directly transmitted commensal

microorganisms and may thus impact host health [10–14]. For example, the

social transmission of gut bacteria has been linked to disease risk in mice [15]

and protection against parasites in social bumblebees [2]. Although social net-

works demonstrably influence parasite transmission and infectious disease

outbreaks in wildlife populations (e.g. [16–19]), we know little about their
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impact on the mammalian gut microbiome or the downstream

consequences for host physiology and health. There may be

informative parallels between pathogen transmission and

gut colonization. For example, certain individuals may be

highly connected super-spreaders [20] that disproportionately

disseminate gut bacteria, or highly mobile super-movers [21]

that connect otherwise disjointed parts of the population.

Among wild mammals, several studies have demonstrated

concordance between social or spatial networks and bacteria

strain sharing [22–24]. In particular, the gut microbiota of

chimpanzees and baboons reflect pairwise social interactions

[25,26]. However, the applicability of these results is limited

by the extensive effort required to estimate pairwise affilia-

tions in wildlife. Higher levels of social organization, such as

social groups, may be both easier to ascertain and have a

more pronounced impact on microbiome composition,

depending on the social structure of the host species.

In this study, we characterize the social networks of wild

Verreaux’s sifaka (Propithecus verreauxi), an arboreal, diurnal

lemur that inhabits the dry forests of western Madagascar,

and explore the impacts of these networks on gut microbiome

similarity and within-host diversity. Sifaka are morphological

folivores with dentition and gastrointestinal tracts that are

anatomically specialized for consuming and processing

fibrous leaf material [27,28] and for detoxifying secondary

plant compounds [28]. Their sacculated caecum contains

mutualistic bacteria that use fermentation to break down

otherwise indigestible plant polysaccharides into digestible

volatile fatty acids [29]. Sifaka live in small, cohesive,

mixed-sex social groups [30] with small, overlapping home

ranges [31]. Females tend to be philopatric [32], whereas

males disperse from their natal group upon reaching sexual

maturity [33]. Sifaka regularly groom one another with

their toothcombs and tongues to remove ectoparasites [34].

Grooming relationships vary by sex, dominance rank and

reproductive season and primarily occur within social

groups [34]. Intimate grooming contacts, particularly near

the anogenital region (electronic supplementary material,

video S1), likely facilitate the direct oral exchange of gut

bacteria within groups [25]. Sifaka also communicate via

scent-marking, in which they rub their throat (males only)

or anogenital region (both sexes) on trees [31,35]. Males com-

monly overmark and inspect the scent-marks of both group

and extra-group members [31], thus scent-marking locations

potentially serve as fomites for enteric bacterial transmission,

as proposed by [23] and [24]. Because sifaka groups tend to

have a high degree of home range overlap, scent-marking

is not necessarily effective for deterring extra-group individ-

uals from entering a home range [35]. Sifaka may also

acquire gut microorganisms environmentally, either from

their diet or when licking water from a substrate. A previous

study in Verreaux’s sifaka examined correlations among

group membership, habitat overlap, and Escherichia coli sub-

type (ST) sharing [24], but did not address the influence of

physical contacts on gut microbiota.

We present a multi-dimensional analysis of social network

structure and gut microbiota variation in a sifaka study

population. Specifically, we relate hierarchical characteristics—

including group membership, pairwise associations and

individual-level connectivity, demography and genotype—to

microbial community structure within and across seven sifaka

social groups. Although there is already strong correlative

evidence that gut microbiota are socially transmitted in
chimpanzees and baboons [6,25,26], sifaka are socially distinct

from anthropoid primates in several respects: they live in

much smaller, more cohesive social groups with overlapping

home ranges, use scent-marking for within- and between-

group communication, and groom orally rather than digitally.

By contrast, chimpanzees and baboons live in large groups

of up to a few hundred individuals. We hypothesized

that the small, cohesive sifaka social groupings should lead

to more pronounced modularity among their gut microbial

communities—greater homogeneity within groups and distance

between groups—than previously observed in chimpanzees and

baboons [25,26]. We expected such microbial mirroring of social

group membership to arise from common diet [6,36], horizontal

transmission of gut bacteria via direct grooming contacts [25] or

sequential scent-marking [37] and common environmental

exposure among group members [26]. Further, assuming that

gut bacteria are transmitted between groups primarily via

scent-marking during intergroup encounters and habitat over-

lap, we hypothesized that sifaka groups with overlapping

home ranges should cluster more closely in microbial compo-

sition than non-adjacent groups. Finally, because grooming

and scent-marking likely contribute to the social exchange of

gut bacteria, we predicted that individual sifaka that groom or

scent-mark more frequently would have more diverse gut micro-

biomes. Given that sifaka are folivorous, strepsirrhine primates

with markedly different ecology, social dynamics, means of

communication and phylogenetic history than other primate

species already in the microbiome literature, our study provides

valuable comparative insights into the socioecological influences

on host-associated microbial communities.
2. Material and methods
(a) Study site and study subjects
Sifaka behavioural data, genetic samples and faecal samples

were collected at Ankoatsifaka Research Station (20847.690 S,

4489.880 E) in Kirindy Mitea National Park in western Madagas-

car (electronic supplementary material, figure S1). In this study,

we focus on 47 individuals from six habituated social groups in

the Ankoatsifaka trail system (Group I, Nindividuals ¼ 4; II, N ¼ 6;

III, N ¼ 9; IV, N ¼ 8; V, N ¼ 5; VI, N ¼ 9) and from one partially

habituated group in the research site camp area (Group Camp,

N ¼ 6). Since 2007, Groups II, III, IV and V have been the

focus of long-term research, whereas genetic and demographic

data for groups inhabiting the periphery of the field site (I, VI)

have been collected opportunistically. Of the 47 individuals

included in this study, demographic and genetic data were avail-

able for 35 individuals in Groups I–VI, social behaviour data for

22 individuals in Groups II–V, feeding behaviour data for 16

individuals in Groups II–V and scent-marking data for 19 indi-

viduals in Groups II–V (electronic supplementary material,

table S1). We categorized sifaka based on their age, sex and dom-

inance rank (electronic supplementary material, table S1), and,

for pairwise analyses, scored whether two individuals were

related to each other based on genetic data. Additional infor-

mation concerning individual categorization is included in the

electronic supplementary material.

(b) Faecal sample collection, sample processing
and sequencing

Faecal samples were collected immediately after defaecation during

a one-month span in the dry season (20 June 2012–28 July 2012),

when the sifaka diet consists primarily of mature leaves. Figure 1c
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Figure 1. Social groups harbour distinct gut microbiota despite close proximity. (a) Relative abundances of the nine most abundant gut bacterial phyla in 47
Verreaux’s sifaka from seven social groups (I – VI: research site trail system; ‘camp’: research station camp area). The ‘other’ category represents low abundance
(less than 2%) phyla. (b) Principal coordinates plot of Bray – Curtis dissimilarities showing ecological distances among 47 sifaka samples. Social group membership
explains a significant proportion of variation in gut microbial composition, and groups do not cluster according to habitat overlap. (c) Faecal sample collection sites at
Ankoatsifaka Research Station in Kirindy Mitea National Park, Madagascar. Sample collection sites represent group home ranges throughout the behavioural data
collection period (electronic supplementary material, figure S16).
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shows a map of sampling locations. Samples from two individuals

in Groups I and III (I-M1 and III-M1) were collected during the

Sifaka Research Project’s annual capture in June 2012. Capture

methods are described in detail elsewhere [38]. Faecal samples

were preserved in RNAlaterw at ambient temperature until their

arrival in Austin, Texas, in August 2012 and frozen at 2808C
until DNA extraction. DNA was extracted from faecal pellets

using the bead-beating procedure described in Goodman et al.
[39]. The V4 region of the bacterial 16S ribosomal RNA gene was

PCR amplified in triplicate using primers 515F and 806R, as

described in Caporaso et al. [40]. The resulting amplicons were

pooled and paired-end sequenced using the Illumina MiSeq

platform at Argonne National Laboratory (Lemont, IL, USA).

(c) Sequence quality control and taxonomy
Raw Illumina sequence reads were de-multiplexed and

quality filtered using QIIME [41] with join_paired_ends.py and

split_libraries_fastq.py and default settings. High-quality reads

were assigned to 97% operational taxonomic units (OTUs) (i.e.

phylotypes) and taxonomic classifications with the RDP classifier

(pick_open_reference_otus.py) based on their best match in the
Greengenes database. After initial quality filtering, singletons

(OTUs detected once in the entire dataset) and chloroplast and

eukaryotic mitochondria OTUs were removed to generate a

usable table of bacterial taxa. The resultant set of OTUs contained

a total of 33 433 unique OTUs (�x ¼ 3590 + 1375 s:d: phylotypes

per sample). This high level of phylotype diversity likely stems

from our open-reference OTU picking method, which incorporated

novel OTU diversity by clustering all sequence reads.
(d) Sample clustering using Bray – Curtis and weighted
Unifrac metrics

We assessed similarity in gut microbial communities using only

OTUs that were detected in at least two samples, totalling 9050

unique phylotypes. To account for differences in sequencing

depth among samples and heteroscedasticity in OTU counts,

we estimated sample-specific normalization factors [42] and

then rescaled OTU counts. After normalization, samples

contained �x ¼ 2440 + 891 s:d: unique OTUs. We quantified

among-individual variation in gut microbial community compo-

sition by calculating Bray–Curtis dissimilarities and weighted
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Unifrac distances between samples. Bray–Curtis dissimilarities

consider the presence/absence of bacterial OTUs, whereas

weighted Unifrac distances incorporate OTU abundances and

the phylogenetic relationships among OTUs.

Additional details about microbiome analyses, genetic

sample collection, genotyping, behavioural data collection,

dietary analysis, social network analysis and statistical analyses,

as well as associated references, are provided in the electronic

supplementary material.
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3. Results
We characterized the gut microbiota of 47 sifaka (electronic

supplementary material, table S1) by Illumina sequencing

the V4 region of the bacterial 16S rRNA gene, resulting in

an average sequencing depth of 79 263 reads and 3590

unique 97% OTUs (i.e. bacterial phylotypes) per sample. As

described previously for wild sifaka [43], most classifiable bac-

teria were assigned to Firmicutes (mean+ s.d. ¼ 52.8%+
21.1%), Bacteroidetes (12.1%+7.5%) and Proteobacteria

(7.4%+6.0%), which together constituted 53.6–94.1% of

the sequence reads identified in each sample (figure 1a).

Actinobacteria, Cyanobacteria, Fibrobacteres, Synergistetes,

Tenericutes and Verrucomicrobia were also prevalent, but at

substantially lower frequencies (less than 2%) than the three

dominant phyla (figure 1a). A high proportion of sequence

reads could not be classified at any hierarchical taxonomic

level (22.6%+10.5% reads per sample), and the majority of

phylum-resolved taxa (73.6%) lacked genus-level resolution.

Thus, sifaka gut microbial communities are composed of

mostly novel bacterial taxa that have yet to be characterized,

perhaps stemming from the greater phylogenetic distance

between humans and lemurs compared to the distance

between humans and other anthropoid primates [44]. The

two most abundant microbial families, Lachnospiraceae and

Ruminococcaceae (Clostridiales: Firmicutes; electronic sup-

plementary material, figure S2), have been associated with

maintenance of gut health in humans and are uniquely

suited to degrade a wide variety of recalcitrant substrates

[45]. Their dominance in sifaka gut microbiomes is consistent

with gut microbial profiles observed in other folivorous

primate taxa [46,47].

(a) Gut microbial composition across social groups
Sifaka social groups differed significantly in gut biodiversity

(electronic supplementary material, figure S3). We calculated

Bray–Curtis dissimilarities and weighted Unifrac distances

between samples to evaluate beta diversity in gut microbial

community composition. Principal coordinates analysis and

partitioning around medoids (PAM) clustering of phylo-

type-level Bray–Curtis dissimilarities and weighted Unifrac

distances indicated that sifaka microbiomes formed two dis-

crete clusters (figure 1b; electronic supplementary material,

figure S4), with members of two social groups, VI and

Camp, segregated from the other groups. Secondarily,

Groups IV and V clustered separately from Groups I, II and

III. Six males dispersed to new social groups during the

eight to 12 months prior to faecal sample collection and

exhibited microbiome signatures of their new groups (i.e.

within social groups, the gut microbiota of recent immigrants

were not significantly different from those of resident indi-

viduals, Wilcoxon, p ¼ 0.51; figure 1b; electronic

supplementary material, figures S5 and S6). Interestingly,
one of these dispersed males (II-M1) frequently transferred

between Groups I and II during the five months prior to

sample collection and harboured a microbial signature that

was intermediate between those of Groups I and II. The

microbial phyla, families and genera associated with each

microbial cluster are detailed in the electronic supplementary

material (electronic supplementary material, table S2).

Although we did not have data to show the presence of

specific pathogens in our samples, several bacteria genera

that include opportunistic pathogens, such as Atopobium,
Clostridium, Escherichia and Streptococcus, were differentially

abundant across social groups (electronic supplementary

material, table S2 and figure S7).

(b) Neither dietary nor habitat overlap explain
clustering

Some previous studies have attributed positive associations

between social proximity and gut microbiome composition

to shared diets [6,36]. We profiled the feeding behaviour of

16 adults in four of the focal groups (II, III, IV, V) during

the six months prior to faecal sample collection (January–

June 2012). Sifaka consumed primarily mature leaves

(mean+ s.d. ¼ 26.9%+17.4% foraging time), young leaves

(28.3+13.8%) and fruit (23.9+ 13.4%) with a smaller pro-

portion of time devoted to foraging on seeds, flowers and

bark (electronic supplementary material, figure S8). Among

social groups, only Groups II and IV had significantly differ-

ent diets, with Group IV primarily consuming fruit

and Group II primarily foraging on seeds (Kruskal–Wallis,

p ¼ 0.04 and 0.01, respectively; electronic supplementary

material, figure S9). When we looked more closely at plant

species consumed, we found some significant differen-

ces between groups (electronic supplementary material, figure

S10). However, these differences do not align with the clustering

in microbial composition. To assess inter-individual variation in

diet, we computed pairwise Bray–Curtis dietary distances

based on the relative proportions of plant parts or plant species

consumed. We found that dietary profiles did not predict

microbial similarity between individuals (plant parts: Mantel,

r ¼ 0.01, p ¼ 0.44; plant species, r ¼ 0.1, p ¼ 0.09; electronic

supplementary material, figure S11).

Although adjacent social groups shared more bact-

erial phylotypes than non-adjacent groups (Kruskal–Wallis,

p , 0.05; electronic supplementary material, figure S12), the

microbial clustering of groups did not correspond to

habitat overlap or ad libitum observations of scent-marking

during intergroup encounters. For example, Group VI’s

home range intersected with those of Groups II and III but

its gut microbiota were most similar to those of Group

Camp, which inhabited a section of forest approximately

1 km away from the trail system (figure 1c). Given that

sifaka groups in Kirindy Mitea National Park have home

ranges of approximately 0.15 km2 (range: 0.1–0.19 km2)

[48], it is unlikely that the microbial clustering among

members of Group VI and Group Camp arose due to

shared habitat, physical interactions or scent-marking

during intergroup encounters.

(c) Predictors of gut microbiome composition
Across all individuals, social group membership explained

57.6% of observed variation in gut microbial communities
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(PERMANOVA, Bray–Curtis metric: p , 0.001; figure 1b),

whereas age (R2 ¼ 0.06, p ¼ 0.38) and sex (R2¼ 0.01, p ¼ 0.99)

were not significant predictors of community composition. Fur-

thermore, sex/dominance rank did not significantly influence

variation in composition among adults in multi-male/multi-

female groups (R2 ¼ 0.21, p ¼ 0.79). Rather than adopting

observer-designated social groupings, we used a community

detection algorithm to quantify network modularity and par-

tition the focal population into groups based on dyadic

grooming relationships. Four distinct social clusters emerged

with strong statistical support (modularity, Q ¼ 0.73), which

perfectly matched the original observer-designated groupings.

For each social group, we measured the proportion of existing

dyadic grooming relationships relative to the total number

possible within that group, and found a high median edge den-

sity of 0.67 (range: 0.46–1.0). By contrast, the overall edge

density when aggregating all four groups into a single network

was only 0.15. Social groups with higher edge densities

(i.e. greater social connectedness) exhibited more homo-

geneous microbial compositions than social groups with

lower edge densities (Pearson’s r ¼ 20.99, p ¼ 0.01, electronic

supplementary material, figure S13).

Group membership remained a significant predictor of

gut microbiome composition after controlling for estimated

genetic relatedness (‘related’ versus ‘not related’) between

individuals (partial Mantel, r ¼ 0.31, p , 0.001), whereas

genetic relatedness did not significantly correlate with simi-

larity in microbial communities after controlling for group

membership (partial Mantel, r ¼ 0.07, p ¼ 0.07; figure 2a).

Within social groups, individuals belonging to the same

maternal line did not, on average, share more bacterial

phylotypes compared to related individuals belonging

to different maternal lines or unrelated group members

(Kruskal–Wallis, p ¼ 0.63; electronic supplementary mate-

rial, figure S14), suggesting that vertical transmission is not

driving the compositional homogeneity observed among

group members. Nonetheless, pedigree relationships pre-

dicted microbiome dissimilarity for dyads belonging to

different groups (i.e. half-siblings, recently dispersed males

and their relatives; figure 2a), thus indicating sifaka retain a

signature of their inherited microbiota or that relatives in

different groups groomed each other more frequently (or

recently) than unrelated individuals in different groups.

We developed a predictive model of pairwise gut

microbial similarity using four of the seven social groups

(II, III, IV, V), for which we had extensive dyadic contact

data. When considering the grooming network of all four

groups (i.e. within- and between-group pairwise social dis-

tances; figure 2b), group membership was the strongest

predictor of similarity in gut microbial composition between

individuals (figure 2c and table 1; electronic supplementary

material, table S3), while genetic relatedness was not infor-

mative. When we removed group membership as a

predictor, we found that the shortest network path length

between pairs of individuals (i.e. the proximity and strength

of the dyadic grooming relationship) predicted gut microbial

similarity (figure 2c and table 1). However, grooming path

length was not a significant predictor in the full model that

included the group membership predictor (DDIC , 5).

Importantly, when we examined the within- and between-

group networks separately, grooming path length no longer

predicted similarity in gut microbiome composition

(figure 2c), despite groups with higher edge densities
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Table 1. Pairwise social and genetic predictors of Bray – Curtis dissimilarity among Verreaux’s sifaka inhabiting Kirindy Mitea National Park. Posterior mean, 95%
credible interval (95% CIs), and p-value based on Markov chain Monte Carlo sampling for fixed-effect parameters. Baseline relatedness (not related) is not
shown. Individual identity within each pair was included as a random effect. Bolded relationships are significant at p , 0.05.

model parameter mean 95% CI p interpretation

group membership

Npairs ¼ 167

DIC: 2486.4

intercept 0.47 (0.44, 0.5) <531025

the same

group

20.11 (20.14, 20.09) <531025 pairs in the same social group have

less dissimilar microbiota

related 0.01 (20.02, 0.04) 0.57 no significant correlation

social distance

Npairs ¼ 167

DIC: 2440.67

intercept 0.34 (0.3, 0.38) <531025

network path

length

1.7�1025 (1.23�1025, 2.19�1025) <531025 pairs that are farther apart in the

social network have more

dissimilar microbiota

related 29.22�1023 (20.04, 0.02) 0.54 no significant correlation
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displaying more homogeneous microbiome compositions.

We thus conclude that the population-wide correlation

between social contacts and microbiome composition stems

primarily from group membership, as sifaka groups

are highly cohesive, with most sifaka rarely grooming

individuals outside their social group.

On an individual level, we assessed whether gut

microbiome diversity correlated with an animal’s age,

scent-marking rate, dietary diversity and degree of sociabil-

ity, as measured by its weighted degree centrality in the

grooming network. After controlling for social group affilia-

tion, individuals that more frequently received or initiated

grooming had more diverse microbiomes (figure 3 and

table 2; electronic supplementary material, table S4), even

when limiting the analysis to only adult individuals ( p ¼
0.003). Microbial diversity increased with age, with juvenile

and subadult sifaka exhibiting significantly lower richness
compared to adults (figure 3 and table 2). Dietary diversity

(Shannon’s evenness index for the proportion of food items

consumed) correlated with increased phylotype richness

(plant species: p ¼ 0.003; plant parts, p ¼ 3.84 � 1027;

table 2), as also reported in chimpanzees and red-shanked

doucs [26,49]. Lastly, individuals with higher scent-marking

rates, such as stained males, tended to have more diverse

microbiomes (table 2; electronic supplementary material,

figure S15).
(d) Evidence for direct between-host transmission
Microbiome similarity within groups may stem from direct

transmission (perhaps via grooming), sequential scent-marking,

common environmental exposure and/or similar dietary

intake among group members. To distinguish between habi-

tat use and physical contact, we controlled for common

exposure by constructing social networks based on the dur-

ation with which individuals were observed to be in close

proximity (within 1 m) during the six months and 12

months prior to faecal sample collection. We examined six-

month and 12-month time periods because microbiome sig-

natures of dispersed males suggest that gut microbial

turnover occurs within six to 12 months after transferring

groups. When controlling for six-month (but not 12-month)

proximity, grooming network path length remained a

strong and significant predictor of similarity in microbiome

composition between individuals (partial Mantel, r ¼ 0.11,

p ¼ 0.003), thus implicating grooming contacts in the social

transmission of gut microorganisms over shorter timescales.

Over longer periods of time, common environmental

exposure arising from close proximity may be more impor-

tant in shaping compositional homogeneity among group

members. To distinguish between diet and physical contact,

we constructed a grooming network among the 16 individ-

uals for which foraging data were available. We then

computed two sets of Bray–Curtis dietary distances based on

the proportion of time these individuals were observed consum-

ing plant species and plant parts. When controlling for dietary

similarity, grooming path length remained a significant predic-

tor of microbiome composition (plant species: partial Mantel,

r ¼ 0.42, p , 0.001; plant parts: r ¼ 0.43, p , 0.001), despite



Table 2. Predictors of within-host gut microbiome richness for Verreaux’s sifaka inhabiting Kirindy Mitea National Park. Average coefficient estimates, standard
errors, z values, and Pr(.jzj) values are shown for fixed-effect parameters. Baseline age (adult) is not shown. Group membership was included as a random
effect in all models. Bolded relationships are significant at p , 0.05.

model parameter estimate s.e. z-value Pr(>jzj) interpretation

sociability/age

Nsifaka ¼ 27

intercept 8.0 0.01 638.1 <2310216

weighted degree

centrality

7.65 1.04 7.4 1.92310213 more central individuals have greater microbial

diversity

age ( juvenile) 20.11 0.01 212.9 <2310216 juveniles have lower microbial diversity than

adults

age (subadult) 20.04 0.01 23.8 0.0001 subadults have lower microbial diversity than

adults

scent-marking

Nsifaka ¼ 19

intercept 7.94 0.01 558.9 <2310216

scent-marking rate 0.05 0.005 9.8 <2310216 individuals that scent-mark more frequently

have greater microbial diversity

diet

composition

Nsifaka ¼ 16

intercept 7.46 0.07 108.3 <2310216

plant part

evenness

0.21 0.04 5.1 3.8431027 individuals that eat a greater variety of plant

parts have greater microbial diversity

plant species

evenness

0.09 0.03 3.0 0.003 individuals that eat a greater variety of plant

species have greater microbial diversity
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close grooming partners tending to forage on similar plant

species (Mantel, r ¼ 0.13, p ¼ 0.03).
4. Discussion
Hierarchical social organization is an important determinant

of gut microbiome composition in wild Verreaux’s sifaka.

The study population exhibited modular community struc-

ture, identified both by field observers and through social

network partitioning of dyadic contact data, consisting of

small sub-networks (i.e. social groups) that were highly intra-

connected and only loosely interconnected. Even after

controlling for diet, kinship and habitat overlap, group mem-

bership was the single most informative predictor of gut

microbiome diversity and similarity between individuals,

revealing the importance of social network structures

beyond the dyadic associations reported by prior studies

[25,26]. Theoretical studies have shown that modular net-

work structure constrains the spread of socially transmitted

microorganisms [50,51], but few empirical studies demon-

strate such effects in wild animal populations [52–54].

Within sifaka social groups, we found that individual socia-

bility, age, diet composition and scent-marking rate also

influenced gut microbiome diversity.

Microbiomes from the seven social groups aggregated

into two clusters, each with distinct taxonomic structure,

species diversity and abundances of particular bacterial phy-

lotypes. Given that we observed minimal physical contact

between groups during behavioural observations, we

hypothesized that this clustering pattern may stem from habi-

tat overlap, shared diet and/or scent-marking during

intergroup encounters. However, using available proximity,

foraging, and scent-marking data, we failed to find support

for any of these mechanisms. Microbiomes did not cluster

according to either geographic proximity (which is analogous
to findings for ring-tailed lemurs [55]) or similarity in diet

(i.e. plant parts or plant species consumed). Although

sifaka scent-mark during intergroup encounters, the infre-

quency of these events was likely not sufficient to promote

significant microbial transfer between adjacent social

groups. A study examining E. coli ST sharing among

Verreaux’s sifaka groups from an entirely different study

population in Kirindy Forest similarly found that dyads

belonging to the same social group were more likely to

share the same or closely related STs than dyads belonging

to different groups with home range overlap [24]. When we

examined inter-individual variation in foraging behaviour,

dietary similarity failed to predict microbiome composition.

However, we note that we did not have feeding data for

Groups VI and Camp, two non-adjacent groups that clus-

tered separately from the other five groups, and thus

cannot fully exclude the influence of diet on sifaka gut

microbiota.

Group-level clustering of sifaka gut microbiomes may

stem from vertical transmission between mothers and off-

spring, direct transmission among individuals that are in

close contact [25,26], or environmental overlap and dietary

similarity among group members. Although relatedness pre-

dicted microbiome similarity for some sifaka in different

groups (e.g. half-siblings, recently, dispersed males and

their relatives), our within-group analyses suggest that

neither vertical inheritance nor genetic relatedness can

explain compositional homogeneity within groups, because

related individuals did not have more similar gut microbiota

than non-related individuals. Consistent with past studies of

humans and other non-human primates [6,25,26,56], we

found that group membership and physical contacts (as

measured by grooming duration between dyads) predicted

pairwise gut microbiome similarity on a global (network)

level. Male sifaka that immigrated to new social groups

during the previous year appeared to display the microbiome
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signatures of their new groups, suggesting rapid phylotype

turnover amidst new social contacts, a pattern previously

observed in female chimpanzees [6]. However, it is important

to note that some of these dispersed males transferred from

unsampled social groups that inhabited the periphery of the

field site. On a population level, grooming relationships

remained a significant predictor of microbiome composition,

after controlling for both spatial proximity and dietary simi-

larity. Furthermore, social groups with higher social

connectedness (i.e. higher grooming network edge densities)

exhibited more homogeneous microbiome compositions.

However, contrary to yellow baboons (Papio cynocephalus)

[25], gut microbiome similarity between individual sifaka

did not reflect grooming relationships within social groups.

This discrepancy may stem from substantial differences in

group size, grooming relationships and olfactory communi-

cation between the two species. Yellow baboons live in

social groups that are an order of magnitude larger and

much more socially subdivided [57] than sifaka groups,

with female baboons primarily grooming other female kin

[57], and males grooming much less frequently, especially

with members of their own sex [58]. While baboons do not

scent-mark at all, male sifaka frequently overmark and

inspect the scent-marks of other group members [31], which

likely promotes bacterial exchange within social groups.

Age, centrality in the grooming social network, dietary

evenness and scent-marking rate were significantly associ-

ated with individual microbiome diversity. Alpha diversity

and stability in the gut microbiome have been linked to

host development, immune function and protection from

pathogens [1–4,6,36,59–62]. Although infants are inoculated

by their mothers’ microbiota through vaginal birth and

lactation, they continue to acquire microbes throughout

their lives through contact with conspecifics and the envi-

ronment [63]. Prior studies have also linked age to gut

microbiota diversity in baboons, chimpanzees and humans

[6,36,64]. Intuitively, behaviours that promote contact with

faecal matter—e.g. giving and/or receiving intimate groom-

ing and scent-marking—correlated with greater microbial

diversity [20,26,53]. Olfactory communication in lemurs is

complex: adult sifaka use scent-marking and overmarking

to self-advertise, to mark food resources, to delineate home

ranges, to noncombatively fight and/or as a form of mate-

guarding, depending on the individual and the context

[31,35]. Overmarking and scent-mark inspection may

increase individual exposure to enteric bacteria and promote

indirect transmission between hosts, as hypothesized by pre-

vious studies on bacteria strain sharing [23,24]. Although

grooming can facilitate the spread of parasites and pathogens

[53,65], it may also improve health by promoting diverse

mutualistic gut microbial communities [26], serving a hygie-

nic function [66,67] and mediating the formation and

maintenance of bonds between individuals [68,69]. These

counterbalancing effects may have non-trivial and environ-

mentally dependent impacts on host fitness and the

evolution of primate social structure.
5. Conclusion
The gut microbiomes of wild sifaka reflect their modular

social organization, and both grooming and scent-marking

behaviours promote microbial exchange and within-host
diversity. Like previous studies in anthropoid primates

[25,26], we find that group membership and social contacts

directly shape microbial variation, even while controlling

for the potentially confounding factors of diet, genetic relat-

edness, vertical inheritance and spatial proximity. However,

sifaka exhibit striking between-group differences and

increased within-group homogeneity in their gut microbial

communities as a result of their unique social dynamics,

use of olfactory communication and style of grooming.

Given that lemurs are more phylogenetically distant from

humans than are anthropoid primates and are an indepen-

dent radiation, this study provides comparative insights

into social constraints on gut microbiota that may ultimately

help to elucidate the diversity and evolution of primate

sociality [10,11,13]. We speculate that permanent social

groups promote the horizontal transmission of beneficial

gut microorganisms [25] and the maintenance of diverse

microbiomes, thereby reducing the pathogen-related costs

of group living [14]. Although few microbiome studies have

examined social transmission and pathogen resistance in

tandem [2], separate evidence for the social transmission of

commensal bacteria [25,26,37,56] and microbiome-mediated

pathogen resistance [70–72] suggests a link between these

two forces [14].
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